2
|
Willett JDS, Gravel A, Dubuc I, Gudimard L, Dos Santos Pereira Andrade AC, Lacasse É, Fortin P, Liu JL, Cervantes JA, Galvez JH, Djambazian HHV, Zwaig M, Roy AM, Lee S, Chen SH, Ragoussis J, Flamand L. SARS-CoV-2 rapidly evolves lineage-specific phenotypic differences when passaged repeatedly in immune-naïve mice. Commun Biol 2024; 7:191. [PMID: 38365933 PMCID: PMC10873417 DOI: 10.1038/s42003-024-05878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
The persistence of SARS-CoV-2 despite the development of vaccines and a degree of herd immunity is partly due to viral evolution reducing vaccine and treatment efficacy. Serial infections of wild-type (WT) SARS-CoV-2 in Balb/c mice yield mouse-adapted strains with greater infectivity and mortality. We investigate if passaging unmodified B.1.351 (Beta) and B.1.617.2 (Delta) 20 times in K18-ACE2 mice, expressing the human ACE2 receptor, in a BSL-3 laboratory without selective pressures, drives human health-relevant evolution and if evolution is lineage-dependent. Late-passage virus causes more severe disease, at organism and lung tissue scales, with late-passage Delta demonstrating antibody resistance and interferon suppression. This resistance co-occurs with a de novo spike S371F mutation, linked with both traits. S371F, an Omicron-characteristic mutation, is co-inherited at times with spike E1182G per Nanopore sequencing, existing in different within-sample viral variants at others. Both S371F and E1182G are linked to mammalian GOLGA7 and ZDHHC5 interactions, which mediate viral-cell entry and antiviral response. This study demonstrates SARS-CoV-2's tendency to evolve with phenotypic consequences, its evolution varying by lineage, and suggests non-dominant quasi-species contribution.
Collapse
Affiliation(s)
- Julian Daniel Sunday Willett
- Quantitative Life Sciences Ph.D. Program, McGill University, Montreal, QC, Canada
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Annie Gravel
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | - Isabelle Dubuc
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | - Leslie Gudimard
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | | | - Émile Lacasse
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
| | - Paul Fortin
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada
- Centre de Recherche ARThrite-Arthrite, Recherche et Traitements, Université Laval, Québec, QC, Canada
- Division of Rheumatology, Department of Medicine, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Ju-Ling Liu
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jose Avila Cervantes
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, McGill University, Montreal, QC, Canada
| | - Haig Hugo Vrej Djambazian
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Melissa Zwaig
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Anne-Marie Roy
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sally Lee
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Shu-Huang Chen
- McGill Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| | - Louis Flamand
- Axe maladies infectieuses et immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec- Université Laval, Québec, Canada.
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
3
|
Skene KR. Systems theory, thermodynamics and life: Integrated thinking across ecology, organization and biological evolution. Biosystems 2024; 236:105123. [PMID: 38244715 DOI: 10.1016/j.biosystems.2024.105123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
In this paper we explore the relevance and integration of system theory and thermodynamics in terms of the Earth system. It is proposed that together, these fields explain the evolution, organization, functionality and directionality of life on Earth. We begin by summarizing historical and current thinking on the definition of life itself. We then investigate the evidence for a single unit of life. Given that any definition of life and its levels of organization are intertwined, we explore how the Earth system is structured and functions from an energetic perspective, by outlining relevant thermodynamic theory relating to molecular, metabolic, cellular, individual, population, species, ecosystem and biome organization. We next investigate the fundamental relationships between systems theory and thermodynamics in terms of the Earth system, examining the key characteristics of self-assembly, self-organization (including autonomy), emergence, non-linearity, feedback and sub-optimality. Finally, we examine the relevance of systems theory and thermodynamics with reference to two specific aspects: the tempo and directionality of evolution and the directional and predictable process of ecological succession. We discuss the importance of the entropic drive in understanding altruism, multicellularity, mutualistic and antagonistic relationships and how maximum entropy production theory may explain patterns thought to evidence the intermediate disturbance hypothesis.
Collapse
Affiliation(s)
- Keith R Skene
- Biosphere Research Institute, Angus, United Kingdom.
| |
Collapse
|