1
|
Harirpoush A, Rakovich G, Kersten‐Oertel M, Xiao Y. Virtual reality-based preoperative planning for optimized trocar placement in thoracic surgery: A preliminary study. Healthc Technol Lett 2024; 11:418-426. [PMID: 39720764 PMCID: PMC11665775 DOI: 10.1049/htl2.12114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024] Open
Abstract
Video-assisted thoracic surgery (VATS) is a minimally invasive approach for treating early-stage non-small-cell lung cancer. Optimal trocar placement during VATS ensures comprehensive access to the thoracic cavity, provides a panoramic endoscopic view, and prevents instrument crowding. While established principles such as the Baseball Diamond Principle (BDP) and Triangle Target Principle (TTP) exist, surgeons mainly rely on experience and patient-specific anatomy for trocar placement, potentially leading to sub-optimal surgical plans that increase operative time and fatigue. To address this, the authors present the first virtual reality (VR)-based pre-operative planning tool with tailored data visualization and interaction designs for efficient and optimal VATS trocar placement, following the established surgical principles and consultation with an experienced surgeon. In the preliminary study, the system's application in right upper lung lobectomy is demonstrated, a common thoracic procedure typically using three trocars. A preliminary user study of the system indicates it is efficient, robust, and user-friendly for planning optimal trocar placement, with a great promise for clinical application while offering potentially valuable insights for the development of other surgical VR systems.
Collapse
Affiliation(s)
- Arash Harirpoush
- Department of Computer Science and Software EngineeringConcordia UniversityQuebecCanada
| | - George Rakovich
- Maisonneuve Rosemont HospitalUniversity of MontrealQuebecCanada
| | - Marta Kersten‐Oertel
- Department of Computer Science and Software EngineeringConcordia UniversityQuebecCanada
- School of HealthConcordia UniversityQuebecCanada
| | - Yiming Xiao
- Department of Computer Science and Software EngineeringConcordia UniversityQuebecCanada
- School of HealthConcordia UniversityQuebecCanada
| |
Collapse
|
2
|
Keramati H, Lu X, Cabanag M, Wu L, Kushwaha V, Beier S. Applications and advances of immersive technology in cardiology. Curr Probl Cardiol 2024; 49:102762. [PMID: 39067719 DOI: 10.1016/j.cpcardiol.2024.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Different forms of immersive technology, such as Virtual Reality (VR) and Augmented Reality (AR), are getting increasingly invested in medicine. Advances in head-mounted display technology, processing, and rendering power have demonstrated the increasing utility of immersive technology in medicine and the healthcare environment. There are a growing number of publications on using immersive technology in cardiology. We reviewed the articles published within the last decade that reported case studies or research that uses or investigates the application of immersive technology in the broad field of cardiology - from education to preoperative planning and intraoperative guidance. We summarized the advantages and disadvantages of using AR and VR for various application categories. Our review highlights the need for a robust assessment of the effectiveness of the methods and discusses the technical limitations that hinder the complete integration of AR and VR in cardiology, including cost-effectiveness and regulatory compliance. Despite the limitations and gaps that have inhibited us from benefiting from immersive technologies' full potential in cardiology settings to date, its promising, impactful future for standard cardiovascular care is undoubted.
Collapse
Affiliation(s)
- Hamed Keramati
- School of Mechanical and Manufacturing Engineering, Faculty of Engineering, The University of New South Wales, Sydney 2052, NSW, Australia.
