1
|
Issifu S, Acharya P, Kaur-Bhambra J, Gubry-Rangin C, Rasche F. Biological Nitrification Inhibitors with Antagonistic and Synergistic Effects on Growth of Ammonia Oxidisers and Soil Nitrification. MICROBIAL ECOLOGY 2024; 87:143. [PMID: 39567372 PMCID: PMC11579066 DOI: 10.1007/s00248-024-02456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Biological nitrification inhibition (BNI) refers to the plant-mediated process in which nitrification is inhibited through rhizospheric release of diverse metabolites. While it has been assumed that interactive effects of these metabolites shape rhizosphere processes, including BNI, there is scant evidence supporting this claim. Hence, it was a primary objective to assess the interactive effects of selected metabolites, including caffeic acid (CA), vanillic acid (VA), vanillin (VAN), syringic acid (SA), and phenylalanine (PHE), applied as single and combined compounds, against pure cultures of various ammonia-oxidising bacteria (AOB, Nitrosomonas europaea, Nitrosospira multiformis, Nitrosospira tenuis, Nitrosospira briensis) and archaea (AOA, Nitrososphaera viennensis), as well as soil nitrification. Additionally, benzoic acid (BA) was examined as a novel biological nitrification inhibitor. All metabolites, except SA, tested as single compounds, achieved varied levels of inhibition of microbial growth, with CA exhibiting the highest inhibitory potential. Similarly, all metabolites applied as single compounds, except PHE, inhibited soil nitrification by up to 62%, with BA being the most potent. Inhibition of tested nitrifying microbes was also observed when compounds were assessed in combination. The combinations VA + PH, VA + CA, and VA + VAN exhibited synergism against N. tenuis and N. briensis, while others showed antagonism against N. europaea, N. multiformis, and N. viennensis. Although all combinations suppressed soil nitrification, their interactions against soil nitrification revealed antagonism. Our findings indicate that both antagonism and synergism are possible in rhizospheric interactions involving BNI metabolites, resulting in growth inhibition of nitrifiers and suppression of soil nitrification.
Collapse
Affiliation(s)
- Sulemana Issifu
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany
| | - Prashamsha Acharya
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany
| | - Jasmeet Kaur-Bhambra
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, Room 1.13, St Machar Drive, Aberdeen, AB24 3UU, Scotland
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Cecile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, Room 1.13, St Machar Drive, Aberdeen, AB24 3UU, Scotland.
| | - Frank Rasche
- Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Garbenstr. 13, 70599, Stuttgart, Germany.
- International Institute of Tropical Agriculture (IITA), P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
2
|
Ren X, Yuan S, Ren J, Ma L, Liu J, Wang G. Effect of caffeic acid grafted chitosan loaded quercetin lyophilized powder formulation on avian colibacillosis and tissue distribution. Front Vet Sci 2024; 11:1470781. [PMID: 39512917 PMCID: PMC11540789 DOI: 10.3389/fvets.2024.1470781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
Quercetin (QR), recognized as a natural antibacterial ingredient, has found widespread application in the poultry industry. This study investigated the bacteriostatic mechanism and evaluated the in vivo inhibitory impact of caffeic acid-grafted chitosan self-assembled micelles loaded quercetin (CA-g-CS/QR) on avian Escherichia coli (E. coli). The findings indicate that the bactericidal mechanism of CA-g-CS/QR exhibits enhanced efficacy compared to QR alone, disrupting bacterial cell walls, disassembling biofilm structures, and impeding essential components necessary for bacterial growth. Following an avian E. coli attack in broilers, CA-g-CS/QR demonstrated the capacity to enhance the population of beneficial bacteria while concurrently decreasing harmful bacteria within the intestinal tract. Moreover, within 3 days of oral administration of CA-g-CS/QR, a significant decrease in Escherichia spp. count was evident, resulting in the restoration of broilers to a healthy state. CA-g-CS/QR proved to be a significant and more efficacious solution than QR alone for avian E. coli disease. Furthermore, CA-g-CS/QR displayed a broader distribution range and higher concentration within the body. Ten metabolites have been identified in the liver for both QR and CA-g-CS/QR. In conclusion, CA-g-CS/QR has demonstrated a notable capacity to enhance in vitro and in vivo bacterial inhibitory effects, providing foundation for the clinical application of QR in combating avian E. coli infections in broilers.
