1
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications—Are We on the Road to Success? Cells 2023; 12:1727. [DOI: https:/doi.org/10.3390/cells12131727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
2
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications-Are We on the Road to Success? Cells 2023; 12:1727. [PMID: 37443761 PMCID: PMC10341347 DOI: 10.3390/cells12131727] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
3
|
Chang Z, Guo AQ, Zhou AX, Sun TW, Ma LL, Gardiner FW, Wang LX. Nurse-led psychological intervention reduces anxiety symptoms and improves quality of life following percutaneous coronary intervention for stable coronary artery disease. Aust J Rural Health 2020; 28:124-131. [PMID: 31960537 DOI: 10.1111/ajr.12587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/16/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To study the effect of nurse-led counselling on the anxiety symptoms and the quality of life following percutaneous coronary intervention for stable coronary artery disease. DESIGN Randomised control trial. SETTING Rural and remote China. PARTICIPANTS Rural and remote patients were consecutively recruited from a medical centre located in China between January and December 2014. INTERVENTIONS The control group received standard pre-procedure information from a ward nurse on the processes of the hospitalisation and percutaneous coronary intervention, and post-procedural care. The intervention group received a structured 30-minute counselling session the day before and 24 hours after the percutaneous coronary intervention, by nurse consultants with qualifications in psychological therapies and counselling. The health outcomes were assessed by a SF-12 scale and the Seattle Angina Questionnaire at 6 and 12 months after percutaneous coronary intervention. The anxiety and depression symptoms were evaluated by a Zung anxiety and depression questionnaire. MAIN OUTCOME MEASURES Cardiac outcomes, quality of life and mental health status. RESULTS Eighty patients were randomly divided into control (n = 40) and intervention groups (n = 40). There was a significant increase in the scores of the three domains of Seattle Angina Questionnaire 12 months after percutaneous coronary intervention in the intervention group (P < .01). The mental health and physical health scores also increased (P < .01). In the control group, the mean scores of Zung self-rating anxiety scale 12 months following percutaneous coronary intervention were higher than the baseline scores, and higher than in the intervention group (P < .01). CONCLUSIONS Counselling by a clinician qualified in psychological therapies and counselling significantly reduces anxiety symptoms and improves quality of life.
Collapse
Affiliation(s)
- Zongxia Chang
- Department of Cardiology and Nursing, Liaocheng People's Hospital, Liaocheng City, China
| | - Ai-Qing Guo
- Department of Cardiology and Nursing, Liaocheng People's Hospital, Liaocheng City, China
| | - Ai-Xia Zhou
- Department of Cardiology and Nursing, Liaocheng People's Hospital, Liaocheng City, China
| | - Tong-Wen Sun
- Henan Key Laboratory of Critical Care Medicine, Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long-le Ma
- Henan Key Laboratory of Critical Care Medicine, Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fergus W Gardiner
- The Royal Flying Doctor Service, Canberra, ACT, Australia.,The Australian National University, Canberra, ACT, Australia
| | - Le-Xin Wang
- Department of Cardiology and Nursing, Liaocheng People's Hospital, Liaocheng City, China.,School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
4
|
Yu W, Chen H, Yang H, Ding J, Xia P, Mei X, Wang L, Chen S, Zou C, Wang LX. Dissecting Molecular Mechanisms Underlying Pulmonary Vascular Smooth Muscle Cell Dedifferentiation in Pulmonary Hypertension: Role of Mutated Caveolin-1 (Cav1 F92A)-Bone Marrow Mesenchymal Stem Cells. Heart Lung Circ 2018; 28:1587-1597. [PMID: 30262154 DOI: 10.1016/j.hlc.2018.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/29/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterised by remodelling in vascular smooth muscles, and switching from contractile (differentiated) to synthetic (dedifferentiated) phenotype. This study aimed to investigate the effect of a mutated caveolin-1 (Cav1F92A) gene from bone marrow mesenchymal stem cells (rBMSCs) on phenotypic switching in the smooth muscle cells during PAH. METHODS Human pulmonary smooth muscle cells (HPASMCs) were treated with monocrotaline (MCT,1μM), and co-cultured with Cav1F92A gene modified rBMSCs (rBMSCs/Cav1F92A). The nitric oxide (NO) production, cell adhesion, cell viability and inflammatory cytokines expression in rBMSCs was measured to evaluate the survival rate of rBMSCs and the changes of inflammatory cytokines. The concentration of NO/cGMP (nitric oxide/Guanosine-3',5'-cyclic monophosphate), the tumour necrosis factor-alpha (TNF-α), transforming growth factor-beta1 (TGF-β1) mRNA, the expression of contractile smooth muscle cells (SMCs) phenotype markers (thrombospondin-1 and Matrix Gla protein, MGP), the synthetic SMCs phenotype markers (H-caldesmon and smooth muscle gene SM22 alpha, SM22α), cell migration and the morphological changes in rBMSCs/Cav1F92A co-cultured HPASMCs were investigated. RESULTS Cav1F92A increased NO concentration, cell adhesion, cell viability, anti-inflammatory cytokines interleukin-4 (IL-4), and interleukin-10 (IL-10), but decreased the inflammatory cytokines interleukin-1α (IL-1α), interferon-γ (INF-γ) and TNF-α expression in rBMSCs. rBMSCs/Cav1F92A activated the NO/cGMP, down-regulated TNF-α, TGF-β1, thrombospondin-1 and MGP expression, up-regulated SM22α and H-caldesmon expression, restored cell morphology, and inhibited cell migration in MCT treated HPASMCs. CONCLUSIONS rBMSCs/Cav1F92A inhibits switching from contractile to synthetic phenotype in HPASMCs. It also inhibits migration and promotes morphological restoration of these cells. rBMSCs/Cav1F92A may be used as a therapeutic modality for PAH.
Collapse
Affiliation(s)
- Wancheng Yu
- Department of Cardiac Surgery, Provincial Hospital Affiliated to Shandong University, Shandong 250021, China
| | - Haiying Chen
- Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Hongli Yang
- Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Jie Ding
- Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Peng Xia
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Xu Mei
- Department of Geriatrics, Shandong University Qilu Hospital, Shandong, China
| | - Lei Wang
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China
| | - Shuangfeng Chen
- Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Chengwei Zou
- Department of Cardiac Surgery, Provincial Hospital Affiliated to Shandong University, Shandong 250021, China.
| | - Le-Xin Wang
- Department of Cardiology, Liaocheng People's Hospital and Affiliated Liaocheng People's Hospital of Shandong University, Liaocheng, Shandong, 252000, China; School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia.
| |
Collapse
|