1
|
Pluijmert NJ, den Haan MC, van Zuylen VL, Steendijk P, de Boer HC, van Zonneveld AJ, Fibbe WE, Schalij MJ, Quax PHA, Atsma DE. Hypercholesterolemia affects cardiac function, infarct size and inflammation in APOE*3-Leiden mice following myocardial ischemia-reperfusion injury. PLoS One 2019; 14:e0217582. [PMID: 31199833 PMCID: PMC6570022 DOI: 10.1371/journal.pone.0217582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/14/2019] [Indexed: 01/03/2023] Open
Abstract
Background Hypercholesterolemia is a major risk factor for ischemic heart disease including acute myocardial infarction. However, long-term effects of hypercholesterolemia in a rodent myocardial ischemia-reperfusion injury model are unknown. Therefore, the effects of diet-induced hypercholesterolemia on cardiac function and remodeling were investigated up to eight weeks after myocardial ischemia-reperfusion (MI-R) injury which was induced in either normocholesterolemic (NC-MI) or hypercholesterolemic (HC-MI) APOE*3-Leiden mice. Methods Left ventricular (LV) dimensions were serially assessed using parasternal long-axis echocardiography followed by LV pressure-volume measurements. Subsequently, infarct size and the inflammatory response were analyzed by histology and fluorescence-activated cell sorting (FACS) analysis. Results Intrinsic LV function eight weeks after MI-R was significantly impaired in HC-MI compared to NC-MI mice as assessed by end-systolic pressure, dP/dtMAX, and -dP/dtMIN. Paradoxically, infarct size was significantly decreased in HC-MI compared to NC-MI mice, accompanied by an increased wall thickness. Hypercholesterolemia caused a pre-ischemic peripheral monocytosis, in particular of Ly-6Chi monocytes whereas accumulation of macrophages in the ischemic-reperfused myocardium of HC-MI mice was decreased. Conclusion Diet-induced hypercholesterolemia caused impaired LV function eight weeks after MI-R injury despite a reduced post-ischemic infarct size. This was preceded by a pre-ischemic peripheral monocytosis, while there was a suppressed accumulation of inflammatory cells in the ischemic-reperfused myocardium after eight weeks. This experimental model using hypercholesterolemic APOE*3-Leiden mice exposed to MI-R seems suitable to study novel cardioprotective therapies in a more clinically relevant animal model.
Collapse
Affiliation(s)
- Niek J. Pluijmert
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Melina C. den Haan
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Paul Steendijk
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hetty C. de Boer
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Willem E. Fibbe
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin J. Schalij
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Douwe E. Atsma
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
2
|
Andreadou I, Iliodromitis EK, Lazou A, Görbe A, Giricz Z, Schulz R, Ferdinandy P. Effect of hypercholesterolaemia on myocardial function, ischaemia-reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol 2017; 174:1555-1569. [PMID: 28060997 DOI: 10.1111/bph.13704] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 01/15/2023] Open
Abstract
Hypercholesterolaemia is considered to be a principle risk factor for cardiovascular disease, having direct negative effects on the myocardium itself, in addition to the development of atherosclerosis. Since hypercholesterolaemia affects the global cardiac gene expression profile, among many other factors, it results in increased myocardial oxidative stress, mitochondrial dysfunction and inflammation triggered apoptosis, all of which may account for myocardial dysfunction and increased susceptibility of the myocardium to infarction. In addition, numerous experimental and clinical studies have revealed that hyperlcholesterolaemia may interfere with the cardioprotective potential of conditioning mechanisms. Although not fully elucidated, the underlying mechanisms for the lost cardioprotection in hypercholesterolaemic animals have been reported to involve dysregulation of the endothelial NOS-cGMP, reperfusion injury salvage kinase, peroxynitrite-MMP2 signalling pathways, modulation of ATP-sensitive potassium channels and apoptotic pathways. In this review article, we summarize the current knowledge on the effect of hypercholesterolaemia on the non-ischaemic and ischaemic heart as well as on the cardioprotection induced by drugs or ischaemic preconditioning, postconditioning and remote conditioning. Future perspectives concerning the mechanisms and the design of preclinical and clinical trials are highlighted. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios K Iliodromitis
- Second Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary.,Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Rainer Schulz
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary.,Department of Physiology, Justus-Liebig-University, Giessen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary.,Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary
| |
Collapse
|
3
|