Collapse
Affiliation(s)
- Xin Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Sikun Yuan
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- Baoding Institute for Food and Drug Control, Baoding, China
| | - Juan Ren
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Leying Ma
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Gengnan Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| |
Collapse
|
3
|
Kuang J, Lin Y, Wang L, Yan Z, Wei J, Du J, Li Z. Effects of PEF on Cell and Transcriptomic of Escherichia coli. Microorganisms 2024; 12:1380. [PMID: 39065148 PMCID: PMC11278777 DOI: 10.3390/microorganisms12071380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Pulsed electric field (PEF) is an up-to-date non-thermal processing technology with a wide range of applications in the food industry. The inactivation effect of PEF on Escherichia coli was different under different conditions. The E. coli inactivated number was 1.13 ± 0.01 lg CFU/mL when PEF was treated for 60 min and treated with 0.24 kV/cm. The treatment times were found to be positively correlated with the inactivation effect of PEF, and the number of E. coli was reduced by 3.09 ± 0.01 lg CFU/mL after 100 min of treatment. The inactivation assays showed that E. coli was inactivated at electrical intensity (0.24 kV/cm) within 100 min, providing an effective inactivating outcome for Gram-negative bacteria. The purpose of this work was to investigate the cellular level (morphological destruction, intracellular macromolecule damage, intracellular enzyme inactivation) as well as the molecular level via transcriptome analysis. Field Emission Scanning Electron Microscopy (TFESEM) and Transmission Electron Microscope (TEM) results demonstrated that cell permeability was disrupted after PEF treatment. Entocytes, including proteins and DNA, were markedly reduced after PEF treatment. In addition, the activities of Pyruvate Kinase (PK), Succinate Dehydrogenase (SDH), and Adenosine Triphosphatase (ATPase) were inhibited remarkably for PEF-treated samples. Transcriptome sequencing results showed that differentially expressed genes (DEGs) related to the biosynthesis of the cell membrane, DNA replication and repair, energy metabolism, and mobility were significantly affected. In conclusion, membrane damage, energy metabolism disruption, and other pathways are important mechanisms of PEF's inhibitory effect on E. coli.
Collapse
Affiliation(s)
- Jinyan Kuang
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China; (J.K.); (Y.L.); (L.W.); (Z.Y.); (J.W.); (J.D.)
| | - Ying Lin
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China; (J.K.); (Y.L.); (L.W.); (Z.Y.); (J.W.); (J.D.)
| | - Li Wang
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China; (J.K.); (Y.L.); (L.W.); (Z.Y.); (J.W.); (J.D.)
| | - Zikang Yan
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China; (J.K.); (Y.L.); (L.W.); (Z.Y.); (J.W.); (J.D.)
| | - Jinmei Wei
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China; (J.K.); (Y.L.); (L.W.); (Z.Y.); (J.W.); (J.D.)
| | - Jin Du
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China; (J.K.); (Y.L.); (L.W.); (Z.Y.); (J.W.); (J.D.)
| | - Zongjun Li
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha 410128, China; (J.K.); (Y.L.); (L.W.); (Z.Y.); (J.W.); (J.D.)
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
4
|
Li Z, Li Y, Cheng W. Determination of cinnamaldehyde, thymol and eugenol in essential oils by LC-MS/MS and antibacterial activity of them against bacteria. Sci Rep 2024; 14:12424. [PMID: 38816435 PMCID: PMC11139912 DOI: 10.1038/s41598-024-63114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/24/2024] [Indexed: 06/01/2024] Open
Abstract
Plant essential oils contain many secondary metabolites, some of which can effectively inhibit the growth of pathogenic microorganisms, so it is a very promising antibacterial agent. In this study, a qualitative and quantitative method based on high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was developed for the simultaneous determination of three bioactive substances, cinnamaldehyde (CNM), thymol (THY), and eugenol (EUG), in the essential oils of plants. Necessary tests for linearity, limit of quantification, recovery, carryover contamination and precision of the method were carried out. Then, the antibacterial activity of 3 bioactive compounds against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was evaluated by minimal inhibitory concentration and the synergistic antimicrobial effect. The results indicated that CNM, THY and EUG had good antibacterial activity. According to the results of fractional inhibitory concentration index (FICI), it is considered that CNM + THY and CNM + THY + EUG has obvious synergistic inhibitory effect on E. coli, and CNM + THY and CNM + EUG has obvious synergistic inhibitory effect on S. aureus. Finally, we analyzed the effect of the bioactive compounds on trace elements in bacteria and found significant changes in magnesium, calcium, copper and iron.
