1
|
Manjarres-Suarez A, Bozack A, Cardenas A, Olivero-Verbel J. DNA methylation is associated with hair trace elements in female adolescents from two vulnerable populations in the Colombian Caribbean. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae008. [PMID: 39525284 PMCID: PMC11548963 DOI: 10.1093/eep/dvae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 11/16/2024]
Abstract
Exposure to trace elements (TEs) influences DNA methylation patterns, which may be associated with disease development. Vulnerable populations, such as adolescents undergoing maturity, are susceptible to the effects of TE exposure. The aim of this study was to analyze the association of hair TE concentration with DNA methylation in a sample from female adolescents living in two communities in the Colombian Caribbean coast. Hair and blood samples were obtained from 45 females, between 13 and 16 years of age. Seventeen TEs were quantified in hair samples. DNA methylation was measured in leukocytes using the Infinium MethylationEPIC BeadChip. Linear models were employed to identify differentially methylated positions (DMPs) adjusting for age, body mass index, mother's education, and cell type composition. Among the tested elements, vanadium, chromium, nickel, copper, zinc, yttrium, tin, and barium were significantly associated with DMPs (false discovery rate < 0.05), registering 225, 1, 2, 184, 1, 209 189, and 104 hits, respectively. Most of the DMPs were positively associated with TEs and located in open sea regions. The greatest number of DMPs was annotated to the HOXA3 and FOXO3 genes, related to regulation of gene expression and oxidative stress, respectively. These findings suggest that DNA methylation may be involved in linking exposure to TEs among female adolescents to downstream health risks.
Collapse
Affiliation(s)
- Alejandra Manjarres-Suarez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| | - Anne Bozack
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, United States
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, United States
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| |
Collapse
|
2
|
Arai H, Matsui H, Chi S, Utsu Y, Masuda S, Aotsuka N, Minami Y. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. Int J Mol Sci 2024; 25:652. [PMID: 38203823 PMCID: PMC10779750 DOI: 10.3390/ijms25010652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the proliferation of genetic testing, pathogenic germline variants predisposing to hereditary hematological malignancy syndrome (HHMS) have been identified in an increasing number of genes. Consequently, the field of HHMS is gaining recognition among clinicians and scientists worldwide. Patients with germline genetic abnormalities often have poor outcomes and are candidates for allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT using blood from a related donor should be carefully considered because of the risk that the patient may inherit a pathogenic variant. At present, we now face the challenge of incorporating these advances into clinical practice for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) and optimizing the management and surveillance of patients and asymptomatic carriers, with the limitation that evidence-based guidelines are often inadequate. The 2016 revision of the WHO classification added a new section on myeloid malignant neoplasms, including MDS and AML with germline predisposition. The main syndromes can be classified into three groups. Those without pre-existing disease or organ dysfunction; DDX41, TP53, CEBPA, those with pre-existing platelet disorders; ANKRD26, ETV6, RUNX1, and those with other organ dysfunctions; SAMD9/SAMD9L, GATA2, and inherited bone marrow failure syndromes. In this review, we will outline the role of the genes involved in HHMS in order to clarify our understanding of HHMS.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Hirotaka Matsui
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuoku 104-0045, Japan;
- Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8665, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| |
Collapse
|
3
|
CHEK2 Alterations in Pediatric Malignancy: A Single-Institution Experience. Cancers (Basel) 2023; 15:cancers15061649. [PMID: 36980535 PMCID: PMC10046043 DOI: 10.3390/cancers15061649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Background: Approximately 10% of pediatric malignancies are secondary to germline alterations in cancer-predisposing genes. Checkpoint kinase 2 (CHEK2) germline loss-of-function variants have been reported in pediatric cancer patients, but clinical phenotypes and outcomes are poorly described. We present our single-institution experience of pediatric oncology patients with CHEK2 germline alterations, including clinical presentations and outcomes. Methods: Pediatric oncology patients with CHEK2 germline alterations were identified among those assessed by clinical or translational research at the Institute for Genomic Medicine at Nationwide Children’s Hospital. A chart review of disease course was conducted on identified patients. Results: We identified 6 patients with germline CHEK2 variants from a cohort of 300 individuals, including 1 patient with concurrent presentation of Burkitt lymphoma and neuroblastoma, 3 patients with brain tumors, 1 patient with Ewing sarcoma, and 1 patient with myelodysplastic syndrome. Three patients had a family history of malignancies. Four patients were in remission; one was undergoing treatment; one patient had developed treatment-related meningiomas. We review prior data regarding CHEK2 variants in this population, challenges associated with variant interpretation, and genetic counseling for individuals with CHEK2 variants. Conclusions: CHEK2 germline loss-of-function alterations occur in patients with a variety of pediatric tumors. Larger multicenter studies will improve our understanding of the incidence, phenotype, and molecular biology of CHEK2 germline variants in pediatric cancers.
