1
|
Çelikoğlu U, Çelikoğlu E, Khan MN, Kaplan A. Eco-benevolent synthesis of ZnO-NPs and ZnO-MFs from Inula oculus-christi L. (Asteraceae) with effective antioxidant, antimicrobial, DNA cleavage, and decolorization efficiencies. Bioprocess Biosyst Eng 2024; 47:1875-1901. [PMID: 39223356 DOI: 10.1007/s00449-024-03075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
As a result of the changes occurring globally in recent years, millions of people are facing challenging and even life-threatening diseases such as cancer and the COVID-19 pandemic, among others. This phenomenon has spurred researchers towards developing and implementing innovative and environmentally friendly scientific methods, merging disciplines with significant technological potential, such as nanotechnology with medicinal plants. Therefore, the focus of this research is to synthesize zinc nanoparticles (ZnO-NPs) and microflowers (ZnO-MFs) using extracts of the medicinal plant I. oculus christi prepared in n-hexane and methanol as new bioreduction and capping agents through a simple and environmentally friendly chemical approach. Optical, thermal, and morphological structural analyses of ZnO-NPs and ZnO-MFs were conducted using Ultraviolet-Visible (UV-Vis) spectroscopy, Fourier Transform Infrared (FT-IR) spectroscopy, Thermogravimetric Analysis (TGA), and Field Emission Scanning Electron Microscopy (FE-SEM). Metabolic profiles of extracts from different plant parts were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS) and supported by visualization of contents through Principal Component Analysis (PCA), hierarchical cluster analysis heatmaps, and Pearson correlation graphs. Interestingly, ZnO-NPs and ZnO-MFs exhibited strong antioxidant properties and demonstrated particularly potent antimicrobial activity against Micrococcus luteus NRRL B-4375, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231 strains compared to standard antibiotics. Furthermore, ZnO-NPs and ZnO-MFs showed excellent plasmid DNA-cleavage activity of pBR322 with increasing doses. The photocatalytic performance of the synthesized ZnO-NPs and ZnO-MFs was evaluated for methylene blue (MB), congo red (CR), and safranin-O (SO) dyes, demonstrating remarkable color removal efficiency. Overall, the results provide a promising avenue for the green synthesis of ZnO-NPs and ZnO-MFs using I. oculus-christi L. inflorescence and pappus extracts, potentially revolutionizing biopharmaceutical and catalytic applications in these fields.
Collapse
Affiliation(s)
- Umut Çelikoğlu
- Department of Chemistry, Faculty of Science and Letters, Amasya University, 05100, Amasya, Türkiye.
- Central Research and Application Laboratory, Amasya University, 05100, Amasya,, Türkiye.
| | - Emine Çelikoğlu
- Central Research and Application Laboratory, Amasya University, 05100, Amasya,, Türkiye
- Department of Biology, Faculty of Science and Letters, Amasya University, 05100, Amasya, Türkiye
| | | | - Alevcan Kaplan
- Department of Crop and Animal Production, Sason Vocational School, Batman University, 72060, Batman, Türkiye
| |
Collapse
|
2
|
Shahrajabian MH, Sun W. Iranian Traditional Medicine (ITM) and Natural Remedies for Treatment of the Common Cold and Flu. Rev Recent Clin Trials 2024; 19:91-100. [PMID: 38047364 DOI: 10.2174/0115748871275500231127065053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023]
Abstract
Traditional Iranian medicine is usually used for both prevention and relief of cold and flu symptoms in China, Iran, and many other Asian countries all over the world. There are 4 kinds of influenza viruses. Unlike type B, which may cause seasonal epidemics, type A viruses can cause pandemics, and influenza C may lead to mild human infection with little public health effects. A literature review was done by using multiple databases such as ISI Web of knowledge, PubMed, Science Direct and Google Scholar. The most notable antiviral medicinal plants for flu and cold are honeysuckle flowers, thyme leaf, green chiretta, andrographis, peppermint oil and leaf and calendula. The most important expectorant medicinal plants for cold