1
|
Young JS, McAllister M, Marshall MB. Three-dimensional technologies in chest wall resection and reconstruction. J Surg Oncol 2023; 127:336-342. [PMID: 36630098 DOI: 10.1002/jso.27164] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 01/12/2023]
Abstract
Resection and reconstruction of the chest wall can pose unique challenges given its vital role in the protection of the thoracic viscera and the dynamic part it plays in respiration. A number of new three-dimensional (3D) technologies may be invaluable in tackling these challenges. Herein we review the use of 3D technologies in preoperative imaging with virtual 3D models, printing of 3D models for preoperative planning, and printing of 3D prostheses when approaching complex chest wall reconstruction.
Collapse
Affiliation(s)
- John S Young
- Division of Thoracic and Cardiac Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Veterans Affairs Boston Healthcare System, Boston, Massachusetts, USA
| | - Miles McAllister
- Division of Thoracic and Cardiac Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - M Blair Marshall
- Division of Thoracic and Cardiac Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Bastawrous S, Wu L, Strzelecki B, Levin DB, Li JS, Coburn J, Ripley B. Establishing Quality and Safety in Hospital-based 3D Printing Programs: Patient-first Approach. Radiographics 2021; 41:1208-1229. [PMID: 34197247 DOI: 10.1148/rg.2021200175] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The adoption of three-dimensional (3D) printing is rapidly spreading across hospitals, and the complexity of 3D-printed models and devices is growing. While exciting, the rapid growth and increasing complexity also put patients at increased risk for potential errors and decreased quality of the final product. More than ever, a strong quality management system (QMS) must be in place to identify potential errors, mitigate those errors, and continually enhance the quality of the product that is delivered to patients. The continuous repetition of the traditional processes of care, without insight into the positive or negative impact, is ultimately detrimental to the delivery of patient care. Repetitive tasks within a process can be measured, refined, and improved and translate into high levels of quality, and the same is true within the 3D printing process. The authors share their own experiences and growing pains in building a QMS into their 3D printing processes. They highlight errors encountered along the way, how they were addressed, and how they have strived to improve consistency, facilitate communication, and replicate successes. They also describe the vital intersection of health care providers, regulatory groups, and traditional manufacturers, who contribute essential elements to a common goal of providing quality and safety to patients. ©RSNA, 2021.
Collapse
Affiliation(s)
- Sarah Bastawrous
- From the Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle WA 98195; Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (S.B., L.W., B.R.); Department of Mechanical Engineering, University of Washington, Seattle, Wash (J.S.L.); Research and Development, Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Wash (B.S., J.S.L.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Lei Wu
- From the Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle WA 98195; Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (S.B., L.W., B.R.); Department of Mechanical Engineering, University of Washington, Seattle, Wash (J.S.L.); Research and Development, Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Wash (B.S., J.S.L.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Brian Strzelecki
- From the Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle WA 98195; Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (S.B., L.W., B.R.); Department of Mechanical Engineering, University of Washington, Seattle, Wash (J.S.L.); Research and Development, Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Wash (B.S., J.S.L.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Dmitry B Levin
- From the Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle WA 98195; Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (S.B., L.W., B.R.); Department of Mechanical Engineering, University of Washington, Seattle, Wash (J.S.L.); Research and Development, Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Wash (B.S., J.S.L.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Jing-Sheng Li
- From the Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle WA 98195; Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (S.B., L.W., B.R.); Department of Mechanical Engineering, University of Washington, Seattle, Wash (J.S.L.); Research and Development, Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Wash (B.S., J.S.L.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - James Coburn
- From the Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle WA 98195; Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (S.B., L.W., B.R.); Department of Mechanical Engineering, University of Washington, Seattle, Wash (J.S.L.); Research and Development, Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Wash (B.S., J.S.L.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Beth Ripley
- From the Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, 1959 NE Pacific St, Seattle WA 98195; Department of Radiology, VA Puget Sound Health Care System, Seattle, Wash (S.B., L.W., B.R.); Department of Mechanical Engineering, University of Washington, Seattle, Wash (J.S.L.); Research and Development, Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, Seattle, Wash (B.S., J.S.L.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| |
Collapse
|