Öztürk T, Vural K, Tuğlu İ, Var A, Kurdal T, Aydemir I. Acute and Chronic Pretreatment With Atenolol Attenuates Intestinal Ischemia and Reperfusion Injury in Hypercholesterolemic Rats. J Cardiothorac Vasc Anesth 2016; 30:985-92. [PMID: 27521968 DOI: 10.1053/j.jvca.2016.03.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To evaluate the protective effects of preinjury atenolol (acute v chronic) on apoptosis, contractility, oxidative stress, and inflammatory markers in hypercholesterolemic rats undergoing intestinal ischemia-reperfusion (I/R) injury. DESIGN Prospective, experimental animal study. SETTING University laboratory. PARTICIPANTS Male Wistar rats (n = 32). INTERVENTIONS Rats were divided into the following 4 groups: 1 group was fed a normal diet (ND) (group ND+NoAT [no atenolol]), and the other 3 groups were fed a high-cholesterol diet (HCD)-group HCD+NoAT, group HCD+ChAT (chronic atenolol, 3 mg/kg/day for 8 weeks), and group HCD+AcAT (acute atenolol, 1.5 mg/kg, given 5 minutes before intestinal clamping). All rats underwent I/R injury. The superior mesenteric artery was clamped for 60 minutes, then opened for 120 minutes (reperfusion). Apoptotic cells and stimulated contractions of ileal segments were examined. Tissue markers of intestinal I/R injury were examined. Intestinal malondialdehyde, superoxide dismutase, and nitrate/nitrite levels were measured. MEASUREMENTS AND MAIN RESULTS The chronic atenolol group had fewer apoptotic cells and higher superoxide dismutase activity compared with the other groups. Intestinal contraction was higher in both atenolol pretreatment groups compared with the NoAT groups. Chronic and acute atenolol resulted in lower ileal levels of malondialdehyde and immunolabeling-positive cells (intestinal inducible nitric oxide synthase, endothelial nitric oxide synthase, interleukin-1, and interleukin-8) after I/R injury compared with the no atenolol groups. CONCLUSIONS Both chronic and acute pre-I/R injury treatment with atenolol attenuated I/R injury in this hypercholesterolemic rat model. These findings should encourage future studies of atenolol in hypercholesterolemic patients undergoing procedures with a high risk of intestinal ischemia.
Collapse
Affiliation(s)
- Tülün Öztürk
- Departments of Anaesthesiology and Reanimation, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey.
| | - Kamil Vural
- Pharmacology, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey
| | - İbrahim Tuğlu
- Histology, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey
| | - Ahmet Var
- Biochemistry, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey
| | - Taner Kurdal
- Cardiovascular Surgery, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey
| | - Işıl Aydemir
- Pharmacology, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey; Histology, Celal Bayar University, Faculty of Medicine, Uncubozköy, Manisa, Turkey
| |
Collapse
|
4
|
Li W, Wu N, Shu W, Jia D, Jia P. Pharmacological preconditioning and postconditioning with nicorandil attenuates ischemia/reperfusion-induced myocardial necrosis and apoptosis in hypercholesterolemic rats. Exp Ther Med 2015; 10:2197-2205. [PMID: 26668616 DOI: 10.3892/etm.2015.2782] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 09/01/2015] [Indexed: 12/13/2022] Open
Abstract
Pharmacological preconditioning and postconditioning may reduce myocardial necrosis and apoptosis during ischemia/reperfusion (I/R), however, hypercholesterolemia interferes with the associated cardioprotective mechanisms. The present study investigated whether pharmacological preconditioning and postconditioning with nicorandil could attenuate myocardial necrosis and apoptosis induced by I/R in hypercholesterolemic rats, and explored the possible mechanisms involved. Male Wistar rats (n=160) were fed normal (normocholesterolemic group, n=10) or high-cholesterol (hypercholesterolemic group, n=150) diets for 8 weeks. Hearts harvested from the normal and hypercholesterolemic rats were subsequently placed on modified Langendorff perfusion apparatus and 30-min global ischemia was performed, followed by 120-min reperfusion. Nicorandil (1, 3, 10, 30, 100 µmol/l), and mitochondrial adenosine triphosphate-sensitive potassium (mitoKATP) channel blocker 5-hydroxydecanoic acid sodium salt (5-HD) (100 µmol/l) or soluble guanylyl cyclase (sGC) blocker 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 µmol/l) were perfused for 10 min, prior to ischemia or at the onset of reperfusion. The myocardial infarct size was determined by triphenyltetrazolium chloride staining, and cardiomyocyte apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick-end labeling staining. In order to investigate the potential mechanisms, the expression levels of caspase-3, B-cell lymphoma-2 (Bcl-2) proteins and Bcl-2-associated X protein (Bax) were measured using western blot analysis. The present study demonstrated that, in hypercholesterolemic rats, pharmacological preconditioning and postconditioning with nicorandil decreased I/R-induced myocardial necrosis and apoptosis in a concentration-dependent manner. The optimal preconditioning and postconditioning concentration of nicorandil determined to have anti-infarct and anti-apoptosis effects was 30 µmol/l, which significantly (P<0.05) reduced the infarct size to 14.88±3.25% and 15.96±3.29%, and attenuated the percentage of cardiomyocyte apoptosis to 25.20±3.93% and 26.18±4.82%, respectively, compared with the I/R group. However, the cardioprotective effects of nicorandil were partially suppressed by cotreatment with 5-HD or ODQ. Western blot analysis demonstrated that pharmacological preconditioning and postconditioning with nicorandil significantly downregulated caspase-3 and Bax expression, and upregulated Bcl-2 expression compared with the I/R group (P<0.05). The results of the present study suggest that pharmacological preconditioning and postconditioning with nicorandil may protect hypercholesterolemic hearts against I/R-induced necrosis and apoptosis; and the cardioprotective effects of nicorandil may be due to the dual pharmacological mechanisms of opening the mitoKATP channels and a nitric oxide/sGC-dependent mechanism, and regulation of the expression of caspase-3, Bax and Bcl-2.