Collapse
Affiliation(s)
- Zhi Li
- Tianjin Guoke Medical Technology Development Co., LTD, Tianjin, 300399, China
| | - Yan Li
- Tianjin Guoke Medical Technology Development Co., LTD, Tianjin, 300399, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Wenbo Cheng
- Tianjin Guoke Medical Technology Development Co., LTD, Tianjin, 300399, China.
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
5
|
Shi G, Lu X, Zheng Y, Yang T, Zhu E, Song Y, Huang P. Insights into the potential dual-antibacterial mechanism of Kelisha capsule on Escherichia coli. BMC Complement Med Ther 2024; 24:207. [PMID: 38807130 PMCID: PMC11134901 DOI: 10.1186/s12906-024-04500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
Traditional Chinese medicine (TCM), AYURVEDA and Indian medicine are essential in disease prevention and treatment. Kelisha capsule (KLSC), a TCM formula listed in the Chinese Pharmacopoeia, has been clinically proven to possess potent antibacterial properties. However, the precise antimicrobial mechanism of KLSC remained unknown. This study aimed to elucidate the dual antibacterial mechanism of KLSC using network pharmacology, molecular docking, and experimental validation. By analyzing the growth curve of Escherichia coli (E. coli), it was observed that KLSC significantly inhibited its growth, showcasing a remarkable antibacterial effect. Furthermore, SEM and TEM analysis revealed that KLSC damaged the cell wall and membrane of E. coli, resulting in cytoplasmic leakage, bacterial death, and the exertion of antibacterial effects. The network pharmacology analysis revealed that KLSC exhibited an effect on E. coli ATP synthase, thereby influencing the energy metabolism process. The molecular docking outcomes provided evidence that the active compounds of KLSC could effectively bind to the ATP synthase subunit. Subsequently, experimental findings substantiated that KLSC effectively suppressed the activity of ATP synthase in E. coli and consequently decreased the ATP content. This study highlighted the dual antibacterial mechanism of KLSC, emphasizing its effects on cell structure and energy metabolism, suggesting its potential as a natural antibacterial agent for E. coli-related infections. These findings offered new insights into exploring the antibacterial mechanisms of TCM by focusing on the energy metabolism process.
Collapse
Affiliation(s)
- Guolin Shi
- Department of Ultrasound in Medicine, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China
- Post-Doctoral Research Center, Zhejiang SUKEAN Pharmaceutical Co., Ltd, Hangzhou, 311228, China
| | - Xiao Lu
- Post-Doctoral Research Center, Zhejiang SUKEAN Pharmaceutical Co., Ltd, Hangzhou, 311228, China
| | - Yuanhang Zheng
- Post-Doctoral Research Center, Zhejiang SUKEAN Pharmaceutical Co., Ltd, Hangzhou, 311228, China
| | - Tao Yang
- Post-Doctoral Research Center, Zhejiang SUKEAN Pharmaceutical Co., Ltd, Hangzhou, 311228, China
| | - Enyuan Zhu
- Post-Doctoral Research Center, Zhejiang SUKEAN Pharmaceutical Co., Ltd, Hangzhou, 311228, China
| | - Yanhong Song
- Post-Doctoral Research Center, Zhejiang SUKEAN Pharmaceutical Co., Ltd, Hangzhou, 311228, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, School of Medicine, The Second Affiliated Hospital of Zhejiang University, Zhejiang University, 88 Jiefang Road, Shangcheng District, Hangzhou, 310009, China.