| | - Xueqing Lu
- Learning and Digital Environments, Deputy Vice-Chancellor Education and Student Experience, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Matt Cabanag
- School of Art and Design, Faculty of Arts, Design and Architecture, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Liao Wu
- School of Mechanical and Manufacturing Engineering, Faculty of Engineering, The University of New South Wales, Sydney 2052, NSW, Australia
| | - Virag Kushwaha
- Eastern Heart Clinic, Prince of Wales Hospital, Barker Street Randwick, NSW 2031, Australia; Faculty of Medicine, The University of New South Wales, Kensington, Sydney 2033, NSW, Australia
| | - Susann Beier
- School of Mechanical and Manufacturing Engineering, Faculty of Engineering, The University of New South Wales, Sydney 2052, NSW, Australia
| |
Collapse
|
3
|
Abasi A, Ayatollahi H. Computer-Based Simulation for Pediatric Cardiovascular Disease Management: A Policy Brief. Glob Pediatr Health 2024; 11:2333794X241286731. [PMID: 39329160 PMCID: PMC11425741 DOI: 10.1177/2333794x241286731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Affiliation(s)
- Arezoo Abasi
- Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Magalhães R, Oliveira A, Terroso D, Vilaça A, Veloso R, Marques A, Pereira J, Coelho L. Mixed Reality in the Operating Room: A Systematic Review. J Med Syst 2024; 48:76. [PMID: 39145896 PMCID: PMC11327191 DOI: 10.1007/s10916-024-02095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
Mixed Reality is a technology that has gained attention due to its unique capabilities for accessing and visualizing information. When integrated with voice control mechanisms, gestures and even iris movement, it becomes a valuable tool for medicine. These features are particularly appealing for the operating room and surgical learning, where access to information and freedom of hand operation are fundamental. This study examines the most significant research on mixed reality in the operating room over the past five years, to identify the trends, use cases, its applications and limitations. A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines to answer the research questions established using the PICO (Population, Intervention, Comparator and Outcome) framework. Although implementation of Mixed Reality applications in the operations room presents some challenges, when used appropriately, it can yield remarkable results. It can make learning easier, flatten the learning curve for several procedures, and facilitate various aspects of the surgical processes. The articles' conclusions highlight the potential benefits of these innovations in surgical practice while acknowledging the challenges that must be addressed. Technical complexity, equipment costs, and steep learning curves present significant obstacles to the widespread adoption of Mixed Reality and computer-assisted evaluation. The need for more flexible approaches and comprehensive studies is underscored by the specificity of procedures and limited samples sizes. The integration of imaging modalities and innovative functionalities holds promise for clinical applications. However, it is important to consider issues related to usability, bias, and statistical analyses. Mixed Reality offers significant benefits, but there are still open challenges such as ergonomic issues, limited field of view, and battery autonomy that must be addressed to ensure widespread acceptance.
Collapse
Affiliation(s)
- Renato Magalhães
- LabRP-CIR, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
- CAC ICBAS-CHP - Centro Académico Clínico Instituto de Ciências Biomédicas Abel Salazar - Centro Hospitalar Universitário de Santo António, Porto, Portugal.
| | - Ana Oliveira
- ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - David Terroso
- ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Adélio Vilaça
- CAC ICBAS-CHP - Centro Académico Clínico Instituto de Ciências Biomédicas Abel Salazar - Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Rita Veloso
- LabRP-CIR, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Executive Board Member, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - António Marques
- LabRP-CIR, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Javier Pereira
- Universidade da Coruña, CITIC Research Center, Talionis Research Group. A Coruña, La Coruña, Spain
| | - Luís Coelho
- ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
- INESC TEC , Institute for Systems and Computer Engineering Technology and Science, Porto, Portugal
| |
Collapse
|
5
|
Ryan JR, Ghosh R, Sturgeon G, Ali A, Arribas E, Braden E, Chadalavada S, Chepelev L, Decker S, Huang YH, Ionita C, Lee J, Liacouras P, Parthasarathy J, Ravi P, Sandelier M, Sommer K, Wake N, Rybicki F, Ballard D. Clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: pediatric congenital heart disease conditions. 3D Print Med 2024; 10:3. [PMID: 38282094 PMCID: PMC10823658 DOI: 10.1186/s41205-023-00199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The use of medical 3D printing (focusing on anatomical modeling) has continued to grow since the Radiological Society of North America's (RSNA) 3D Printing Special Interest Group (3DPSIG) released its initial guideline and appropriateness rating document in 2018. The 3DPSIG formed a focused writing group to provide updated appropriateness ratings for 3D printing anatomical models across a variety of congenital heart disease. Evidence-based- (where available) and expert-consensus-driven appropriateness ratings are provided for twenty-eight congenital heart lesion categories. METHODS A structured literature search was conducted to identify all relevant articles using 3D printing technology associated with pediatric congenital heart disease indications. Each study was vetted by the authors and strength of evidence was assessed according to published appropriateness ratings. RESULTS Evidence-based recommendations for when 3D printing is appropriate are provided for pediatric congenital heart lesions. Recommendations are provided in accordance with strength of evidence of publications corresponding to each cardiac clinical scenario combined with expert opinion from members of the 3DPSIG. CONCLUSIONS This consensus appropriateness ratings document, created by the members of the RSNA 3DPSIG, provides a reference for clinical standards of 3D printing for pediatric congenital heart disease clinical scenarios.
