1
|
Dawuti A, Sun S, Wang R, Gong D, Liu R, Kong D, Yuan T, Zhou J, Lu Y, Wang S, Du G, Fang L. Salvianolic acid A alleviates heart failure with preserved ejection fraction via regulating TLR/Myd88/TRAF/NF-κB and p38MAPK/CREB signaling pathways. Biomed Pharmacother 2023; 168:115837. [PMID: 37931518 DOI: 10.1016/j.biopha.2023.115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a morbid, fatal, and common syndrome for which lack of evidence-based therapies. Salvianolic acid A (SAA), a major active ingredient of Salvia miltiorrhiza Burge, has shown potential to protect against cardiovascular diseases. This study aims to elucidate whether SAA possessed therapeutic activity against HFpEF and explore the potential mechanism. HFpEF mouse model was established infusing a combination of high-fat diet (HFD) and Nω-nitro-L-arginine methyl ester (L-NAME) for 14 weeks. After 10 weeks of feeding, HFpEF mice were given SAA (2.5, 5, 10 mg/kg) via oral gavage for four weeks. Body weight, blood pressure, blood lipids, glucose tolerance, exercise performance, cardiac systolic/diastolic function, cardiac pathophysiological changes, and inflammatory factors were assessed. Experimental results showed that SAA reduced HFpEF risk factors, such as body weight gain, glucose intolerance, lipid disorders, and increased exercise tolerance in HFpEF mice. Moreover, SAA not only relieved myocardial hypertrophy and fibrosis by reducing interventricular septal wall thickness, left ventricular posterior wall thickness, left ventricular mass, heart index, cardiomyocyte cross-sectional area and cardiac collagen content, but also improved cardiac diastolic function via reducing E/E' ratio. Finally, SAA inhibited TLR2/TLR4-mediated Myd88 activation and its downstream molecules TRAF6 and IRAK4, which decreases the release of proinflammatory cytokines and mediators through NF-κB and p38 MAPK pathways. In conclusion, SAA could attenuate cardiac inflammation and cardiac disfunction by TLR/Myd88/TRAF/NF-κB and p38MAPK/CREB signaling pathways in HFpEF mice, which provides evidence for SAA as a potential drug for treatment of HFpEF in clinic.
Collapse
Affiliation(s)
- Awaguli Dawuti
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuchan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ranran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Difei Gong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ruiqi Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dewen Kong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Lu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shoubao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
2
|
Guo Y, Wen J, He A, Qu C, Peng Y, Luo S, Wang X. iNOS contributes to heart failure with preserved ejection fraction through mitochondrial dysfunction and Akt S-nitrosylation. J Adv Res 2023; 43:175-186. [PMID: 36585107 PMCID: PMC9811328 DOI: 10.1016/j.jare.2022.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Despite the high morbidity and mortality of heart failure with preserved fraction (HFpEF), there are currently no effective therapies for this condition. Moreover, the pathophysiological basis of HFpEF remains poorly understood. OBJECTIVE The aim of the present study was to investigate the role of inducible nitric oxide synthase (iNOS) and its underlying mechanism in a high-fat diet and Nω-nitro-L-arginine methyl ester-induced HFpEF mouse model. METHODS The selective iNOS inhibitor L-NIL was used to examine the effects of short-term iNOS inhibition, whereas the long-term effects of iNOS deficiency were evaluated using iNOS-null mice. Cardiac and mitochondrial function, oxidative stress and Akt S-nitrosylation were then measured. RESULTS The results demonstrated that both pharmacological inhibition and iNOS knockout mitigated mitochondrial dysfunction, oxidative stress and Akt S-nitrosylation, leading to an ameliorated HFpEF phenotype in mice. In vitro, iNOS directly induced Akt S-nitrosylation at cysteine 224 residues , leading to oxidative stress, while inhibiting insulin-mediated glucose uptake in myocytes. CONCLUSION Altogether, the present findings suggested an important role for iNOS in the pathophysiological development of HFpEF, indicating that iNOS inhibition may represent a potential therapeutic strategy for HFpEF.
Collapse
Affiliation(s)
- Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junjie Wen
- Division of Cardiology, West China Guang'an Hospital of Sichan University, Guang'an 638500, China
| | - An He
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Can Qu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuce Peng
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Suxin Luo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Dong Q, Zhang J, Han Q, Zhang H, Wang M, Huang Q, Zhao J. Global status and trends in heart failure with preserved ejection fraction over the period 2009-2020: A bibliometric analysis. Medicine (Baltimore) 2022; 101:e29106. [PMID: 35356948 PMCID: PMC10684182 DOI: 10.1097/md.0000000000029106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/01/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) comprises about 50% of the cases of heart failure (HF), but so far there is no effective treatment strategy. This study used bibliometric methods to analyze the scientific literature on HFpEF in 2009 to 2020, and evaluate the global scientific output of HFpEF research, in order to explore the research status and trends in this field. METHODS Documents about the HFpEF research published in 2009 to 2020 were retrieved from Science Citation Index Expanded (SCIE) in Web of Science. This study used bibliometrix R-package, VOSviewer, and CiteSpace to conduct the bibliometric analysis. RESULTS A total of 1971 documents (1508 articles and 283 reviews) were retrieved to construct the local HFpEF literature collection for analysis. The number of annual documents had increased year by year in general, from 24 to 353. Relevant documents were mainly written in English, and mostly focused on the field of "Cardiovascular System Cardiology." USA ranked first in the relevant countries/regions with most documents, and the leading affiliation was Mayo Clin. Shah SJ was the most productive author, while Borlaug BA ranked highest among the local cited authors and G-index. Circulation was the most local cited source, while Eur J Heart Fail published the most documents and was rated as the top source in terms of G-index. "Paulus WJ, 2013, J Am Coll Cardiol" was the top local cited document within the local HFpEF literature collection, while "Owan TE, 2006, New Engl J Med" outside the local HFpEF literature collection was the most local cited reference. The keywords such as "mortality," "dysfunction," "diagnosis," "outcomes," and "diastolic dysfunction" were most frequent, while "hemodynamics," "comorbidity," "myocardial infarction," "inflammation," and "phenotype" indicated research frontiers or emerging trends. Furthermore, this study also found some deeper bibliometric relationships through bibliographic networks. CONCLUSIONS Due to the multi-dimensional bibliometric analysis, this study shows a wide view of scientific productivity related to HFpEF, and provides valuable guidance for researchers interested in HFpEF, assisting them in understanding the research status, identifying potential collaborators, discovering research hotspots and frontiers, and conducting more in-depth research.
Collapse
Affiliation(s)
- Qiuju Dong
- Hospital of Integrated Traditional and Western Medicine, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, China,Third Clinical College, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, China,The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China,School of Management, Shanxi Medical University, Jinzhong, Shanxi, China,School of Computer and Information Technology, Shanxi University, Taiyuan, Shanxi, China,First Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | | | | | | | | | | | | |
Collapse
|