Collapse
Affiliation(s)
- Wenna Li
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Nan Wu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wenqi Shu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dalin Jia
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Pengyu Jia
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
5
|
The protective effect of Na+/Ca2+ exchange blocker kb-r7943 on myocardial ischemia-reperfusion injury in hypercholesterolemic rat. Cell Biochem Biophys 2015; 70:1017-22. [PMID: 24840224 DOI: 10.1007/s12013-014-0012-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
KB-R7943 reduces lethal reperfusion injury under normal conditions, but its effectiveness under certain pathological states is in dispute. In the present study, we sought to determine the effect of KB-R7943 in hyperlipidemic animals and assess if the K ATP (+) are involved in the protective mechanisms. In group 1 (G1), isolated rat hearts underwent 25 min global ischemia (GI) and 120 min reperfusion (R). In group 2 (G2), G1 was repeated but the animals were subjected to a 1.5 % cholesterol-enriched diet during 6 weeks (hypercholesterolemic animals). In group 3 (G3), G2 was repeated but 1 μM KB-R7943 was added to the perfusate for 10 min from the start of reperfusion. In group 4 (G4), G3 was repeated, and glibenclamide (K ATP (+) , blocker, 0.3 μM) was administered. The infarct size was measured by triphenyltetrazolium. The infarct size was 35 ± 5.0 % in G1 and 46 ± 8.7 % in G2 (P < 0.05); KB-R7943 reduced the infarct size (28.6 ± 3.3 % in G3 vs. G2, P < 0.05). In addition, KB-R7943 attenuated apoptotic cell (G3 vs. G2, P < 0.05), but glibenclamide abolished the effect reached by KB-R7943. Thus, diet-induced hypercholesterolemia enhances myocardial injury; KB-R7943 reduces infarct size and apoptosis in hyperlipidemic animals through the activation of K(+)ATP channels.
Collapse
|
6
|
Protective effect of Na(+)/Ca (2+) exchange blocker KB-R7943 on myocardial ischemia-reperfusion injury in hypercholesterolemic rats. Cell Biochem Biophys 2013; 66:357-63. [PMID: 23212178 DOI: 10.1007/s12013-012-9474-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Reverse-mode activation of the Na(+)/Ca(2+) exchanger (NCX) during reperfusion following ischemia contributes to Ca(2+) overload and cardiomyocyte injury. KB-R7943, a selective reverse-mode NCX inhibitor, reduces lethal reperfusion injury under non-ischemic conditions. However, the effectiveness of this compound under ischemic conditions is unclear. In the present study, we studied the effects of KB-R7943 in an animal model of hyperlipidemia. We further assessed whether the K ATP (+) channels are involved in potential protective mechanisms of KB-R7943. Twelve rats were fed normal chow, while 48 animals were fed a high cholesterol diet. The hearts from the control and hypercholesterolemic rats were subjected to 25 min of global ischemia followed by a 120-min reperfusion. Before this, hearts from hypercholesterolemic rats either received no intervention (cholesterol control group) or were pre-treated with 1 μM KB-R7943 and 0.3 μM of K ATP (+) blocker glibenclamide or glibenclamide alone. The infarction sizes (triphenyltetrazolium assay) were 35 ± 5.0 % in the control group, 46 ± 8.7 % in the cholesterol control group (p < 0.05 vs. control group), 28.6 ± 3.3 % in the KB-R7943 group (p < 0.05 vs. cholesterol control group), 44 ± 5 % in the KB-R7943 and glibenclamide group, and 47 ± 8.5 % in the glibenclamide group (p < 0.05 vs. control group). Further, KB-R7943 attenuated the magnitude of cell apoptosis (p < 0.05 vs. cholesterol control group). These beneficial effects were abolished by glibenclamide. In conclusion, diet-induced hypercholesterolemia enhances myocardial injury. Selective reverse-mode NCX inhibitor KB-R7943 reduces the infarction size and apoptosis in hyperlipidemic animals through the activation of K ATP (+) channels.