Collapse
Affiliation(s)
- Justin R Ryan
- Webster Foundation 3D Innovations Lab, Rady Children's Hospital-San Diego, San Diego, CA, USA.
- Department of Neurological Surgery, UC San Diego Health, La Jolla, CA, USA.
| | - Reena Ghosh
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA
| | - Greg Sturgeon
- Duke Children's Pediatric & Congenital Heart Center, Durham, NC, USA
| | - Arafat Ali
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elsa Arribas
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eric Braden
- Arkansas Children's Hospital, Little Rock, AR, USA
| | - Seetharam Chadalavada
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leonid Chepelev
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Summer Decker
- Department of Radiology, University of South Florida Morsani College of Medicine, Tampa, USA
- Tampa General Hospital, Tampa, FL, USA
| | - Yu-Hui Huang
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Ciprian Ionita
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA
| | - Joonhyuk Lee
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Peter Liacouras
- Department of Radiology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | | | - Prashanth Ravi
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Sandelier
- Department of Radiology - Advanced Reality Lab, James A. Haley VA Hospital, Tampa, FL, USA
| | | | - Nicole Wake
- Research and Scientific Affairs, GE HealthCare, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene, Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Frank Rybicki
- Department of Radiology, University of Arizona, Phoenix, AZ, USA
| | - David Ballard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
6
|
Sun Z, Silberstein J, Vaccarezza M. Cardiovascular Computed Tomography in the Diagnosis of Cardiovascular Disease: Beyond Lumen Assessment. J Cardiovasc Dev Dis 2024; 11:22. [PMID: 38248892 PMCID: PMC10816599 DOI: 10.3390/jcdd11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiovascular CT is being widely used in the diagnosis of cardiovascular disease due to the rapid technological advancements in CT scanning techniques. These advancements include the development of multi-slice CT, from early generation to the latest models, which has the capability of acquiring images with high spatial and temporal resolution. The recent emergence of photon-counting CT has further enhanced CT performance in clinical applications, providing improved spatial and contrast resolution. CT-derived fractional flow reserve is superior to standard CT-based anatomical assessment for the detection of lesion-specific myocardial ischemia. CT-derived 3D-printed patient-specific models are also superior to standard CT, offering advantages in terms of educational value, surgical planning, and the simulation of cardiovascular disease treatment, as well as enhancing doctor-patient communication. Three-dimensional visualization tools including virtual reality, augmented reality, and mixed reality are further advancing the clinical value of cardiovascular CT in cardiovascular disease. With the widespread use of artificial intelligence, machine learning, and deep learning in cardiovascular disease, the diagnostic performance of cardiovascular CT has significantly improved, with promising results being presented in terms of both disease diagnosis and prediction. This review article provides an overview of the applications of cardiovascular CT, covering its performance from the perspective of its diagnostic value based on traditional lumen assessment to the identification of vulnerable lesions for the prediction of disease outcomes with the use of these advanced technologies. The limitations and future prospects of these technologies are also discussed.
Collapse
Affiliation(s)
- Zhonghua Sun
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Jenna Silberstein
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
| | - Mauro Vaccarezza
- Curtin Medical School, Curtin University, Perth, WA 6102, Australia; (J.S.); (M.V.)
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
7
|
Peek JJ, Bakhuis W, Sadeghi AH, Veen KM, Roest AAW, Bruining N, van Walsum T, Hazekamp MG, Bogers AJJC. Optimized preoperative planning of double outlet right ventricle patients by 3D printing and virtual reality: a pilot study. INTERDISCIPLINARY CARDIOVASCULAR AND THORACIC SURGERY 2023; 37:ivad072. [PMID: 37202357 PMCID: PMC10481772 DOI: 10.1093/icvts/ivad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 03/23/2023] [Accepted: 05/17/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVES In complex double outlet right ventricle (DORV) patients, the optimal surgical approach may be difficult to assess based on conventional 2-dimensional (2D) ultrasound (US) and computed tomography (CT) imaging. The aim of this study is to assess the added value of 3-dimensional (3D) printed and 3D virtual reality (3D-VR) models of the heart used for surgical planning in DORV patients, supplementary to the gold standard 2D imaging modalities. METHODS Five patients with different DORV subtypes and high-quality CT scans were selected retrospectively. 3D prints and 3D-VR models were created. Twelve congenital cardiac surgeons and paediatric cardiologists, from 3 different hospitals, were shown 2D-CT first, after which they assessed the 3D print and 3D-VR models in random order. After each imaging method, a questionnaire was filled in on the visibility of essential structures and the surgical plan. RESULTS Spatial relationships were generally better visualized using 3D methods (3D printing/3D-VR) than in 2D. The feasibility of ventricular septum defect patch closure could be determined best using 3D-VR reconstructions (3D-VR 92%, 3D print 66% and US/CT 46%, P < 0.01). The percentage of proposed surgical plans corresponding to the performed surgical approach was 66% for plans based on US/CT, 78% for plans based on 3D printing and 80% for plans based on 3D-VR visualization. CONCLUSIONS This study shows that both 3D printing and 3D-VR have additional value for cardiac surgeons and cardiologists over 2D imaging, because of better visualization of spatial relationships. As a result, the proposed surgical plans based on the 3D visualizations matched the actual performed surgery to a greater extent.