and flu are snake root, tulsi, licorice root, slippery elm, clove, and sage leaf. Recommended immunostimulant medicinal plants for cold and flu are eucalyptus, Echinacea root, ginseng, garlic, slippery elm, marshmallow, Usnea lichen, Isatis root, ginger root, and myrrh resin. Iranian traditional medicine, which is one of the oldest schools of traditional medicine, is one of the main concepts of disease and health, and it can be considered as an important complementary and alternative medicine, as in some cases, modern medicine has many side effects, low efficiency, and high costs. Medicinal plants and herbs, which are included in many traditional systems, have significant and promising bioactive components in organic life.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Fragkouli R, Antonopoulou M, Asimakis E, Spyrou A, Kosma C, Zotos A, Tsiamis G, Patakas A, Triantafyllidis V. Mediterranean Plants as Potential Source of Biopesticides: An Overview of Current Research and Future Trends. Metabolites 2023; 13:967. [PMID: 37755247 PMCID: PMC10535963 DOI: 10.3390/metabo13090967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The development and implementation of safe natural alternatives to synthetic pesticides are urgent needs that will provide ecological solutions for the control of plant diseases, bacteria, viruses, nematodes, pests, and weeds to ensure the economic stability of farmers and food security, as well as protection of the environment and human health. Unambiguously, production of botanical pesticides will allow for the sustainable and efficient use of natural resources and finally decrease the use of chemical inputs and burden. This is further underlined by the strict regulations on pesticide residues in agricultural products and is in harmony with the Farm to Fork strategy, which aims to reduce pesticide use by 50% by 2030. Thus, the present work aims to compile the scientific knowledge of the last 5 years (2017-February 2023) regarding the Mediterranean plants that present biopesticidal effects. The literature review revealed 40 families of Mediterranean plants with at least one species that have been investigated as potential biopesticides. However, only six families had the highest number of species, and they were reviewed comprehensively in this study. Following a systematic approach, the extraction methods, chemical composition, biopesticidal activity, and commonly used assays for evaluating the antimicrobial, pesticidal, repellant, and herbicidal activity of plant extracts, as well as the toxicological and safety aspects of biopesticide formulation, are discussed in detail. Finally, the aspects that have not yet been investigated or are under-investigated and future perspectives are highlighted.
Collapse
Affiliation(s)
- Regina Fragkouli
- Department of Food Science & Technology, University of Patras, Seferi 2, 30100 Agrinio, Greece; (R.F.); (C.K.); (A.P.)
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, Seferi 2, 30100 Agrinio, Greece; (M.A.); (E.A.); (A.S.); (A.Z.); (G.T.)
| | - Elias Asimakis
- Department of Sustainable Agriculture, University of Patras, Seferi 2, 30100 Agrinio, Greece; (M.A.); (E.A.); (A.S.); (A.Z.); (G.T.)
| | - Alexandra Spyrou
- Department of Sustainable Agriculture, University of Patras, Seferi 2, 30100 Agrinio, Greece; (M.A.); (E.A.); (A.S.); (A.Z.); (G.T.)
| | - Chariklia Kosma
- Department of Food Science & Technology, University of Patras, Seferi 2, 30100 Agrinio, Greece; (R.F.); (C.K.); (A.P.)
| | - Anastasios Zotos
- Department of Sustainable Agriculture, University of Patras, Seferi 2, 30100 Agrinio, Greece; (M.A.); (E.A.); (A.S.); (A.Z.); (G.T.)
| | - George Tsiamis
- Department of Sustainable Agriculture, University of Patras, Seferi 2, 30100 Agrinio, Greece; (M.A.); (E.A.); (A.S.); (A.Z.); (G.T.)
| | - Angelos Patakas
- Department of Food Science & Technology, University of Patras, Seferi 2, 30100 Agrinio, Greece; (R.F.); (C.K.); (A.P.)
| | - Vassilios Triantafyllidis
- Department of Food Science & Technology, University of Patras, Seferi 2, 30100 Agrinio, Greece; (R.F.); (C.K.); (A.P.)