Collapse
|
4
|
Stubbins RJ, Korotev S, Godley LA. Germline CHEK2 and ATM Variants in Myeloid and Other Hematopoietic Malignancies. Curr Hematol Malig Rep 2022; 17:94-104. [PMID: 35674998 DOI: 10.1007/s11899-022-00663-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW An intact DNA damage response is crucial to preventing cancer development, including in myeloid and lymphoid malignancies. Deficiencies in the homologous recombination (HR) pathway can lead to defective DNA damage responses, and this can occur through inherited germline mutations in HR pathway genes, such as CHEK2 and ATM. We now understand that germline mutations can be identified frequently (~ 5-10%) in patients with myeloid and lymphoid malignancies, and among the most common of these are CHEK2 and ATM. We review the role that deleterious germline CHEK2 and ATM variants play in the development of hematopoietic malignancies, and how this influences clinical practice, including cancer screening, hematopoietic stem cell transplantation, and therapy choice. RECENT FINDINGS In recent large cohorts of patients diagnosed with myeloid or lymphoid malignancies, deleterious germline loss of function variants in CHEK2 and ATM are among the most common identified. Germline CHEK2 variants predispose to a range of myeloid malignancies, most prominently myeloproliferative neoplasms and myelodysplastic syndromes (odds ratio range: 2.1-12.3), and chronic lymphocytic leukemia (odds ratio 14.83). Deleterious germline ATM variants have been shown to predispose to chronic lymphocytic leukemia (odds ratio range: 1.7-10.1), although additional studies are needed to demonstrate the risk they confer for myeloid malignancies. Early studies suggest there may also be associations between deleterious germline CHEK2 and ATM variants and development of clonal hematopoiesis. Identifying CHEK2 and ATM variants is crucial for the optimal management of patients and families affected by hematopoietic malignancies. OPENING CLINICAL CASE: "A 45 year-old woman presents to your clinic with a history of triple-negative breast cancer diagnosed five years ago, treated with surgery, radiation, and chemotherapy. About six months ago, she developed cervical lymphadenopathy, and a biopsy demonstrated small lymphocytic leukemia. Peripheral blood shows a small population of lymphocytes with a chronic lymphocytic leukemia immunophenotype, and FISH demonstrates a complex karyotype: gain of one to two copies of IGH and FGFR3; gain of two copies of CDKN2C at 1p32.3; gain of two copies of CKS1B at 1q21; tetrasomy for chromosome 3; trisomy and tetrasomy for chromosome 7; tetrasomy for chromosome 9; tetrasomy for chromosome 12; gain of one to two copies of ATM at 11q22.3; deletion of chromosome 13 deletion positive; gain of one to two copies of TP53 at 17p13.1). Given her history of two cancers, you arrange for germline genetic testing using DNA from cultured skin fibroblasts, which demonstrates pathogenic variants in ATM [c.1898 + 2 T > G] and CHEK2 [p.T367Metfs]. Her family history is significant for multiple cancers. (Fig. 1)." Fig. 1 Representative pedigree from a patient with germline pathogenic ATM and CHEK2 variants who was affected by early onset breast cancer and chronic lymphocytic leukemia. Arrow indicates proband. Colors indicate cancer type/disease: purple, breast cancer; blue, lymphoma; brown, melanoma; yellow, colon cancer; and green, autoimmune disease.