Collapse
Affiliation(s)
- Jette J Peek
- Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Thoraxcenter, Rotterdam, Netherlands
| | - Wouter Bakhuis
- Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Thoraxcenter, Rotterdam, Netherlands
| | - Amir H Sadeghi
- Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Thoraxcenter, Rotterdam, Netherlands
| | - Kevin M Veen
- Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Thoraxcenter, Rotterdam, Netherlands
| | - Arno A W Roest
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Nico Bruining
- Department of Clinical Epidemiology and Innovation (KEI), Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Theo van Walsum
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mark G Hazekamp
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, Thoraxcenter, Rotterdam, Netherlands
| |
Collapse
|
8
|
Awori J, Friedman SD, Howard C, Kronmal R, Buddhe S. Comparative effectiveness of virtual reality (VR) vs 3D printed models of congenital heart disease in resident and nurse practitioner educational experience. 3D Print Med 2023; 9:2. [PMID: 36773171 PMCID: PMC9918815 DOI: 10.1186/s41205-022-00164-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Medical trainees frequently note that cardiac anatomy is difficult to conceive within a two dimensional framework. The specific anatomic defects and the subsequent pathophysiology in flow dynamics may become more apparent when framed in three dimensional models. Given the evidence of improved comprehension using such modeling, this study aimed to contribute further to that understanding by comparing Virtual Reality (VR) and 3D printed models (3DP) in medical education. OBJECTIVES We sought to systematically compare the perceived subjective effectiveness of Virtual Reality (VR) and 3D printed models (3DP) in the educational experience of residents and nurse practitioners. METHODS Trainees and practitioners underwent individual 15-minute teaching sessions in which features of a developmentally typical heart as well as a congenitally diseased heart were demonstrated using both Virtual Reality (VR) and 3D printed models (3DP). Participants then briefly explored each modality before filling out a short survey in which they identified which model (3DP or VR) they felt was more effective in enhancing their understanding of cardiac anatomy and associated pathophysiology. The survey included a binary summative assessment and a series of Likert scale questions addressing usefulness of each model type and degree of comfort with each modality. RESULTS Twenty-seven pediatric residents and 3 nurse practitioners explored models of a developmentally typical heart and tetralogy of Fallot pathology. Most participants had minimal prior exposure to VR (1.1 ± 0.4) or 3D printed models (2.1 ± 1.5). Participants endorsed a greater degree of understanding with VR models (8.5 ± 1) compared with 3D Printed models (6.3 ± 1.8) or traditional models of instruction (5.5 ± 1.5) p < 0.001. Most participants felt comfortable with modern technology (7.6 ± 2.1). 87% of participants preferred VR over 3DP. CONCLUSIONS Our study shows that, overall, VR was preferred over 3DP models by pediatric residents and nurse practitioners for understanding cardiac anatomy and pathophysiology.
Collapse
Affiliation(s)
- Jonathan Awori
- Division of Pediatric Cardiology and Radiology, Seattle Children's Hospital, Seattle, WA, USA.
