1
|
Schöneburg C, Seyram Amevor B, Bauer T, Boateng I, Nsia-Tawia B, Öztürk N, Pop MA, Müller J. Immediate Increase in the Root Mean Square of Successive Differences after Three Bouts of Remote Ischemic Preconditioning: A Randomized Controlled Trial. J Cardiovasc Dev Dis 2024; 11:193. [PMID: 39057615 PMCID: PMC11277232 DOI: 10.3390/jcdd11070193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Remote ischemic preconditioning (RIPC) is an intervention involving the application of brief episodes of ischemia and reperfusion to distant tissues to activate protective pathways in the heart. There is evidence suggesting the involvement of the autonomic nervous system (ANS) in RIPC-induced cardioprotection. This study aimed to investigate the immediate effects of RIPC on the ANS using a randomized controlled trial. (2) Methods: From March 2018 to November 2018, we conducted a single-blinded randomized controlled study involving 51 healthy volunteers (29 female, 24.9 [23.8, 26.4] years). Participants were placed in a supine position and heart rate variability was measured over 260 consecutive beats before they were randomized into either the intervention or the SHAM group. The intervention group underwent an RIPC protocol (3 cycles of 5 min of 200 mmHg ischemia followed by 5 min reperfusion) at the upper thigh. The SHAM group followed the same protocol but on the right upper arm, with just 40 mmHg of pressure inflation, resulting in no ischemic stimulus. Heart rate variability measures were reassessed afterward. (3) Results: The intervention group showed a significant increase in RMSSD, the possible marker of the parasympathetic nervous system (IG: 14.5 [5.4, 27.5] ms vs. CG: 7.0 [-4.3, 23.1 ms], p = 0.027), as well as a significant improvement in Alpha 1 levels compared to the control group (IG: -0.1 [-0.2, 0.1] vs. CG: 0.0 [-0.1, 0.2], p = 0.001). (4) Conclusions: Our results hint that RIPC increases the RMSSD and Alpha 1 parameters showing possible immediate parasympathetic modulations. RIPC could be favorable in promoting cardioprotective or/and cardiovascular effects by ameliorating ANS modulations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jan Müller
- Institute of Preventive Pediatrics, Technical University Munich, 80992 Munich, Germany
| |
Collapse
|
2
|
Qu Y, Yang Y, Sun X, Ma HY, Zhang P, Abuduxukuer R, Zhu HJ, Liu J, Zhang PD, Guo ZN. Heart Rate Variability in Patients with Spontaneous Intracerebral Hemorrhage and its Relationship with Clinical Outcomes. Neurocrit Care 2024; 40:282-291. [PMID: 36991176 DOI: 10.1007/s12028-023-01704-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/22/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Although abnormal heart rate variability (HRV) is frequently observed in patients with spontaneous intracerebral hemorrhage (ICH), its time course and presentation of different indices remain unclear, and few studies have focused on its association with clinical outcomes. METHODS We prospectively recruited consecutive patients with spontaneous ICH between June 2014 and June 2021. HRV was evaluated twice during hospitalization (within 7 days and 10-14 days after stroke). Time and frequency domain indices were calculated. A modified Rankin Scale score ≥ 3 at 3 months was defined as a poor outcome. RESULTS Finally, 122 patients with ICH and 122 age- and sex-matched volunteers were included. Compared with controls, time domain and absolute frequency domain HRV parameters (total power, low frequency [LF], and high frequency [HF]) in the ICH group were significantly decreased within 7 days and 10-14 days. For relative values, normalized LF (LF%) and LF/HF were significantly higher, whereas normalized HF (HF%) was significantly lower, in the patient group than in the control group. Furthermore, LF% and HF% measured at 10-14 days were independently associated with 3-month outcomes. CONCLUSIONS HRV values were impaired significantly within 14 days after ICH. Furthermore, HRV indices measured 10-14 days after ICH were independently associated with 3-month outcomes.
