1
|
Li J, Ren H, Huai H, Li J, Xie P, Li X. The evaluation of tumor microenvironment infiltration and the identification of angiogenesis-related subgroups in skin cutaneous melanoma. J Cancer Res Clin Oncol 2023; 149:7259-7273. [PMID: 36912943 DOI: 10.1007/s00432-023-04680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/04/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND There are limited studies on the association between angiogenesis-related genes (ARGs) and the predictive risk of melanoma, even though angiogenic factors, which are essential for tumor growth and metastasis, might be secreted by angiogenesis-related protein in skin cutaneous melanoma (SKCM). To forecast patient outcomes, this study attempts to develop a predictive risk signature linked to angiogenesis in cutaneous melanoma. METHODS In 650 patients with SKCM, the expression and mutation of ARGs were examined, and this information was related to the clinical prognosis. SKCM patients were split into two groups based on how well they performed on the ARG. The link between ARGs, risk genes, and immunological microenvironment was examined using a range of algorithmic analysis techniques. Based on these five risk genes, an angiogenesis risk signature was created. We developed a nomogram and examined the sensitivity of antineoplastic medications to help the proposed risk model's clinical applicability. RESULTS The risk model developed by ARGs revealed that the prognosis for the two groups was significantly different. The predictive risk score was negatively connected with memory B cells, activated memory CD4 + T cells, M1 macrophages, and CD8 + T cells, and favorably correlated with dendritic cells, mast cells, and neutrophils. CONCLUSIONS Our findings offer fresh perspectives on prognostic evaluation and imply that ARG modulation is implicated in SKCM. Potential medications for the treatment of individuals with various SKCM subtypes were predicted by drug sensitivity analysis.
Collapse
Affiliation(s)
- Junpeng Li
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Hangjun Ren
- Department of General Surgery, First People's Hospital of Yuhang District, Hangzhou, Zhejiang, China
| | - Hongyu Huai
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Junliang Li
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Pan Xie
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Xiaolu Li
- Department of Plastic and Burns Surgery, National Key Clinical Construction Specialty, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Akbarian M, Bertassoni LE, Tayebi L. Biological aspects in controlling angiogenesis: current progress. Cell Mol Life Sci 2022; 79:349. [PMID: 35672585 PMCID: PMC10171722 DOI: 10.1007/s00018-022-04348-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
Abstract
All living beings continue their life by receiving energy and by excreting waste products. In animals, the arteries are the pathways of these transfers to the cells. Angiogenesis, the formation of the arteries by the development of pre-existed parental blood vessels, is a phenomenon that occurs naturally during puberty due to certain physiological processes such as menstruation, wound healing, or the adaptation of athletes' bodies during exercise. Nonetheless, the same life-giving process also occurs frequently in some patients and, conversely, occurs slowly in some physiological problems, such as cancer and diabetes, so inhibiting angiogenesis has been considered to be one of the important strategies to fight these diseases. Accordingly, in tissue engineering and regenerative medicine, the highly controlled process of angiogenesis is very important in tissue repairing. Excessive angiogenesis can promote tumor progression and lack of enough angiogensis can hinder tissue repair. Thereby, both excessive and deficient angiogenesis can be problematic, this review article introduces and describes the types of factors involved in controlling angiogenesis. Considering all of the existing strategies, we will try to lay out the latest knowledge that deals with stimulating/inhibiting the angiogenesis. At the end of the article, owing to the early-reviewed mechanical aspects that overshadow angiogenesis, the strategies of angiogenesis in tissue engineering will be discussed.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA.
| |
Collapse
|
3
|
Zou S, Zhang Y, Zhang L, Wang D, Xu S. Construction and validation of a prognostic risk model of angiogenesis factors in skin cutaneous melanoma. Aging (Albany NY) 2022; 14:1529-1548. [PMID: 35157610 PMCID: PMC8876895 DOI: 10.18632/aging.203895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022]
Abstract
Melanoma can secrete tumor angiogenesis factors, which is the essential factor for tumor growth and metastasis. However, there are few reports on the relationship between angiogenesis factors and prognosis risk in melanoma. This study aimed to develop a prognostic risk model of angiogenesis for melanoma. Forty-nine differentially expressed angiogenesis were identified from the TCGA database, which were mainly involved in PI3K/Akt pathway, focal adhesion, and MAPK signaling pathway. We then establish an eleven-gene signature. The model indicated a strong prognostic capability in both the discovery cohort and the validation cohort. Patients of smaller height (<170 cm) and lower weight (<80 kg) and those with advanced-stage and ulcerated melanoma had higher risk scores. The risk score was positively correlated with mutation load, homologous recombination defect, neoantigen load and chromosome instability. In addition, the high-risk group had a higher degree of immune cell infiltration, better response to immunotherapy and lower immune score. Therefore, these results indicate that the risk model is an effective method to predict the prognosis of melanoma.