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
6
|
Zhang Y, Liang Y, Pan D, Bai S, Wen D, Tang M, Song H, Guo X, Han H. Enhancing Escherichia coli Inactivation: Synergistic Mechanism of Ultraviolet Light and High-Voltage Electric Field. Foods 2024; 13:1343. [PMID: 38731714 PMCID: PMC11083544 DOI: 10.3390/foods13091343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
This study investigated the bactericidal effects of ultraviolet (UV) radiation, a high-voltage electric field (HVEF), and their combination on Escherichia coli. The results indicated that UV and combined disinfection were more effective with longer exposure, leading to significant reductions in microbial activity. Specifically, the single UV disinfection alone reduced activity by 3.3 log after 5 min, while combined disinfection achieved a 4.2 log reduction. In contrast, short-term HVEF treatment did not exhibit significant bactericidal effects, only achieving a reduction of 0.17 log in 5 min. Furthermore, prolonged exposure to both UV disinfection and an HVEF was found to damage cell membranes, ultimately causing cell death, while shorter durations did not. Despite rapid cell count decreases, flow cytometry did not detect apoptotic or necrotic cells, likely due to rapid cell rupture. This study suggests that combining UV radiation and an HVEF could be a promising approach for inhibiting bacterial reproduction, with HVEF enhancing UV effects. These findings provide insights for using combined HVEF and UV disinfection in food safety and preservation.
Collapse
Affiliation(s)
- Yihan Zhang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (Y.L.)
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Yun Liang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (Y.L.)
| | - Di Pan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Shupei Bai
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Diya Wen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Min Tang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (Y.L.)
| | - Hua Song
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| | - Hao Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (D.P.); (S.B.); (D.W.); (X.G.); (H.H.)
| |
Collapse
|
7
|
Venkataraman S, Athilakshmi JK, Rajendran DS, Bharathi P, Kumar VV. A comprehensive review of eclectic approaches to the biological synthesis of vanillin and their application towards the food sector. Food Sci Biotechnol 2024; 33:1019-1036. [PMID: 38440686 PMCID: PMC10908958 DOI: 10.1007/s10068-023-01484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 03/06/2024] Open
Abstract
Vanillin, a highly regarded flavor compound, has earned widespread recognition for its natural and aromatic qualities, piquing substantial interest in the scientific community. This comprehensive review delves deeply into the intricate world of vanillin synthesis, encompassing a wide spectrum of methodologies, including enzymatic, microbial, and immobilized systems. This investigation provides a thorough analysis of the precursors of vanillin and also offers a comprehensive overview of its transformation through these diverse processes, making it an invaluable resource for researchers and enthusiasts alike. The elucidation of different substrates such as ferulic acid, eugenol, veratraldehyde, vanillic acid, glucovanillin, and C6-C3 phenylpropanoids adds a layer of depth and insight to the understanding of vanillin synthesis. Moreover, this comprehensive review explores the multifaceted applications of vanillin within the food industry. While commonly known as a flavoring agent, vanillin transcends this role by finding extensive use in food preservation and food packaging. The review meticulously examines the remarkable preservative properties of vanillin, providing a profound understanding of its crucial role in the culinary and food science sectors, thus making it an indispensable reference for professionals and researchers in these domains. Graphical abstract
Collapse
Affiliation(s)
- Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Jothyswarupha Krishnakumar Athilakshmi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Priyadharshini Bharathi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India
| |
Collapse
|
8
|
Li Q, Wang C, Xiao H, Zhang Y, Xie Y. 2-Hydroxy-4-methoxybenzaldehyde, a more effective antifungal aroma than vanillin and its derivatives against Fusarium graminearum, destroys cell membranes, inhibits DON biosynthesis, and performs a promising antifungal effect on wheat grains. Front Microbiol 2024; 15:1359947. [PMID: 38468857 PMCID: PMC10925628 DOI: 10.3389/fmicb.2024.1359947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Fusarium graminearum (F. graminearum) is a severe pathogen threatening the safety of agriculture and food. This study aimed to explore the antifungal efficacies of several plant-derived natural compounds (vanillin and its derivatives) against the growth of F. graminearum and investigate the antifungal mechanism of 2-hydroxy-4-methoxybenzaldehyde (HMB), the strongest one. The minimum inhibitory concentration (MIC) of HMB in inhibiting mycelial growth was 200 μg/mL. HMB at MIC damaged cell membranes by increasing the permeability by about 6-fold (p < 0.05) as evidenced by propidium iodide (PI) staining. Meanwhile, the content of malondialdehyde (MDA) and glycerol was increased by 45.91 and 576.19% by HMB treatment at MIC, respectively, indicating that lipid oxidation and osmotic stress occurred in the cell membrane. Furthermore, HMB exerted a strong antitoxigenic role as the content of deoxynivalenol (DON) was remarkably reduced by 93.59% at MIC on 7th day. At last, the antifungal effect of HMB against F. graminearum was also confirmed on wheat grains. These results not only revealed the antifungal mechanism of HMB but also suggested that HMB could be applied as a promising antifungal agent in the preservation of agricultural products.