| |
Collapse
|
4
|
Soleimanifard S, Saeedi S, Yazdiniapour Z. Isolation of potent antileishmanial agents from Artemisia kermanensis Podlech using bioguided fractionation. J Parasit Dis 2023; 47:297-305. [PMID: 37193491 PMCID: PMC10182224 DOI: 10.1007/s12639-023-01569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Leishmaniasis is a major health problem worldwide with different clinical forms that depend on the parasite, the host's immune system, and immune-inflammatory responses. This study aimed to evaluate the secondary metabolites from Artemisia kermanensis Podlech by bioguided fractionation against Leishmania major. The chemical structures of the isolated compounds were determined based on analysis of mass and nuclear magnetic resonance spectra. Antileishmanial activity were determined on promastigotes and amastigotes. Chemical structures of the isolated compound were as 1-Acetoxy-3,7-dimethyl-7-hydroxy-octa-2E,5E-dien-4-one for compound 1 and 5,7-dihydroxy-3',4',6-trimethoxyflavone (Eupatilin) for compound 2, and 5,7,3'-Trihydroxy-6,4',5'-trimethoxyflavone for compound 3. Compound 2 were confirmed by significant activity with IC50 of less than 50 μg/ml for 24 and 48 h in clinical form (amastigotes). Compound 3 demonstrated high susceptibility with an IC50 of less than 30 μg/ml for promastigotes for 24 h. The bioguided fractionation of A. kermanensis resulted the isolation of potent antileishmanial agents with a low toxicity effect on macrophages. These plant metabolites can be a candidate as a drug for treating cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Simindokht Soleimanifard
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Saeedi
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave., Isfahan, Iran
| | - Zeinab Yazdiniapour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Hezar Jarib Ave., Isfahan, Iran
| |
Collapse
|
5
|
Seo YH, Kim JY, Ryu SM, Hwang SY, Lee MH, Kim N, Son H, Lee AY, Kim HS, Moon BC, Jang DS, Lee J. New Sesquiterpene Glycosides from the Flowers of Aster koraiensis and Their Inhibition Activities on EGF- and TPA-Induced Cell Transformation. PLANTS (BASEL, SWITZERLAND) 2023; 12:1726. [PMID: 37111949 PMCID: PMC10146194 DOI: 10.3390/plants12081726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
In total, four new eudesmane-type sesquiterpene glycosides, askoseosides A-D (1-4), and 18 known compounds (5-22) were isolated from the flowers of Aster koraiensis via chromatographic techniques. Chemical structures of the isolated compounds were identified by spectroscopic/spectrometric methods, including NMR and HRESIMS, and the absolute configuration of the new compounds (1 and 2) was performed by electronic circular dichroism (ECD) studies. Further, the anticancer activities of the isolated compounds (1-22) were evaluated using the epidermal growth factor (EGF)-induced as well as the 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cell transformation assay. Among the 22 compounds, compounds 4, 9, 11, 13-15, 17, 18, and 22 significantly inhibited both EGF- and TPA-induced colony growth. In particular, askoseoside D (4, EGF: 57.8%; TPA: 67.1%), apigenin (9, EGF: 88.6%; TPA: 80.2%), apigenin-7-O-β-d-glucuronopyranoside (14, EGF: 79.2%; TPA: 70.7%), and 1-(3',4'-dihydroxycinnamoyl) cyclopentane-2,3-diol (22, EGF: 60.0%; TPA: 72.1%) showed higher potent activities.
Collapse
Affiliation(s)
- Young-Hye Seo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Ji-Young Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Mok Ryu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Sun-Young Hwang
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Nahyun Kim
- Division of Forest Industrial Materials, Department of Forest Products and Industry, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Hojun Son
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040, Republic of Korea
| | - A-Yeong Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Hyo-Seon Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Byeong-Cheol Moon
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| | - Dae-Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jun Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), Naju 58245, Republic of Korea
| |
Collapse
|
6
|
Gou J, Lu Y, Xie M, Tang X, Chen L, Zhao J, Li G, Wang H. Antimicrobial activity in Asterceae: The selected genera characterization and against multidrug resistance bacteria. Heliyon 2023; 9:e14985. [PMID: 37151707 PMCID: PMC10161380 DOI: 10.1016/j.heliyon.2023.e14985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Plants from the Asteraceae family are widely used as ethno medicines to treatment parasitic, malaria, hematemesis, pruritus, pyretic, anthelmintic, wound healing. The aim of this review is to provide an overview of Asteraceae plants antimicrobial activity. The most relevant results from the published studies are summarized and discussed. The species in genus of Artemisia, Echinacea, Centaurea, Baccharis, and Calendula showed antimicrobial activity. Most of these species are usually used as ethno medicines to treat infection, inflammation, and parasitics. The effective part or component for antimicrobial was essential oil and crude extract, and essential oil attracted more attention. It was also reported that nanoparticles coated with crude extract were effective against multidrug resistant bacteria. For multidrug resistant bacteria study, the species in Armtemisia were the most investigated, and Staphylococcus aureus and Escherichia coli were the most studied multidrug resistant strains. The antimicrobial activity was evaluated mainly based on the results of minimum inhibitory concentration (MIC). Few reports have been reported on minimum bactericide concentration (MBC) and its antibacterial mechanisms. According to the reported study results, some plants in Asteraceae have the potential to be developed as bacteriostatic agents and against multidrug resistant bacteria. However, most studies are still in vitro, further clinical and applied studies are needed.
