1
|
Liang Y, Sun Z, Chiu K, Hu Y. Effective identification of Alzheimer's disease in mouse models via deep learning and motion analysis. Heliyon 2024; 10:e39353. [PMID: 39687151 PMCID: PMC11647830 DOI: 10.1016/j.heliyon.2024.e39353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 12/18/2024] Open
Abstract
Spatial disorientation is an early symptom of Alzheimer's disease (AD). Detecting this impairment effectively in animal models can provide valuable insights into the disease and reduce experimental burdens. We have developed a markerless motion analysis system (MMAS) using deep learning techniques for the Morris water maze test. This system allows for precise analysis of behaviors and body movements from video recordings. Using the MMAS, we identified unilateral head-turning and tail-wagging preferences in AD mice, which distinguished them from wild-type mice with greater accuracy than traditional behavioral parameters. Furthermore, the cumulative turning and wagging angles were linearly correlated with escape latency and cognitive scores, demonstrating comparable effectiveness in differentiating AD mice. These findings underscore the potential of motion analysis as an advanced method for improving the effectiveness, sensitivity, and interpretability of AD mouse identification, ultimately aiding in disease diagnosis and drug development.
Collapse
Affiliation(s)
- Yuanhao Liang
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Orthopedics Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- AI and Big Data Lab, The University of Hong Kong-Shenzhen Hospital, Shenzhen, G.D, 518053, China
| | - Zhongqing Sun
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032, China
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kin Chiu
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| | - Yong Hu
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Orthopedics Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
- AI and Big Data Lab, The University of Hong Kong-Shenzhen Hospital, Shenzhen, G.D, 518053, China
| |
Collapse
|
2
|
Chen CC, Hung YR. Circular eight-room maze for assessing spatial learning and memory functions in rats: An example using a traumatic brain injury model. Comput Biol Med 2024; 182:109086. [PMID: 39276609 DOI: 10.1016/j.compbiomed.2024.109086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/19/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND AND OBJECTIVES This study introduced an animal cognitive function assessment system using a novel circular eight-room maze (CERM). The CERM, designed for tracking path trajectories in animal models of cognitive impairment pathologies such as traumatic brain injury (TBI), comprised a 120-cm diameter disk with eight rooms (30 cm × 25 cm × 30 cm). METHODS These rooms have magnetic interfaces for modular assembly and disassembly. Notably, one room remained dark and contained food, while the remaining seven rooms automatically lit up when a rat entry, facilitating the assessment of the rat's learning and spatial memory. An infrared night vision camera captured the animal's search trajectory, and binary image processing techniques were employed to eliminate noise and extract the rat's position coordinates to record the rat's path trajectories. The system automatically calculated various cognitive assessment parameters, such as latency, distance traveled, time spent in each quadrant, inner and outer area exploration times, short-term and long-term memory errors, and the number of entries to all the rooms by chance/by memory. RESULTS The analysis of overall path trajectories revealed increasingly erratic movement and a growing reliance on chance to enter rooms in rats with TBI over time, likely due to declining memory and the consequent inability to locate the food room. Moreover, increased trajectories in the first quadrant and inner area characterized the behavior of rats with TBI, with statistically significant differences from the sham group observed on day 7. By day 28, all cognitive parameters except short-term memory error significantly differed between the two groups. CONCLUSION Experimental data indicated a substantial increase in irregular search behavior in the TBI group over time, suggesting deterioration in cognitive function and an inability to accurately recall the food room. Conversely, the sham group exhibited consistent search trajectories, typically following the walls and rapidly locating the food room. Moreover, their room entries were guided by memory rather than by chance. Compared with traditional maze tests, this system's strengths lie in its ability to provide more quantitative data and vividly portray behavioral patterns. Therefore, the proposed CERM system can be used as an effective tool for cognitive assessment.