Collapse
Affiliation(s)
- Ryan J Stubbins
- Section of Hematology Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637, USA.,Leukemia/BMT Program of BC, BC Cancer, Vancouver, BC, Canada
| | - Sophia Korotev
- Section of Hematology Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637, USA
| | - Lucy A Godley
- Section of Hematology Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Zhou JD, Xu ZJ, Jin Y, Zhang XL, Gu Y, Ma JC, Wen XM, Lin J, Zhang TJ, Qian J. Whole-Genome DNA Methylation Sequencing Reveals Epigenetic Changes in Myelodysplastic Syndromes. Front Oncol 2022; 12:897898. [PMID: 35847864 PMCID: PMC9277050 DOI: 10.3389/fonc.2022.897898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Epigenetic dysregulation of cancer-associated genes has been identified to contribute to the pathogenesis of myelodysplastic syndromes (MDS). However, few studies have elucidated the whole-genome DNA methylation in the initiation pathogenesis of MDS. Reduced representation bisulfite sequencing was performed in five de novo MDS patients and four controls to investigate epigenetic alterations in MDS pathogenesis. The mean global methylation in five MDS patients showed no significant difference compared with the four controls. In depth, a total of 1,459 differentially methylated fragments, including 759 hypermethylated and 700 hypomethylated fragments, were identified between MDS patients and controls. Targeted bisulfite sequencing further identified that hypermethylation of DLEU7, FOXR1, LEP, and PANX2 were frequent events in an additional cohort of MDS patients. Subsequently, LEP hypermethylation was confirmed by real-time quantitative methylation-specific PCR in an expanded cohort of larger MDS patients. In clinics, LEP hypermethylation tended to be associated with lower bone marrow blasts and was significantly correlated with U2AF1 mutation. Survival analysis indicated that LEP hypermethylation was associated with a markedly longer survival time but was not an independent prognostic biomarker in MDS patients. Functional studies revealed pro-proliferative and anti-apoptotic effects of leptin in the MDS cell line SKM-1, and it was significantly associated with cell growth and death as well as the Toll-like receptor and NF-kappa B signaling pathways. Collectively, our findings demonstrated that whole-genome DNA methylation analysis identified novel epigenetic alterations such as DLEU7, FOXR1, LEP, and PANX2 methylations as frequent events in MDS. Moreover, LEP might play a role in MDS pathogenesis, and LEP hypermethylation was associated with longer survival but not as an independent prognostic biomarker in MDS.
Collapse
Affiliation(s)
- Jing-dong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
| | - Zi-jun Xu
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Ye Jin
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
| | - Xin-long Zhang
- Department of Hematology, The People’s Hospital of Danyang, Zhenjiang, China
| | - Yu Gu
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
| | - Ji-chun Ma
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang-mei Wen
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jiang Lin
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Jun Qian, ; Ting-juan Zhang, ; Jiang Lin,
| | - Ting-juan Zhang
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- Laboratory Center, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Department of Oncology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- *Correspondence: Jun Qian, ; Ting-juan Zhang, ; Jiang Lin,
| | - Jun Qian
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
- Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Zhenjiang, China
- *Correspondence: Jun Qian, ; Ting-juan Zhang, ; Jiang Lin,
| |
Collapse
|
6
|
Boonen RA, Wiegant WW, Celosse N, Vroling B, Heijl S, Kote-Jarai Z, Mijuskovic M, Cristea S, Solleveld-Westerink N, van Wezel T, Beerenwinkel N, Eeles R, Devilee P, Vreeswijk MP, Marra G, van Attikum H. Functional Analysis Identifies Damaging CHEK2 Missense Variants Associated with Increased Cancer Risk. Cancer Res 2022; 82:615-631. [PMID: 34903604 PMCID: PMC9359737 DOI: 10.1158/0008-5472.can-21-1845] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/14/2021] [Accepted: 12/06/2021] [Indexed: 01/07/2023]
Abstract
