1
|
Qu B, Li G, Zhao N, Li R, Ma H, Zhu H, Li P, Zhao J. Exploring the therapeutic potential of Abelmoschi Corolla in psoriasis: Mechanisms of action and inflammatory pathway disruption. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156379. [PMID: 39862794 DOI: 10.1016/j.phymed.2025.156379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Psoriasis is a prevalent chronic inflammatory skin condition for which existing treatments often fall short of fully addressing patient needs. Abelmoschi Corolla (AC), a traditional Chinese medicine, and its ethanol extract, huangkui capsule, are well established for the treatment of chronic kidney diseases. The therapeutic mechanisms of AC include anti-inflammatory effects and immune modulation, which align with psoriasis treatment strategies. Nevertheless, the potential of AC as a therapeutic agent for psoriasis remains unexplored. PURPOSE This study aimed to evaluate the efficacy of AC in treating psoriasis and, if effective, to elucidate the underlying mechanisms by which AC exerts its therapeutic effects. METHODS To assess the therapeutic potential of AC, an imiquimod-induced psoriasis-like mouse model was utilized. Bioinformatics and machine learning approaches were employed to predict the targets and mechanisms of AC in psoriasis. Further validation was performed using targeted metabolite quantification, immunohistochemistry, polymerase chain reaction, and western blotting. RESULTS AC treatment significantly improved psoriasis-like skin lesions, as indicated by enhancements in appearance, PASI scores, a reduction in epidermal hyperproliferation, and decreased immune cell infiltration. Bioinformatics and machine learning analyses identified arginase 1 (ARG1) as a key target of AC in psoriasis. Experimental validation demonstrated that AC reduced ARG1 expression, arginine metabolism, and polyamine production by upregulating PP6 expression and inhibiting C/EBP-β activation in psoriatic keratinocytes, resulting in the suppression of dendritic cell infiltration and a reduction in the expression of inflammatory cytokines, including IL-23, IL-6, IL-1β, IL-17A, and TNF-α. CONCLUSIONS AC disrupted the inflammatory pathways associated with psoriasis and alleviated imiquimod-induced psoriasis-like skin inflammation by inhibiting ARG1 overexpression and arginine metabolism in psoriatic keratinocytes. These findings suggest that AC has significant potential as a therapeutic agent for psoriasis and warrants further research and development.
Collapse
Affiliation(s)
- Baoquan Qu
- Beijing University of Chinese Medicine, Beijing, China; China-Japan Friendship Hospital, Beijing, China; Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Guanglu Li
- Beijing University of Chinese Medicine, Beijing, China; China-Japan Friendship Hospital, Beijing, China
| | - Ning Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Ruonan Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Huike Ma
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Haoyue Zhu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Ping Li
- Beijing University of Chinese Medicine, Beijing, China; Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Traditional Chinese Medicine, Beijing, China.
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China; Beijing Institute of Traditional Chinese Medicine, Beijing, China.
| |
Collapse
|
2
|
Huang YB, Meng FB, Gong CX, Deng Y, Li YC, Jiang LS, Zhong Y. Widely targeted metabolomics and flavoromics reveal the effect of Wickerhamomyces anomalus fermentation on the volatile and nonvolatile metabolites of black garlic juice. Food Chem 2024; 460:140534. [PMID: 39053270 DOI: 10.1016/j.foodchem.2024.140534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Black garlic has a variety of biological activities, but many consumers cannot accept it because of the garlic odor and the bitter taste. In this study, fermentation with yeast Wickerhamomyces anomalus was adopted to improve the flavor of black garlic juice. Although fermentation reduced antioxidant activities, the garlicky odor and bitter taste were weakened. Metabolomic analysis revealed 141 metabolites were significantly differentially regulated. The upregulated metabolites were mainly related to nucleotides, organic acids and their derivatives, while the downregulated metabolites were mainly related to amino acids, lipids and their derivatives. Flavoromics analysis revealed that 137 metabolites were significantly differentially regulated, particularly garlicky and pungent volatiles were significantly downregulated. Correlation analysis indicated that esters are most closely related to nonvolatile metabolites, and lipids degradation was significantly correlated with volatiles. The results indicated that W. anomalus fermentation is an effective strategy to improve the flavor of black garlic juice.