| | - Seth D. Friedman
- grid.240741.40000 0000 9026 4165Division of Pediatric Cardiology and Radiology, Seattle Children’s Hospital, Seattle, WA USA
| | - Christopher Howard
- grid.240741.40000 0000 9026 4165Division of Pediatric Cardiology and Radiology, Seattle Children’s Hospital, Seattle, WA USA
| | - Richard Kronmal
- grid.240741.40000 0000 9026 4165Division of Pediatric Cardiology and Radiology, Seattle Children’s Hospital, Seattle, WA USA
| | - Sujatha Buddhe
- grid.240741.40000 0000 9026 4165Division of Pediatric Cardiology and Radiology, Seattle Children’s Hospital, Seattle, WA USA
| |
Collapse
|
9
|
Patient-Specific 3D-Printed Models in Pediatric Congenital Heart Disease. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020319. [PMID: 36832448 PMCID: PMC9955978 DOI: 10.3390/children10020319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Three-dimensional (3D) printing technology has become increasingly used in the medical field, with reports demonstrating its superior advantages in both educational and clinical value when compared with standard image visualizations or current diagnostic approaches. Patient-specific or personalized 3D printed models serve as a valuable tool in cardiovascular disease because of the difficulty associated with comprehending cardiovascular anatomy and pathology on 2D flat screens. Additionally, the added value of using 3D-printed models is especially apparent in congenital heart disease (CHD), due to its wide spectrum of anomalies and its complexity. This review provides an overview of 3D-printed models in pediatric CHD, with a focus on educational value for medical students or graduates, clinical applications such as pre-operative planning and simulation of congenital heart surgical procedures, and communication between physicians and patients/parents of patients and between colleagues in the diagnosis and treatment of CHD. Limitations and perspectives on future research directions for the application of 3D printing technology into pediatric cardiology practice are highlighted.
Collapse
|
10
|
Sun Z, Wee C. 3D Printed Models in Cardiovascular Disease: An Exciting Future to Deliver Personalized Medicine. MICROMACHINES 2022; 13:1575. [PMID: 36295929 PMCID: PMC9610217 DOI: 10.3390/mi13101575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
3D printing has shown great promise in medical applications with increased reports in the literature. Patient-specific 3D printed heart and vascular models replicate normal anatomy and pathology with high accuracy and demonstrate superior advantages over the standard image visualizations for improving understanding of complex cardiovascular structures, providing guidance for surgical planning and simulation of interventional procedures, as well as enhancing doctor-to-patient communication. 3D printed models can also be used to optimize CT scanning protocols for radiation dose reduction. This review article provides an overview of the current status of using 3D printing technology in cardiovascular disease. Limitations and barriers to applying 3D printing in clinical practice are emphasized while future directions are highlighted.
Collapse
Affiliation(s)
- Zhonghua Sun
- Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth 6845, Australia
| | - Cleo Wee
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth 6845, Australia
| |
Collapse
|
11
|
Bernhard B, Illi J, Gloeckler M, Pilgrim T, Praz F, Windecker S, Haeberlin A, Gräni C. Imaging-Based, Patient-Specific Three-Dimensional Printing to Plan, Train, and Guide Cardiovascular Interventions: A Systematic Review and Meta-Analysis. Heart Lung Circ 2022; 31:1203-1218. [PMID: 35680498 DOI: 10.1016/j.hlc.2022.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/14/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND To tailor cardiovascular interventions, the use of three-dimensional (3D), patient-specific phantoms (3DPSP) encompasses patient education, training, simulation, procedure planning, and outcome-prediction. AIM This systematic review and meta-analysis aims to investigate the current and future perspective of 3D printing for cardiovascular interventions. METHODS We systematically screened articles on Medline and EMBASE reporting the prospective use of 3DPSP in cardiovascular interventions by using combined search terms. Studies that compared intervention time depending on 3DPSP utilisation were included into a meta-analysis. RESULTS We identified 107 studies that prospectively investigated a total of 814 3DPSP in cardiovascular interventions. Most common settings were congenital heart disease (CHD) (38 articles, 6 comparative studies), left atrial appendage (LAA) occlusion (11 articles, 5 comparative, 1 randomised controlled trial [RCT]), and aortic disease (10 articles). All authors described 3DPSP as helpful in assessing complex anatomic conditions, whereas poor tissue mimicry and the non-consideration of physiological properties were cited as limitations. Compared to controls, meta-analysis of six studies showed a significant reduction of intervention time in LAA occlusion (n=3 studies), and surgery due to CHD (n=3) if 3DPSPs were used (Cohen's d=0.54; 95% confidence interval, 0.13 to 0.95; p=0.001), however heterogeneity across studies should be taken into account. CONCLUSIONS 3DPSP are helpful to plan, train, and guide interventions in patients with complex cardiovascular anatomy. Benefits for patients include reduced intervention time with the potential for lower radiation exposure and shorter mechanical ventilation times. More evidence and RCTs including clinical endpoints are needed to warrant adoption of 3DPSP into routine clinical practice.