Collapse
|
7
|
Gladikostić N, Ikonić B, Teslić N, Zeković Z, Božović D, Putnik P, Bursać Kovačević D, Pavlić B. Essential Oils from Apiaceae, Asteraceae, Cupressaceae and Lamiaceae Families Grown in Serbia: Comparative Chemical Profiling with In Vitro Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:745. [PMID: 36840093 PMCID: PMC9968228 DOI: 10.3390/plants12040745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The aim of the present study was to investigate the chemical profile and antioxidant activity of essential oils obtained from the most commonly grown plant species in Serbia. Aromatic and medicinal plants from Lamiaceae (Mentha x Piperita, Ocimum basilicum, Origanum majorana, Origanum vulgare, Salvia officinalis, Satureja hortensis, Satureja montana and Thymus vulgaris), Asteraceae (Ehinacea purpurea and Matricaria chamomilla), Apiaceae (Anethum graveolens, Carum carvi, Foeniculum vulgare, Petroselinum crispum and Pimpinella anisum) and Cupressaceae (Juniperus comunis) were selected as raw material for essential oils (EOs)' isolation. Hydrodistillation (HD) was used for the isolation of EOs while they were evaluated in terms of yield and terpenoid profiles by GC-MS. In vitro radical scavenging DPPH and ABTS+ radical activities were carried out for all EOs. Finally, a principal component analysis (PCA) was performed with the experimental results of the composition and antioxidant activity of the EOs, which showed a clear distinction between the selected plant species for the aforementioned responses. This work represents a screening tool for the selection of other EO candidates for further processing by emerging extraction techniques and the use of EOs as natural additives for meat products.
Collapse
Affiliation(s)
- Nevena Gladikostić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Bojana Ikonić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Nemanja Teslić
- Institute of Food Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Zoran Zeković
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Danica Božović
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Predrag Putnik
- Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Danijela Bursać Kovačević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Branimir Pavlić
- Faculty of Technology, University of Novi Sad, Blvd. Cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
8
|
Pecio Ł, Otify AM, Saber FR, El-Amier YA, Shalaby ME, Kozachok S, Elmotayam AK, Świątek Ł, Skiba A, Skalicka-Woźniak K. Iphiona mucronata (Forssk.) Asch. & Schweinf. A Comprehensive Phytochemical Study via UPLC-Q-TOF-MS in the Context of the Embryo- and Cytotoxicity Profiles. Molecules 2022; 27:7529. [PMID: 36364367 PMCID: PMC9656354 DOI: 10.3390/molecules27217529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Iphiona mucronata (Family Asteraceae) is widely distributed in the Eastern desert of Egypt. It is a promising plant material for phytochemical analysis and pharmacologic studies, and so far, its specific metabolites and biological activity have not yet been thoroughly investigated. Herein, we report on the detailed phytochemical study using UPLC-Q-TOF-MS approach. This analysis allowed the putative annotation of 48 metabolites belonging to various phytochemical classes, including mostly sesquiterpenes, flavonoids, and phenolic acids. Further, zebrafish embryotoxicity has been carried out, where 100 µg/mL extract incubated for 72 h resulted in a slow touch response of the 10 examined larvae, which might be taken as a sign of a disturbed peripheral nervous system. Results of in vitro testing indicate moderate cytotoxicity towards VERO, FaDu, and HeLa cells with CC50 values between 91.6 and 101.7 µg/mL. However, selective antineoplastic activity in RKO cells with CC50 of 54.5 µg/mL was observed. To the best of our knowledge, this is the first comprehensive profile of I. mucronata secondary metabolites that provides chemical-based evidence for its biological effects. A further investigation should be carried out to precisely define the underlying mechanisms of toxicity.