Collapse
|
7
|
Yuan C, Solaro RJ. Myofilament proteins: From cardiac disorders to proteomic changes. Proteomics Clin Appl 2012; 2:788-99. [PMID: 21136879 DOI: 10.1002/prca.200780076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Myofilament proteins of the cardiac sarcomere house the molecular machinery responsible for generating tension and pressure. Release of intracellular Ca(2+) triggers myofilament tension generation and shortening, but the response to Ca(2+) is modulated by changes in key regulatory proteins. We review how these proteomic changes are essential to adaptive physiological regulation of cardiac output and become maladaptive in cardiac disorders. We also review the essentials of proteomic techniques used to study myofilament protein changes, including degradation, isoform expression, phosphorylation and oxidation. Selected proteomic studies illustrate the applications of these approaches.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
8
|
Kiss A, Juhász L, Seprényi G, Kupai K, Kaszaki J, Végh A. The role of nitric oxide, superoxide and peroxynitrite in the anti-arrhythmic effects of preconditioning and peroxynitrite infusion in anaesthetized dogs. Br J Pharmacol 2010; 160:1263-72. [PMID: 20590618 DOI: 10.1111/j.1476-5381.2010.00774.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Both ischaemia preconditioning (PC) and the intracoronary infusion of peroxynitrite (PN) suppress ischaemia and reperfusion (I/R)-induced arrhythmias and the generation of nitrotyrosine (NT, a marker of PN). However, it is still unclear whether this latter effect is due to a reduction in nitric oxide (NO) or superoxide (O(2)(-)) production. EXPERIMENTAL APPROACH Dogs anaesthetized with chloralose and urethane were infused, twice for 5 min, with either saline (control) or 100 nM PN, or subjected to similar periods of occlusion (PC), 5 min prior to a 25 min occlusion and reperfusion of the left anterior descending coronary artery. Severities of ischaemia and ventricular arrhythmias, as well as changes in the coronary sinus nitrate/nitrite (NOx) levels were assessed throughout the experiment. The production of myocardial NOx, O(2)(-) and NT was determined following reperfusion. KEY RESULTS Both PC and PN markedly suppressed the I/R-induced ventricular arrhythmias, compared to the controls, and increased NOx levels during coronary artery occlusion. Reperfusion induced almost the same increases in NOx levels in all groups, but superoxide production and, consequently, the generation of NT were significantly less in PC- and PN-treated dogs than in controls. CONCLUSIONS AND IMPLICATIONS Since both PC and the administration of PN enhanced NOx levels during I/R, the attenuation of endogenous PN formation in these dogs is primarily due to a reduction in the amount of O(2) produced. Thus, the anti-arrhythmic effect of PC and PN can almost certainly be attributed to the preservation of NO availability during myocardial ischaemia.
