1
|
Zhou C, He S, Gao S, Huang Z, Wang W, Hong P, Jia RB. Effects of Ultrasound-Assisted Treatment on Physicochemical Properties and Biological Activities of Polysaccharides from Sargassum. Foods 2024; 13:3941. [PMID: 39683013 DOI: 10.3390/foods13233941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this study was to investigate the effect of ultrasonic treatment on the physicochemical properties and bioactivities of polysaccharides from Sargassum samples (SPs) extracted with different solvents. The alkali-assisted extraction of polysaccharide (SPA), acid-assisted extraction of polysaccharides from (SPB), and hot water extraction of polysaccharides (SPCs) were perofrmed on Sargassum. Ultrasonic treatment was performed with the SPA, SPB, and SPC in turn, and named USPA, USPB, and UPSC, respectively. The results showed that SPs mainly consisted of mannose, glucose, xylose, rhamnose, galactose, fucose, glucuronic acid, mannuronic acid and guluronic acid. The molecular weight of SPA (434.590 kDa) was the lowest under different solvent extractions, and the molecular weights of SPA, SPB, and SPC were reduced after sonication. SPA had a high carbohydrate content of (52.59 ± 5.16)%, and SPC possessed a high sulfate content of (3.90 ± 0.33)%. After ultrasonic treatment, the biological activities of SPs were significantly increased. The α-glucosidase inhibition assay reflected that the IC50 values of the ultrasonic treatment SPs were significantly reduced, and USPA showed the best activity, with an IC50 of (0.058 ± 0.05) mg/mL. Antioxidant assays demonstrated that USPC exhibited greater DPPH- and ABTS-scavenging capacity. In the anti-glycosylation assay, SPs after sonication demonstrated excellent inhibition of glycosylation products and protein oxidation products, with USPA showing the highest inhibition rate. In conclusion, the biological activities of SPs were enhanced after ultrasonic treatment. This study provides a theoretical reference for their use in food and medicines.
Collapse
Affiliation(s)
- Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Shanshan He
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Shang Gao
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Zirui Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenduo Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| | - Pengzhi Hong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Rui-Bo Jia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China
| |
Collapse
|
2
|
Zhou Q, Gao J, Sun X, Du J, Wu Z, Liang D, Ling C, Fang B. Immunomodulatory Mechanisms of Tea Leaf Polysaccharide in Mice with Cyclophosphamide-Induced Immunosuppression Based on Gut Flora and Metabolomics. Foods 2024; 13:2994. [PMID: 39335922 PMCID: PMC11431025 DOI: 10.3390/foods13182994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Tea polysaccharides (TPSs) are receiving increasing attention because of their diverse pharmacological and biological activities. Here, we explored the immunoregulatory mechanisms of TPSs from fresh tea leaves in a mouse model of cyclophosphamide (CTX)-induced immunosuppression in terms of gut microbiota and metabolites. We observed that TPSs significantly increased the body weight and alleviated CTX-induced thymus atrophy in the immunosuppressed mice; they also increased the plasma levels of immunoglobulins A and M, interleukin (IL) 1β, IL-6, inducible nitric oxide synthase, and tumor necrosis factor α. Furthermore, we conducted 16S rDNA sequencing of cecal contents, resulting in the acquisition of 5008 high-quality bacterial 16S rDNA gene reads from the sequencing of mouse fecal samples. By analyzing the data, we found that TPSs regulated the gut microbiota structure and diversity and alleviated the CTX-induced dysregulation of gut microbiota. The colonic contents of mice were subjected to analysis using the UPLC-Q-TOF/MS/MS technique for the purpose of untargeted metabolomics. In the course of our metabolite identification analysis, we identified a total of 2685 metabolites in positive ion mode and 1655 metabolites in negative ion mode. The analysis of these metabolites indicated that TPSs improved CTX-induced metabolic disorders by regulating the levels of metabolites related to tryptophan, arginine, and proline metabolism. In conclusion, TPSs can alleviate CTX-induced immunosuppression by regulating the structural composition of gut microbiota, indicating the applicability of TPSs as novel innate immune modulators in health foods or medicines.