Collapse
Affiliation(s)
- Yan-Bing Huang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fan-Bing Meng
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Chuan-Xian Gong
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Yun Deng
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
| | - Yun-Cheng Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| | - Li-Shi Jiang
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Yu Zhong
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu 610218, PR China
| |
Collapse
|
3
|
Wang SW, Lee TL, Chang TH, Chen YL, Houng HY, Chang N, Chang S, Chang CC, Houng JY. Antidiabetic Potential of Abelmoschus manihot Flower Extract: In Vitro and Intracellular Studies. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1211. [PMID: 39202492 PMCID: PMC11356367 DOI: 10.3390/medicina60081211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024]
Abstract
Abelmoschus manihot (L.) Medic flower (AMf) exhibits both nutritional value and bioactivities such as antioxidative, anti-inflammatory, neuroprotective, cardioprotective, and hepatoprotective effects. The aim of this investigation was to examine the potential impact of three different solvent extracts of AMf: supercritical CO2 extraction extract, water extract, and ethanol extract (AME), on management of diabetes. All three extracts demonstrated significant inhibitory effects on α-glucosidase (IC50 = 157-261 μg/mL) and lipase (IC50 = 401-577 μg/mL) activities while enhancing the α-amylase activity (32.4-41.8 folds at 200 μg/mL). Moreover, all three extracts exhibited notable inhibition of the formation of advanced glycation end-products, including the Amadori products (inhibition rates = 15.7-36.6%) and the dicarbonyl compounds (inhibition rates = 18.6-28.3%). Among the three extracts, AME exhibited the most pronounced inhibitory effect. AME displayed substantial in vitro and intracellular antioxidative activity, and effectively reduced ROS production (135% at 500 μg/mL) in β-cells under hyperglycemic (HG) conditions. AME also enhanced the activity and gene expression of antioxidant enzymes, which were markedly decreased in the HG-induced β-cells. Furthermore, AME protected β-cell viability and maintained normal insulin secretion under HG conditions, likely due to its ability to reduce oxidative stress within β-cells. This study demonstrated the potential of AME in preventing and managing diabetes and its associated complications. Further in vivo research is necessary to thoroughly elucidate the preventive effects and their underlying mechanisms.
Collapse
Affiliation(s)
- Shih-Wei Wang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80706, Taiwan
| | - Thung-Lip Lee
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Tzu-Hsien Chang
- Department of Obstetrics & Gynecology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-H.C.); (Y.-L.C.); (H.-Y.H.)
- Department of Obstetrics & Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80706, Taiwan
| | - Ya-Ling Chen
- Department of Obstetrics & Gynecology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-H.C.); (Y.-L.C.); (H.-Y.H.)
- Department of Obstetrics & Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80706, Taiwan
| | - Hsin-Ya Houng
- Department of Obstetrics & Gynecology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-H.C.); (Y.-L.C.); (H.-Y.H.)
- Department of Obstetrics & Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80706, Taiwan
| | - Natasha Chang
- Sayles Hill Campus Center, Carleton College, Northfield, MN 55057, USA; (N.C.); (S.C.)
| | - Sabrina Chang
- Sayles Hill Campus Center, Carleton College, Northfield, MN 55057, USA; (N.C.); (S.C.)
| | - Chi-Chang Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
- Department of Obstetrics & Gynecology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-H.C.); (Y.-L.C.); (H.-Y.H.)