Collapse
Affiliation(s)
- Qian Li
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Chong Wang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Hongying Xiao
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Yiming Zhang
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Yanli Xie
- Grain, Oil and Food Engineering Technology Research Center of the State Grain and Reserves Administration/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, Henan, China
- Henan Key laboratory of Cereal and Oil Food Safety and Nutrition, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Jangid H, Kumar D, Kumar G, Kumar R, Mamidi N. An Emerging Foodborne Pathogen Spotlight: A Bibliometric Analysis and Scholarly Review of Escherichia coli O157 Research. Antibiotics (Basel) 2024; 13:60. [PMID: 38247619 PMCID: PMC10812834 DOI: 10.3390/antibiotics13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Foodborne infections pose a substantial global threat, causing an estimated 600 million illnesses and resulting in approximately 420,000 deaths annually. Among the diverse array of pathogens implicated in these infections, Escherichia coli (E. coli), specifically the O157 strain (E. coli O157), emerges as a prominent pathogen associated with severe outbreaks. This study employs a comprehensive bibliometric analysis and scholarly review focused on E. coli O157 research. The bibliometric analysis highlights the significant role played by the United States in the E. coli O157 research domain. Further exploration underscores the noteworthy contributions of the researcher Doyle MP, whose body of work, consisting of 84 documents and an impressive H-Index of 49, reflects their substantial impact in the field. Recent research trends indicate a discernible shift towards innovative detection methods, exemplified by the adoption of CRISPR-CAS and Loop-Mediated Isothermal Amplification. Moreover, high-throughput whole-genome sequencing techniques are gaining prominence for the expeditious analysis of pathogenic E. coli strains. Scientists are increasingly exploring antimicrobial agents, including phage therapy, to address the challenges posed by antibiotic-resistant E. coli strains, thereby addressing critical concerns related to multi-drug resistance. This comprehensive analysis provides vital insights into the dynamic landscape of E. coli O157 research. It serves as a valuable resource for researchers, policymakers, and healthcare professionals dedicated to mitigating E. coli O157 outbreaks and advancing global public health strategies.
Collapse
Affiliation(s)
- Himanshu Jangid
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Deepak Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Raj Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Narsimha Mamidi
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
10
|
Anishya D, Jain RK. Vanillin-Mediated Green-Synthesised Silver Nanoparticles' Characterisation and Antimicrobial Activity: An In-Vitro Study. Cureus 2024; 16:e51659. [PMID: 38318582 PMCID: PMC10839412 DOI: 10.7759/cureus.51659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Background and aim Nanoparticles in general due to their enhanced antimicrobial effects and other beneficial effects are used in dentistry. Silver nanoparticles (AgNPs) have emerged as the metal nanoparticle with the most advantages among the many types. The objective of the study was to synthesise vanillin-mediated AgNPs, then characterise those nanoparticles and assess their antimicrobial effectiveness. Materials and methods One-step synthesis of stable and crystalline AgNPs was done with vanillin as the reducing and capping agent. After being crushed into powder form, the produced AgNPs were subjected to characterisation. A scanning electron Microscope SEM) analysis was done for morphological details of the AgNPs. SEM with energy dispersive X-ray spectroscopy analysis (EDAX) and Fourier transform infrared (FTIR) testing were done for elemental analysis. AgNPs' antimicrobial properties were tested using the agar well diffusion technique. Results The SEM analysis revealed that the synthesized AgNps were porous and agglomerative clusters and varied in sizes between 30-35 nm. SEM-EDAX revealed the presence of 76.2 weight (wt)% Ag, 4.9 wt% carbon, and 18.9 wt% of oxygen. FTIR prominent peaks were observed at 1431.97 cm and 1361.20 cm indicating the presence of AgNPs. Both low and high concentrations of AgNps showed good antimicrobial effects against Streptococcus mutans (S. mutans). Conclusion Vanillin can be successfully used as a reducing agent for creating AgNPs. Due to their effective antimicrobial activity against S.mutans at various concentrations, vanillin-mediated AgNPs can be used with dental materials to reduce the risk of dental caries and enamel demineralization.
Collapse
Affiliation(s)
- Daphane Anishya
- Orthodontics and Dentofacial Orthopedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Ravindra Kumar Jain
- Orthodontics and Dentofacial Orthopedics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|