Collapse
Affiliation(s)
- Qiaoyi Zhou
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Q.Z.); (D.L.)
| | - Jinjing Gao
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China (Z.W.)
| | - Xueyan Sun
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China (Z.W.)
| | - Junyuan Du
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China (Z.W.)
| | - Zhiyi Wu
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China (Z.W.)
| | - Dongxia Liang
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Q.Z.); (D.L.)
| | - Caijin Ling
- Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Q.Z.); (D.L.)
| | - Binghu Fang
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China (Z.W.)
| |
Collapse
|
3
|
Zhang J, Yang J, Yin Y. Germination Promotes Flavonoid Accumulation of Finger Millet ( Eleusine coracana L.): Response Surface Optimization and Investigation of Accumulation Mechanism. PLANTS (BASEL, SWITZERLAND) 2024; 13:2191. [PMID: 39204627 PMCID: PMC11360649 DOI: 10.3390/plants13162191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Germination is an effective measure to regulate the accumulation of secondary metabolites in plants. In this study, we optimized the germination conditions of finger millet by response surface methodology. Meanwhile, physiological characteristics and gene expression were measured to investigate the mechanism of flavonoid accumulation in finger millet at the germination stage. The results showed that when germination time was 5.7 d, germination temperature was 31.2 °C, and light duration was 17.5 h, the flavonoid content of millet sprouts was the highest (7.0 μg/sprout). The activities and relative gene expression of key enzymes for flavonoid synthesis (phenylalanine ammonia-lyase, 4-coumarate-coenzyme a ligase, and cinnamate 4-hydroxylase) were significantly higher in finger millet sprouts germinated at 3 and 5 d compared with that in ungerminated seeds (p < 0.05). In addition, germination enhanced the activities of four antioxidant enzymes (catalase, peroxidase, superoxide dismutase, and ascorbate peroxidase) and up-regulated the gene expression of PAL and APX. Germination increased malondialdehyde content in sprouts, which resulted in cell damage. Subsequently, the antioxidant capacity of the sprouts was enhanced through the activation of antioxidant enzymes and the up-regulation of their gene expression, as well as the synthesis of active substances, including flavonoids, total phenolics, and anthocyanins. This process served to alleviate germination-induced cellular injury. These findings provide a research basis for the regulation of finger millet germination and the enhancement of its nutritional and functional properties.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China;
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou 225000, China
| | - Yongqi Yin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
4
|
Zheng M, Chen Y, Wang Z, Xie C, Zhou C, Wang L, Xiong F, Li L, Xing J, Wang C, Zhou H. Promoting a Cobalt Complex of Qingzhuan Dark Tea Polysaccharides on Fracture Healing in Rats. Tissue Eng Part A 2024; 30:437-446. [PMID: 38183628 DOI: 10.1089/ten.tea.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024] Open
Abstract
Fractures occur commonly with multiple injuries, and their incidence has increased in recent years. Trace amounts of cobalt are necessary for many living organisms as it stimulates hematopoiesis and improves bone health. However, cobalt is also toxic, as it might cause allergic reactions and tissue destruction. These factors limit the application of cobalt in some medical fields. We studied the tea polysaccode-cobalt complex (TPS-Co) prepared from Qingzhuan Dark Tea polysaccharides. We used 6-week-old Sprague-Dawley rats to establish a femoral fracture model and evaluated the effects of CoCl2 and TPS-Co on the healing of femoral fractures. In this study, treatment with TPS-Co for the same content of cobalt intake decreased the side effects associated with CoCl2 treatment and accelerated the healing of femoral fractures in rats. This treatment method promoted angiogenesis by upregulating the expression of vascular endothelial growth factor and hypoxia-inducible factor. Bone formation was promoted via the upregulation of the expression of bone morphogenetic protein 2 and serum bone alkaline phosphatase. TPS-Co was found to actively regulate bone and vascular systems, resulting in significant bone regeneration effects. Therefore, the Qingzhuan Dark Tea polysaccharide cobalt complex might be used as an additive or drug to promote fracture healing, and thus, it might have a huge market value.
Collapse
Affiliation(s)
- Min Zheng
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Hubei University of Science and Technology, Xianning, China
| | - Yong Chen
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Hubei University of Science and Technology, Xianning, China
| | - Ziyao Wang
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Hubei University of Science and Technology, Xianning, China
| | - Chen Xie
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Hubei University of Science and Technology, Xianning, China
| | - Chi Zhou
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Le Wang
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Hubei University of Science and Technology, Xianning, China
| | - Fang Xiong
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Hubei University of Science and Technology, Xianning, China
| | - Ling Li
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Hubei University of Science and Technology, Xianning, China
| | - Jun Xing
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Hubei University of Science and Technology, Xianning, China
| | - Cai Wang
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Hubei University of Science and Technology, Xianning, China
| | - Hongfu Zhou
- School of Biomedical Engineering and Medical Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- Hubei Industrial Technology Research Institute of Intelligent Health, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
5
|
Chen N, Jiang T, Xu J, Xi W, Shang E, Xiao P, Duan JA. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int J Biol Macromol 2024; 270:132391. [PMID: 38761914 DOI: 10.1016/j.ijbiomac.2024.132391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|