Collapse
Affiliation(s)
- Chi-Chun Chen
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung, Taiwan; Graduate Institute, Prospective Technology of Electrical Engineering and Computer Science, National Chin-Yi University of Technology, Taichung, Taiwan.
| | - Yu-Rui Hung
- Graduate Institute, Prospective Technology of Electrical Engineering and Computer Science, National Chin-Yi University of Technology, Taichung, Taiwan
| |
Collapse
|
3
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Unveiling the Therapeutic Potential of Kelulut (Stingless Bee) Honey in Alzheimer's Disease: Findings from a Rat Model Study. Antioxidants (Basel) 2024; 13:926. [PMID: 39199172 PMCID: PMC11351951 DOI: 10.3390/antiox13080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
Alzheimer's disease (AD) poses a major worldwide health challenge because of its profound impact on cognitive abilities and overall well-being. Despite extensive research and numerous clinical trials, therapeutic options remain limited. Our study aimed to investigate the potential of Kelulut honey (KH) as a novel therapeutic agent for addressing the multifactorial pathology of AD. We tried to evaluate the disease-attenuating and neuroprotective potential of KH in the intrahippocampally induced AD rat model by utilizing histochemistry and enzyme-linked immunosorbent assay (ELISA) studies. A total of 26 male Sprague Dawley rats weighing ~280-380 g were randomly divided into three groups: Control, AD-induced (Aβ), and AD-induced and treated with KH (Aβ+KH). The latter two groups underwent stereotaxic surgery, where 6.25 µg of amyloid β1-42 peptides were injected intrahippocampally. One-week post-surgery, KH was administered to the treatment group at a dose of 1 g/kg body weight for a period of four weeks, after which the rats went through behavior tests. After completion of behavior analysis, the rats were sacrificed, and the brains were processed for histochemistry and ELISA studies. The open field test analysis demonstrated that KH improved the locomotion of Aβ+KH compared to Aβ (p = 0.0013). In comparison, the Morris water maze did not show any nootropic effects on cognition with a paradoxical increase in time spent in the target quadrant by the Aβ group (p = 0.029). Histochemical staining showed markedly increased Congo-red-stained amyloid plaques, which were significantly reduced in dentate gyrus of Aβ+KH compared to Aβ (p < 0.05). Moreover, significantly higher apoptosis was seen in the Aβ group compared to Aβ+KH (p < 0.01) and control groups (p < 0.001). Furthermore, the ELISA studies deduced more phosphorylated tau in the diseased group compared to Aβ+KH (p = 0.038) and controls (p = 0.016). These findings suggest that KH consumption for twenty-eight days has the potential to attenuate the pathological burden of disease while exerting neuroprotective effects in rodent models of AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (A.S.); (F.A.); (S.L.T.)
| |
Collapse
|
4
|
Wang H, Jayasankar N, Thamaraikani T, Viktor P, Mohany M, Al-Rejaie SS, Alammar HK, Anad E, Alhili F, Hussein SF, Amin AH, Lakshmaiya N, Ahsan M, Bahrami A, Akhavan-Sigari R. Quercetin modulates expression of serum exosomal long noncoding RNA NEAT1 to regulate the miR-129-5p/BDNF axis and attenuate cognitive impairment in diabetic mice. Life Sci 2024; 340:122449. [PMID: 38253310 DOI: 10.1016/j.lfs.2024.122449] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
AIMS Cognitive impairment poses a considerable health challenge in the context of type 2 diabetes mellitus (T2DM), emphasizing the need for effective interventions. This study delves into the therapeutic efficacy of quercetin, a natural flavonoid, in mitigating cognitive impairment induced by T2DM in murine models. MATERIALS AND METHODS Serum exosome samples were obtained from both T2DM-related and healthy mice for transcriptome sequencing, enabling the identification of differentially expressed mRNAs and long noncoding RNAs (lncRNAs). Subsequent experiments were conducted to ascertain the binding affinity between mmu-miR-129-5p, NEAT1 and BDNF. The structural characteristics and dimensions of isolated exosomes were scrutinized, and the expression levels of exosome-associated proteins were quantified. Primary mouse hippocampal neurons were cultured for in vitro validation, assessing the expression of pertinent genes as well as neuronal vitality, proliferation, and apoptosis capabilities. For in vivo validation, a T2DM mouse model was established, and quercetin treatment was administered. Changes in various parameters, cognitive ability, and the expression of insulin-related proteins, along with pivotal signaling pathways, were monitored. KEY FINDINGS Analysis of serum exosomes from T2DM mice revealed dysregulation of NEAT1, mmu-miR-129-5p, and BDNF. In vitro investigations demonstrated that NEAT1 upregulated BDNF expression by inhibiting mmu-miR-129-5p. Overexpression of mmu-miR-129-5p or silencing NEAT1 resulted in the downregulation of insulin-related protein expression, enhanced apoptosis, and suppressed neuronal proliferation. In vivo studies validated that quercetin treatment significantly ameliorated T2DM-related cognitive impairment in mice. SIGNIFICANCE These findings suggest that quercetin holds promise in inhibiting hippocampal neuron apoptosis and improving T2DM-related cognitive impairment by modulating the NEAT1/miR-129-5p/BDNF pathway within serum exosomes.