- Department of Obstetrics & Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80706, Taiwan
| | - Jer-Yiing Houng
- Department of Nutrition, I-Shou University, Kaohsiung 82445, Taiwan
- Department of Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
4
|
Wu C, Tang H, Cui X, Li N, Fei J, Ge H, Wu L, Wu J, Gu HF. A single-cell profile reveals the transcriptional regulation responded for Abelmoschus manihot (L.) treatment in diabetic kidney disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155642. [PMID: 38759315 DOI: 10.1016/j.phymed.2024.155642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Huangkui capsule (HKC), as an ethanol extract of Abelmoschus manihot (L.), has a significant efficacy in treatment of the patients with diabetic kidney disease (DKD). The bioactive ingredients of HKC mainly include the flavonoids such as rutin, hyperoside, hibifolin, isoquercetin, myricetin, quercetin and quercetin-3-O-robinobioside. PURPOSE To explore the molecular mechanisms of A. manihot in treatment of DKD. STUDY DESIGN A single-cell RNA sequencing analysis of kidneys in db/db mice with and without HKC administration. METHODS Urinary biochemical and histopathological examination in C57BL/6 and db/db mice of DKD and HKC groups was done. Single-cell RNA sequencing pipeline was then performed. The regulatory mechanisms of seven flavonoids in HKC were revealed by cell communication, prediction of transcription factor regulatory network, and molecular docking. RESULTS By constructing ligand-receptor regulatory network and performing molecular docking between 75 receptors with different activities and seven flavonoids. 11 key receptors in 4 cell types (segment 3 proximal convoluted tubular cell, ascending limbs of the loop of Henle, distal convoluted tubule, and T cell) in kidneys were found to be directly interacted with HKC. The interactions regulated 8 downstream regulons. The docking receptors in T cell led to transcriptional event differences in the regulons such as Cebpb, Rel, Tbx21 and Klf2 and consequently affected the activation, differentiation, and infiltration of T cell, while the receptors Tgfbr1 and Ldlr in stromal cells of kidneys were closely associated with the downstream transcriptional events of renal injury and proteinuria in DKD. CONCLUSION The current study provides novel information of the key receptors and regulons in renal cells for a better understanding of the cell type specific molecular mechanisms of A. manihot in treatment of DKD.
Collapse
Affiliation(s)
- Chenhua Wu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China; Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Haitao Tang
- Suzhong Pharmaceutical Research Institute, Nanjing, Jiangsu Province, 210018, China
| | - Xu Cui
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Nan Li
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, China
| | - Jingjin Fei
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China
| | - Haitao Ge
- Suzhong Pharmaceutical Research Institute, Nanjing, Jiangsu Province, 210018, China
| | - Liang Wu
- Jiangsu Key Laboratory of Drug Screening, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Jie Wu
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China.
| | - Harvest F Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China.
| |
Collapse
|
5
|
Ni YL, Shen HT, Ng YY, Chen SP, Lee SS, Tseng CC, Ho YC, Kuan YH. Hibifolin protected pro-inflammatory response and oxidative stress in LPS-induced acute lung injury through antioxidative enzymes and the AMPK2/Nrf-2 pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:3799-3807. [PMID: 38511873 DOI: 10.1002/tox.24233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
ALI is a grave medical ailment that manifests as abrupt inflammation of the lungs and diminished oxygen levels. It poses a considerable challenge to the medical fraternity, with elevated rates of morbidity and mortality. Our research endeavors to investigate the potential of hibifolin, a flavonoid glucuronide, imbued with potent antioxidant properties, and its molecular mechanism to combat LPS-induced ALI in mice. The study utilized ICR mice to create an ALI model induced by LPS. Prior to LPS administration, hibifolin was given at 10, 30, or 50 mg/kg, or dexamethasone was given at 1 mg/kg to assess its preventative impact. Changes in lung tissue, pulmonary edema, and lipid peroxidation were analyzed using H&E stain assay, lung wet/dry ratio assay, and MDA formation assay, respectively. Activity assay kits were used to measure MPO activity and antioxidative enzymes (SOD, CAT, GPx) activity in the lungs. Western blot assay was used to determine the phosphorylation of Nrf-2 and AMPK2 in the lungs. Hibifolin demonstrated a concentration-dependent improvement in LPS-induced histopathologic pulmonary changes. This treatment notably mitigated pulmonary edema, lipid peroxidation, and MPO activity in ALI mice. Additionally, hibifolin successfully restored antioxidative enzyme activity in the lungs of ALI mice. Moreover, hibifolin effectively promoted Nrf-2 phosphorylation and reinstated AMPK2 phosphorylation in the lungs of ALI mice. The results indicate that hibifolin could effectively alleviate the pathophysiological impact of LPS-induced ALI. This is likely due to its antioxidative properties, which help to restore antioxidative enzyme activity and activate the AMPK2/Nrf2 pathway. These findings are valuable in terms of enhancing our knowledge of ALI treatment and pave the way for further investigation into hibifolin as a potential therapeutic option for lung injuries.