Collapse
Affiliation(s)
- Łukasz Pecio
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Asmaa M. Otify
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Fatema R. Saber
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Yasser A. El-Amier
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Moataz Essam Shalaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Solomiia Kozachok
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
| | - Amira K. Elmotayam
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| | - Adrianna Skiba
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
| | | |
Collapse
|
9
|
Abstract
The current consumer demands together with the international regulations have pushed the cosmetic industry to seek new active ingredients from natural renewable sources for manufacturing more eco-sustainability and safe products, with botanical extract being an almost unlimited source of these new actives. Essential oils (EOs) emerge as very common natural ingredients in cosmetics and toiletries as a result of both their odorous character for the design and manufacturing of fragrances and perfumes, and the many beneficial properties of their individual components (EOCs), e.g., anti-inflammatory, antimicrobial and antioxidant properties, and, nowadays, the cosmetic industry includes EOs or different mixtures of their individual components (EOCs), either as active ingredients or as preservatives, in various product ranges (e.g., moisturizers, lotions and cleanser in skin care cosmetics; conditioners, masks or antidandruff products in hair care products; lipsticks, or fragrances in perfumery). However, the unique chemical profile of each individual essential oil is associated with different benefits, and hence it is difficult to generalize their potential applications in cosmetics and toiletries, which often require the effort of formulators in seeking suitable mixtures of EOs or EOCs for obtaining specific benefits in the final products. This work presents an updated review of the available literature related to the most recent advances in the application of EOs and EOCs in the manufacturing of cosmetic products. Furthermore, some specific aspects related to the safety of EOs and EOCs in cosmetics will be discussed. It is expected that the information contained in this comprehensive review can be exploited by formulators in the design and optimization of cosmetic formulations containing botanical extracts.
Collapse
|
10
|
Bioactive Modified Non-Wovens as a Novel Approach of Plants Protection against Invasive Slugs. MATERIALS 2021; 14:ma14237403. [PMID: 34885555 PMCID: PMC8658995 DOI: 10.3390/ma14237403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
Invasive slugs generate significant problems in the area of horticultural and agricultural production. Despite the multitude of methods to reduce the pest population, including preventive, mechanical, agrotechnical, cultivation, biological, and chemical treatments, no effective plant protection strategy has been developed so far. In this paper, a solution based on modified non-woven fabric with bioactive molluscicidal properties using the extract of tansy flower, metaldehyde, and abamectin (Vertigo® 018 EC) was proposed. All modified mats show significant anti-slug properties in comparison to control, and molluscicidal properties depend on the type of active substance. Non-woven modified with commonly used metaldehyde demonstrated fast action against slugs and presents the highest efficiency. The effectiveness of non-woven mats with Vertigo® 018 EC is lower than for the mats with metaldehyde but higher than for the mats modified with tansy flower extract. The proposed solution will enable removing and neutralization of molluscicide from the fields, after the efficient pest control, according to circular economy principles. Moreover, it may allow for better control of the molluscicide release to the environment in comparison to widely used pellets, and contribute to the virtual protection of plants against invasive slugs.
Collapse
|
11
|
Sharonova N, Nikitin E, Terenzhev D, Lyubina A, Amerhanova S, Bushmeleva K, Rakhmaeva A, Fitsev I, Sinyashin K. Comparative Assessment of the Phytochemical Composition and Biological Activity of Extracts of Flowering Plants of Centaurea cyanus L., Centaurea jacea L. and Centaurea scabiosa L. PLANTS 2021; 10:plants10071279. [PMID: 34201790 PMCID: PMC8309150 DOI: 10.3390/plants10071279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
The data on the phytochemical composition and biological activity for flowering plant extracts of the genus Centaurea (Knapweed)-cornflower (Centaurea cyanus L.), brown knapweed (Centaurea jacea L.), and greater knapweed (Centaurea scabiosa L.), which are typical representatives of the flora in the middle belt of the Russian Federation, were obtained. For the first time, biologically active substances such as pyranone, coumaran (2,3-dihydrobenzofuran), and 5-hydroxymethylfurfural were identified in ethanol and methanol extracts of Centaurea scabiosa L. by gas chromatography-mass spectrometry. Catechol and α-amyrin were the major components of the ethanol extract from Centaurea cyanus L., and flavone was the major component of Centaurea jacea L. flower extract. The greatest antimicrobial activity against phytopathogens was detected in Centaurea scabiosa L. when extracting freshly harvested flower biomass with methyl tert-butyl ether at room temperature: the minimum inhibitory concentrations were 60-120 µg/mL, the minimum fungicidal concentration was 120 µg/mL, and the minimum bactericidal concentration was 250 µg/mL. The low antioxidant activity of the studied plant extracts was established using the maximum values of Centaurea jacea L. Ethanol extract of Centaurea cyanus L. flowers had low antimicrobial and antioxidant activity. The extracts showed no phytotoxicity to garden cress germination but inhibited the growth of juvenile plants, especially roots. The greatest phytotoxic effect was revealed with methyl tert-butyl ether, where the depression of growth indicators was 35% or more.