Collapse
Affiliation(s)
- Hui Wang
- Department of Plastic Surgery, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu 322000, China
| | - Narayanan Jayasankar
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Kattankulathur 603203, Tamil Nadu, India
| | - Tamilanban Thamaraikani
- Department of Pharmacology, SRM Institute of Science and Technology, SRM College of Pharmacy, Kattankulathur 603203, Tamil Nadu, India
| | - Patrik Viktor
- Keleti Károly Faculty of Business and Management, Óbuda University, Tavaszmező, H-1084 Budapest, Hungary
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Enaam Anad
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Farah Alhili
- Medical Technical College, Al-Farahidi University, Iraq
| | - Sinan F Hussein
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Muhammad Ahsan
- Department of Measurements and Control Systems, Silesian University of Technology, Gliwice, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, Poland.
| | - Abolfazl Bahrami
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Reza Akhavan-Sigari
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw, Poland; Department of Neurosurgery, University Medical Center Tuebingen, Germany
| |
Collapse
|
5
|
Assaran AH, Hosseini M, Shirazinia M, Ghalibaf MHE, Beheshti F, Mobasheri L, Mirzavi F, Rajabian A. Neuro-protective Effect of Acetyl-11-keto-β-boswellic Acid in a Rat Model of Scopolamine-induced Cholinergic Dysfunction. Curr Pharm Des 2024; 30:140-150. [PMID: 38532323 DOI: 10.2174/0113816128269289231226115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/07/2023] [Indexed: 03/28/2024]
Abstract
BACKGROUND Acetyl-11-keto-β-boswellic acid (AKBA) is a major component of the oleo-gum resin of B. serrata with multiple pharmacological activities. The objective of this study was to explore the underlying mechanisms of neuroprotective potential of AKBA against scopolamine-mediated cholinergic dysfunction and memory deficits in rats. METHODS The rats received AKBA (2.5, 5, and 10 mg/kg, oral) for 21 days. In the third week, scopolamine was administered 30 min before the Morris water maze and passive avoidance tests. In order to perform biochemical assessments, the hippocampus and prefrontal cortex were extracted from the rats euthanized under deep anesthesia. RESULTS In the MWM test, treatment with AKBA (5 and 10 mg/kg) decreased the latency and distance to find the platform. Moreover, in the PA test, AKBA remarkably increased latency to darkness and stayed time in lightness while decreasing the frequency of entry and time in the darkness. According to the biochemical assessments, AKBA decreased acetylcholinesterase activity and malondialdehyde levels while increasing antioxidant enzymes and total thiol content. Furthermore, AKBA administration restored the hippocampal mRNA and protein levels of brain-derived neurotrophic factor (BDNF) and mRNA expression of B-cell lymphoma (Bcl)- 2 and Bcl-2- associated X genes in brain tissue of scopolamine-injured rats. CONCLUSION The results suggested the effectiveness of AKBA in preventing learning and memory dysfunction induced by scopolamine. Accordingly, these protective effects might be produced by modulating BDNF, cholinergic system function, oxidative stress, and apoptotic markers.
Collapse
Affiliation(s)
- Amir Hossein Assaran
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Shirazinia
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Medical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Leila Mobasheri
- Department of Pharmacology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|