Collapse
Affiliation(s)
- Yung-Lun Ni
- Department of Pulmonary Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Huan-Ting Shen
- Department of Pulmonary Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Yan-Yan Ng
- Department of Pediatric, Chung Kang branch, Cheng Ching Hospital, Taichung, Taiwan
| | - Shih-Pin Chen
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- Department of Public Health, College of health care and management, Chung Shan Medical University, Taichung, Taiwan
| | - Ching-Chi Tseng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Dermatology, Shiso Municipal Hospital, Shiso, Hyogo, Japan
| | - Yung-Chuan Ho
- Center for General Education, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Liu P, Tang L, Li G, Wu X, Hu F, Peng W. Association between consumption of flavonol and its subclasses and chronic kidney disease in US adults: an analysis based on National Health and Nutrition Examination Survey data from 2007-2008, 2009-2010, and 2017-2018. Front Nutr 2024; 11:1399251. [PMID: 38957868 PMCID: PMC11217562 DOI: 10.3389/fnut.2024.1399251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Background There is little research on the relationship between flavonol consumption and chronic kidney disease (CKD). This study aimed to examine the link between flavonol consumption and the risk of CKD among US adults, using data from the 2007-2008, 2009-2010 and 2017-2018 National Health and Nutrition Examination Survey (NHANES). Methods A cross-sectional approach was used, drawing on data from three NHANES cycles. The flavonol consumption of the participants in this study was assessed using a 48 h dietary recall interview. CKD was diagnosed based on an estimated glomerular filtration rate below 60 mL/min/1.73 m2 or a urine albumin-to-creatinine ratio of 30 mg/g or higher. Results Compared to the lowest quartile of flavonol intake (Q1), the odds ratios for CKD were 0.598 (95% CI: 0.349, 1.023) for the second quartile (Q2), 0.679 (95% CI: 0.404, 1.142) for the third quartile (Q3), and 0.628 (95% CI: 0.395, 0.998) for the fourth quartile (Q4), with a p value for trend significance of 0.190. In addition, there was a significant trend in CKD risk with isorhamnetin intake, with the odds ratios for CKD decreasing to 0.860 (95% CI: 0.546, 1.354) in the second quartile, 0.778 (95% CI: 0.515, 1.177) in the third quartile, and 0.637 (95% CI: 0.515, 1.177) in the fourth quartile (p for trend = 0.013). Conclusion Our analysis of the NHANES data spanning 2007-2008, 2009-2010, and 2017-2018 suggests that high consumption of dietary flavonol, especially isorhamnetin, might be linked to a lower risk of CKD in US adults. These findings offer new avenues for exploring strategies for managing CKD.
Collapse
Affiliation(s)
- Peijia Liu
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Leile Tang
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Guixia Li
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Xiaoyu Wu
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Feng Hu
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Wujian Peng
- Department of Nephrology, Shenzhen Third People’s Hospital, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|