Heterozygous carriers of germline loss-of-function variants in the tumor suppressor gene checkpoint kinase 2 (CHEK2) are at an increased risk for developing breast and other cancers. While truncating variants in CHEK2 are known to be pathogenic, the interpretation of missense variants of uncertain significance (VUS) is challenging. Consequently, many VUS remain unclassified both functionally and clinically. Here we describe a mouse embryonic stem (mES) cell-based system to quantitatively determine the functional impact of 50 missense VUS in human CHEK2. By assessing the activity of human CHK2 to phosphorylate one of its main targets, Kap1, in Chek2 knockout mES cells, 31 missense VUS in CHEK2 were found to impair protein function to a similar extent as truncating variants, while 9 CHEK2 missense VUS resulted in intermediate functional defects. Mechanistically, most VUS impaired CHK2 kinase function by causing protein instability or by impairing activation through (auto)phosphorylation. Quantitative results showed that the degree of CHK2 kinase dysfunction correlates with an increased risk for breast cancer. Both damaging CHEK2 variants as a group [OR 2.23; 95% confidence interval (CI), 1.62-3.07; P < 0.0001] and intermediate variants (OR 1.63; 95% CI, 1.21-2.20; P = 0.0014) were associated with an increased breast cancer risk, while functional variants did not show this association (OR 1.13; 95% CI, 0.87-1.46; P = 0.378). Finally, a damaging VUS in CHEK2, c.486A>G/p.D162G, was also identified, which cosegregated with familial prostate cancer. Altogether, these functional assays efficiently and reliably identified VUS in CHEK2 that associate with cancer. SIGNIFICANCE Quantitative assessment of the functional consequences of CHEK2 variants of uncertain significance identifies damaging variants associated with increased cancer risk, which may aid in the clinical management of patients and carriers.
Collapse
Affiliation(s)
- Rick A.C.M. Boonen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Wouter W. Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Nandi Celosse
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Bas Vroling
- Bio-Prodict, Nijmegen, the Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | - Martina Mijuskovic
- The Institute of Cancer Research, London, United Kingdom
- Illumina Cambridge Ltd., Cambridge, United Kingdom
| | - Simona Cristea
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Niko Beerenwinkel
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Rosalind Eeles
- The Institute of Cancer Research, London, United Kingdom
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike P.G. Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
7
|
Unravelling the Epigenome of Myelodysplastic Syndrome: Diagnosis, Prognosis, and Response to Therapy. Cancers (Basel) 2020; 12:cancers12113128. [PMID: 33114584 PMCID: PMC7692163 DOI: 10.3390/cancers12113128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/24/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Myelodysplastic syndrome (MDS) is a type of blood cancer that mostly affects older individuals. Invasive tests to obtain bone samples are used to diagnose MDS and many patients do not respond to therapy or stop responding to therapy in the short-term. Less invasive tests to help diagnose, prognosticate, and predict response of patients is a felt need. Factors that influence gene expression without changing the DNA sequence (epigenetic modifiers) such as DNA methylation, micro-RNAs and long-coding RNAs play an important role in MDS, are potential biomarkers and may also serve as targets for therapy. Abstract Myelodysplastic syndrome (MDS) is a malignancy that disrupts normal blood cell production and commonly affects our ageing population. MDS patients are diagnosed using an invasive bone marrow biopsy and high-risk MDS patients are treated with hypomethylating agents (HMAs) such as decitabine and azacytidine. However, these therapies are only effective in 50% of patients, and many develop resistance to therapy, often resulting in bone marrow failure or leukemic transformation. Therefore, there is a strong need for less invasive, diagnostic tests for MDS, novel markers that can predict response to therapy and/or patient prognosis to aid treatment stratification, as well as new and effective therapeutics to enhance patient quality of life and survival. Epigenetic modifiers such as DNA methylation, long non-coding RNAs (lncRNAs) and micro-RNAs (miRNAs) are perturbed in MDS blasts and the bone marrow micro-environment, influencing disease progression and response to therapy. This review focusses on the potential utility of epigenetic modifiers in aiding diagnosis, prognosis, and predicting treatment response in MDS, and touches on the need for extensive and collaborative research using single-cell technologies and multi-omics to test the clinical utility of epigenetic markers for MDS patients in the future.
Collapse
|