Collapse
Affiliation(s)
- Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xin Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Hong-Yin Ma
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Reziya Abuduxukuer
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jia Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pan-Deng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
- Neuroscience Research Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
3
|
Guo Z, Qu Y, Gao Y, Xing Y, Ma H, Liu J, Guo Y, Chang J, Zhang P, Jin H, Sun X, Han K, Hu H, He Q, Simpson DM, Yang Y. Changes in cerebral autoregulation, stroke-related blood biomarkers, and autonomic regulation after patent foramen ovale closure in severe migraine patients. CNS Neurosci Ther 2023; 29:3031-3042. [PMID: 37157233 PMCID: PMC10493653 DOI: 10.1111/cns.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
AIMS This study aimed to investigate changes in dynamic cerebral autoregulation (dCA), 20 stroke-related blood biomarkers, and autonomic regulation after patent foramen ovale (PFO) closure in severe migraine patients. METHODS Patent foramen ovale severe migraine patients, matched non-PFO severe migraine patients, and healthy controls were included. dCA and autonomic regulation were evaluated in each participant at baseline, and within 48-h and 30 days after closure in PFO migraineurs. A panel of stroke-related blood biomarkers was detected pre-surgically in arterial-and venous blood, and post-surgically in the arterial blood in PFO migraineurs. RESULTS Forty-five PFO severe migraine patients, 50 non-PFO severe migraine patients, and 50 controls were enrolled. The baseline dCA function of PFO migraineurs was significantly lower than that of non-PFO migraineurs and controls but was rapidly improved with PFO closure, remaining stable at 1-month follow-up. Arterial blood platelet-derived growth factor-BB (PDGF-BB) levels were higher in PFO migraineurs than in controls, which was immediately and significantly reduced after closure. No differences in autonomic regulation were observed among the three groups. CONCLUSION Patent foramen ovale closure can improve dCA and alter elevated arterial PDGF-BB levels in migraine patients with PFO, both of which may be related to the preventive effect of PFO closure on stroke occurrence/recurrence.
Collapse
Affiliation(s)
- Zhen‐Ni Guo
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
- Neuroscience Research CentreThe First Hospital of Jilin UniversityChangchunChina
| | - Yang Qu
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Yongsheng Gao
- Department of Cardiac SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Yingqi Xing
- Center for Neurovascular Ultrasound, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Hongyin Ma
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Jia Liu
- Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Yu‐Zhu Guo
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Junlei Chang
- Center for Protein and Cell‐Based DrugsInstitute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Peng Zhang
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Hang Jin
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Xin Sun
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | - Ke Han
- Cerebrovascular Disease Research Center, Department of Neurology, Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhenChina
| | - Han‐Hwa Hu
- Cerebrovascular Treatment and Research Center, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Qianyan He
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
| | | | - Yi Yang
- Stroke Center, Department of NeurologyThe First Hospital of Jilin UniversityChangchunChina
- Neuroscience Research CentreThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
4
|
Mollet I, Marto JP, Mendonça M, Baptista MV, Vieira HLA. Remote but not Distant: a Review on Experimental Models and Clinical Trials in Remote Ischemic Conditioning as Potential Therapy in Ischemic Stroke. Mol Neurobiol 2021; 59:294-325. [PMID: 34686988 PMCID: PMC8533672 DOI: 10.1007/s12035-021-02585-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Stroke is one of the main causes of neurological disability worldwide and the second cause of death in people over 65 years old, resulting in great economic and social burden. Ischemic stroke accounts for 85% of total cases, and the approved therapies are based on re-establishment of blood flow, and do not directly target brain parenchyma. Thus, novel therapies are urgently needed. In this review, limb remote ischemic conditioning (RIC) is revised and discussed as a potential therapy against ischemic stroke. The review targets both (i) fundamental research based on experimental models and (ii) clinical research based on clinical trials and human interventional studies with healthy volunteers. Moreover, it also presents two approaches concerning RIC mechanisms in stroke: (i) description of the underlying cerebral cellular and molecular mechanisms triggered by limb RIC that promote neuroprotection against stroke induced damage and (ii) the identification of signaling factors involved in inter-organ communication following RIC procedure. Limb to brain remote signaling can occur via circulating biochemical factors, immune cells, and/or stimulation of autonomic nervous system. In this review, these three hypotheses are explored in both humans and experimental models. Finally, the challenges involved in translating experimentally generated scientific knowledge to a clinical setting are also discussed.
Collapse
Affiliation(s)
- Inês Mollet
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal.,CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Pedro Marto
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Marcelo Mendonça
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Champalimaud Research, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Miguel Viana Baptista
- CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Neurology, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Helena L A Vieira
- UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal. .,CEDOC, Faculdade de Ciências Médicas/NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal. .,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.
| |
Collapse
|