Collapse
Affiliation(s)
- Attila Kiss
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Albert Szent-Györgyi Medical Center, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
9
|
Osipov RM, Bianchi C, Feng J, Clements RT, Liu Y, Robich MP, Glazer HP, Sodha NR, Sellke FW. Effect of hypercholesterolemia on myocardial necrosis and apoptosis in the setting of ischemia-reperfusion. Circulation 2009; 120:S22-30. [PMID: 19752371 DOI: 10.1161/circulationaha.108.842724] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Hypercholesterolemia is prevalent in patients who experience myocardial ischemia-reperfusion injury (IR). We investigate the impact of dietary-induced hypercholesterolemia on the myocardium in the setting of acute IR. METHODS AND RESULTS In normocholesterolemic (NC, n=7) and hypercholesterolemic (HC, n=7) Yucatan male pigs, the left anterior descending coronary artery was occluded for 60 minutes, followed by reperfusion for 120 minutes. Hemodynamic values were recorded, and TTC staining was used to assess necrosis. Oxidative stress was measured. Specific cell death and survival signaling pathways were assessed by Western blot and TUNEL staining. Infarct size was 45% greater in HC versus NC (42% versus 61%, P<0.05), whereas the area at risk (AAR) was similar in both groups (P=0.61). Whereas global LV function (+dP/dt, P<0.05) was higher during entire period of IR in HC versus NC, regional function deteriorated more following reperfusion in HC (P<0.05). Ischemia increased indices of myocardial oxidative stress such as protein oxidation (P<0.05), lipid peroxidation (P<0.05), and nitrotyrosylation in HC versus NC, as well as the expression of phospho-eNOS (P<0.05). The expression of myeloperoxidase, p38 MAPK, and phospho-p38 MAPK was higher in HC versus NC (all P<05). Ischemia caused higher expression of the proapoptotic protein PARP (P<0.05), and lower expression of the prosurvival proteins Bcl2 (P<0.05), phospho-Akt, (P<0.05), and phospho-PKCepsilon (P<0.05) in the HC versus NC. TUNEL-positive cell count was 3.8-fold (P<0.05) higher in the AAR of HC versus NC. CONCLUSIONS This study demonstrates that experimental hypercholesterolemia is associated with increased myocardial oxidative stress and inflammation, attenuation of cell survival pathways, and induction of apoptosis in the ischemic territory, which together may account for the expansion of myocardial necrosis in the setting of acute IR.
Collapse
Affiliation(s)
- Robert M Osipov
- Alpert School of Medicine at Brown University, Rhode Island Hospital, Providence, 02905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Venardos KM, Zatta AJ, Marshall T, Ritchie R, Kaye DM. Reduced L-arginine transport contributes to the pathogenesis of myocardial ischemia-reperfusion injury. J Cell Biochem 2009; 108:156-68. [DOI: 10.1002/jcb.22235] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Lee TF, Tymafichuk CN, Schulz R, Cheung PY. Post-resuscitation NOS inhibition does not improve hemodynamic recovery of hypoxic newborn pigs. Intensive Care Med 2009; 35:1628-35. [PMID: 19551371 DOI: 10.1007/s00134-009-1553-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 03/31/2009] [Indexed: 12/01/2022]
Abstract
BACKGROUND Significant improvement in myocardial recovery has been shown previously with interventions to decrease reactive oxygen species after ischemia/hypoxia. We investigated whether co-administration of N-acetylcysteine (NAC, a scavenger for reactive oxygen species) and N (G)-monomethyl-L: -arginine (L-NMMA, a non-selective nitric oxide synthase inhibitor) results in better hemodynamic recovery. DESIGN Controlled, block-randomized study. SETTING University research laboratory. SUBJECT Mixed breed piglets (1-4d, 1.6-2.4 kg). INTERVENTIONS Acutely instrumented piglets received normocapnic alveolar hypoxia (10-15% oxygen) for 2 h followed by reoxygenation with 100% oxygen (1 h) then 21% oxygen (3 h). After reoxygenation, hypoxic-reoxygenated piglets were given either saline (controls), NAC [30 mg/kg bolus + 20 mg/(kg h) infusion], NMMA [0.1 mg/kg bolus + 0.1 mg/(kg h) infusion] or NAC + L-NMMA via intravenous infusion in a blinded, randomized fashion (n = 8/group). Sham-operated piglets had no hypoxia-reoxygenation (n = 5). MEASUREMENTS AND RESULTS Both cardiac index and stroke volume of hypoxia-reoxygenation controls remained depressed during reoxygenation (vs. normoxic baseline, p < 0.05). Post-resuscitation treatment with L-NMMA alone did not improve systemic hemodynamic recovery, but caused pulmonary hypertension (vs. controls). In contrast, treating the piglets with either NAC or NAC + L-NMMA improved cardiac index and stroke volume, with no effect on heart rate and blood pressure (vs. controls). These treatments also decreased various oxidative stress markers in myocardial tissues (vs. controls). However, there was no significant difference between NAC- and NAC + L-NMMA groups in all examined parameters. CONCLUSIONS Post-resuscitation administration of NAC improved cardiac function and reduced oxidative stress in newborn pigs with hypoxia-reoxygenation insult. Low-dose, non-selective inhibitor of nitric oxide synthase activity did not provide any further beneficial effect.
Collapse
Affiliation(s)
- Tze-fun Lee
- Department of Pediatrics, University of Alberta, NICU Royal Alexandra Hospital, Edmonton, Alberta T5H 3V9, Canada
| | | | | | | |
Collapse
|