Collapse
Affiliation(s)
- Benedikt Bernhard
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joël Illi
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Swiss MedTech Center, Switzerland Innovation Park Biel/Bienne AG, Switzerland
| | - Martin Gloeckler
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pilgrim
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabien Praz
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan Windecker
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Haeberlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Translational Imaging Center, Sitem Center, University of Bern, Switzerland.
| |
Collapse
|
12
|
Qiu H, Wen S, Ji E, Chen T, Liu X, Li X, Teng Y, Zhang Y, Liufu R, Zhang J, Xu X, Chen J, Huang M, Cen J, Zhuang J. A Novel 3D Visualized Operative Procedure in the Single-Stage Complete Repair With Unifocalization of Pulmonary Atresia With Ventricular Septal Defect and Major Aortopulmonary Collateral Arteries. Front Cardiovasc Med 2022; 9:836200. [PMID: 35548444 PMCID: PMC9081567 DOI: 10.3389/fcvm.2022.836200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/16/2022] [Indexed: 11/22/2022] Open
Abstract
Objectives Pulmonary atresia with ventricular septal defect and major aortopulmonary collateral arteries (PA/VSD/MAPCAs) is a relatively rare, complex, and heterogeneous congenital heart disease. As one of the effective treatments, the midline unifocalization strategy still remains complicated and challenging due to the diverse forms of MAPCAs and pulmonary arteries. The purpose of this study is to summarize our experience of a novel three-dimensional (3D) visualized operative procedure in the single-stage complete repair with unifocalization and to clarify the benefits it may bring to us. Methods We described our experience of the 3D visualized operative procedure such as 3D printing, virtual reality (VR), and mixed reality (MR) technology in patients with PA/VSD/MAPCAs who underwent a single-stage complete repair with unifocalization. The data from the patients who underwent this procedure (3D group) and those who underwent the conventional procedure (conventional group) were compared. Results The conventional and 3D groups included 11 patients from September 2011 to December 2017 and 9 from January 2018 to March 2021, respectively. The baseline characteristics such as age, body weight, preoperative saturation, the anatomy of the pulmonary arteries and MAPCAs, the Nakata index, and TNPAI had no statistical significance. All 9 patients in the 3D group were operated only through a median sternotomy, while 8 cases (72.7%) in the conventional group needed another posterolateral thoracotomy (p = 0.001). In the 3D group, the CPB time was shorter (93.2 ± 63.8 vs. 145.1 ± 68.4 min, p = 0.099), and the median pre-CPB time per MAPCAs was significantly shorter [25.7 (14.0, 46.3) vs. 65 (41.3, 75.0) min, p = 0.031]. There was no early death in the 3D group, while there were 3 in the conventional group (0 vs. 27.3%, p = 0.218). Conclusion The novel 3D visualized operative procedure may help improve the performance of the single-stage complete repair with the midline unifocalization of PA/VSD/MAPCAs and help shorten the dissecting time of the MAPCAs. It may promote the routine and successful application of this strategy in more centers.
Collapse
Affiliation(s)
- Hailong Qiu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shusheng Wen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Erchao Ji
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tianyu Chen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaobing Liu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaohua Li
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yun Teng
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Zhang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Rong Liufu
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiawei Zhang
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaowei Xu
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jimei Chen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Meiping Huang
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Meiping Huang
| | - Jianzheng Cen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Jianzheng Cen
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Jian Zhuang
| |
Collapse
|
13
|
VR and 3D Printing for Pre-op Planning of Left Ventricular Myxoma in a Child. Ann Thorac Surg 2021; 113:e457-e460. [PMID: 34481800 DOI: 10.1016/j.athoracsur.2021.07.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 11/01/2022]
Abstract
We report a highly rare case of a large left ventricular myxoma with left ventricular outflow tract obstruction in a previously healthy, asymptomatic 7-year-old male. For preoperative planning, we used end-diastolic CT data to model the patient's cardiovascular structures and then generated a virtual reality (VR) model and a 3D-printed model. They helped the surgeon completely manage the details of the surgery. The mass was completely resected in one piece uneventfully. Histopathologic examination confirmed the diagnosis of myxoma. We believe that 3D technologies may be effective if the traditional modalities were insufficient in those rare, complex and heterogeneous cases.
Collapse
|