Collapse
Affiliation(s)
- Natalia Sharonova
- Federal State Budgetary Institution of Science Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.N.); (D.T.); (A.L.); (S.A.); (K.B.); (A.R.); (K.S.)
- Correspondence:
| | - Evgeny Nikitin
- Federal State Budgetary Institution of Science Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.N.); (D.T.); (A.L.); (S.A.); (K.B.); (A.R.); (K.S.)
| | - Dmitriy Terenzhev
- Federal State Budgetary Institution of Science Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.N.); (D.T.); (A.L.); (S.A.); (K.B.); (A.R.); (K.S.)
| | - Anna Lyubina
- Federal State Budgetary Institution of Science Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.N.); (D.T.); (A.L.); (S.A.); (K.B.); (A.R.); (K.S.)
| | - Syumbelya Amerhanova
- Federal State Budgetary Institution of Science Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.N.); (D.T.); (A.L.); (S.A.); (K.B.); (A.R.); (K.S.)
| | - Kseniya Bushmeleva
- Federal State Budgetary Institution of Science Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.N.); (D.T.); (A.L.); (S.A.); (K.B.); (A.R.); (K.S.)
| | - Adelya Rakhmaeva
- Federal State Budgetary Institution of Science Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.N.); (D.T.); (A.L.); (S.A.); (K.B.); (A.R.); (K.S.)
| | - Igor Fitsev
- Federal State Budgetary Scientific Institution «Federal Center for Toxicological, Radiation, and Biological Safety», Nauchny Gorodok-2, 420075 Kazan, Russia;
| | - Kirill Sinyashin
- Federal State Budgetary Institution of Science Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», ul. Lobachevskogo, 2/31, 420111 Kazan, Russia; (E.N.); (D.T.); (A.L.); (S.A.); (K.B.); (A.R.); (K.S.)
| |
Collapse
|
12
|
Antibacterial Activity and Reversal of Multidrug Resistance of Tumor Cells by Essential Oils from Fresh Leaves, Flowers, and Stems of Montanoa quadrangularis Schultz Bipontinus (Asteraceae) Collected in Mérida-Venezuela. Biomolecules 2021; 11:biom11040605. [PMID: 33921786 PMCID: PMC8074158 DOI: 10.3390/biom11040605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 01/24/2023] Open
Abstract
Essential oils obtained by hydrodistillation of Montanoa quadrangularis leaves, flowers, and stems were analyzed by GC and GC/MS techniques revealing myrcene, limonene, β-phellandrene, and sabinene among the main components. The aim of the present study was to evaluate the MDR modulator activity on human MDR1 gene transfected mouse lymphoma cell line and the antimicrobial activity on the essential oils obtained from different parts of the species under investigation. The results revealed that MQL caused a similar increase in the fluorescence activity of the cells at 0.02 μL/mL comparing to the Verapamil® value. The antimicrobial assay was carried out according to the disc diffusion method. Five different bacterial strains (Staphylococcus epidermidis, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli AG 100, and Escherichia coli AG100A) were treated with the essential oils and the zones of inhibition were determined on TSA plates and TSA agar plates supplemented with Tween 20. MQF and MQL showed activity against B. subtilis, S. epidermidis, and E. coli AG 100A while MQS was only active against E. coli AG 100A on TSA agar plates experiment. In case of TSA agar plates supplemented with 0.1 v/v% Tween 20 detergent, MQF showed inhibition on B. subtilis, S. epidermidis, and E. coli AG 100A; MQL was active against B. subtilis, E. coli AG 100, and E. coli AG 100A while MQS was only active against E. coli AG 100A.
Collapse
|