Collapse
Affiliation(s)
- Songyun Zou
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yonggang Zhang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Limei Zhang
- Oncology Department, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Dengchuan Wang
- Office of Medical Ethics, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Shi Xu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Fuselier C, Quemener S, Dufay E, Bour C, Boulagnon-Rombi C, Bouland N, Djermoune EH, Devy J, Martiny L, Schneider C. Anti-Tumoral and Anti-Angiogenic Effects of Low-Diluted Phenacetinum on Melanoma. Front Oncol 2021; 11:597503. [PMID: 33747916 PMCID: PMC7966719 DOI: 10.3389/fonc.2021.597503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/07/2021] [Indexed: 01/11/2023] Open
Abstract
Melanoma is the most aggressive form of skin cancer and the most rapidly expanding cancer in terms of worldwide incidence. If primary cutaneous melanoma is mostly treated with a curative wide local excision, malignant melanoma has a poor prognosis and needs other therapeutic approaches. Angiogenesis is a normal physiological process essential in growth and development, but it also plays a crucial role in crossing from benign to advanced state in cancer. In melanoma progression, angiogenesis is widely involved during the vertical growth phase. Currently, no anti-angiogenic agents are efficient on their own, and combination of treatments will probably be the key to success. In the past, phenacetin was used as an analgesic to relieve pain, causing side effects at large dose and tumor-inducing in humans and animals. By contrast, Phenacetinum low-dilution is often used in skin febrile exanthema, patches profusely scattered on limbs, headache, or flushed face without side effects. Herein are described the in vitro, in vivo, and ex vivo anti-angiogenic and anti-tumoral potentials of Phenacetinum low-dilution in a B16F1 tumor model and endothelial cells. We demonstrate that low-diluted Phenacetinum inhibits in vivo tumor growth and tumor vascularization and thus increases the survival time of B16F1 melanoma induced-C57BL/6 mice. Moreover, Phenacetinum modulates the lung metastasis in a B16F10 induced model. Ex vivo and in vitro, we evidence that low-diluted Phenacetinum inhibits the migration and the recruitment of endothelial cells and leads to an imbalance in the pro-tumoral macrophages and to a structural malformation of the vascular network. All together these results demonstrate highly hopeful anti-tumoral, anti-metastatic, and anti-angiogenic effects of Phenacetinum low-dilution on melanoma. Continued studies are needed to preclinically validate Phenacetinum low-dilution as a complementary or therapeutic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Camille Fuselier
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Sandrine Quemener
- Université de Lille, Institut Pasteur de Lille, U1011 INSERM, Lille, France
| | - Eleonore Dufay
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Camille Bour
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Camille Boulagnon-Rombi
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
- Centre Hospitalier et Université de Reims Champagne-Ardenne, laboratoire de Biopathologie, Reims, France
| | - Nicole Bouland
- Université de Reims Champagne-Ardenne, laboratoire d’Anatomie Pathologie, Reims, France
| | | | - Jérôme Devy
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Laurent Martiny
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Christophe Schneider
- Université de Reims-Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| |
Collapse
|
5
|
Reginelli A, Belfiore MP, Russo A, Turriziani F, Moscarella E, Troiani T, Brancaccio G, Ronchi A, Giunta E, Sica A, Iovino F, Ciardiello F, Franco R, Argenziano G, Grassi R, Cappabianca S. A Preliminary Study for Quantitative Assessment with HFUS (High- Frequency Ultrasound) of Nodular Skin Melanoma Breslow Thickness in Adults Before Surgery: Interdisciplinary Team Experience. Curr Radiopharm 2020; 13:48-55. [DOI: 10.2174/1874471012666191007121626] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 04/24/2019] [Accepted: 07/17/2019] [Indexed: 11/22/2022]
Abstract
Background:
Cutaneous melanoma is one of the most severe skin diseases. Nodular melanoma
is the second melanoma subtype in order of frequency. The prognosis of skin melanoma depends
on the vertical growth of the tumor (Breslow index). For this measurement, excisional biopsy is
strongly recommended. This is, however, an invasive procedure and may cause damage to the lymphatic
drainage system. The HFUS system, , can be extremely useful for determining tumor thickness
in the preoperative phase, given its high resolution capacity. The aim of this preliminary study is to
define the role of HFUS for the nodular skin melanoma Breslow thickness in adults before surgery by
making a comparison with histological features.
Methods:
In this study, 14 melanocytic lesions (8 male and 6 female) were evaluated with dermatoscopic
clinical features strongly indicative of nodular melanoma. Out of these, excisional biopsy of 7
lesions was requested. The ultrasounds were performed preoperatively. The images were acquired
through the first ultrasound scanner with ultra-high frequency probes (range from 50MHz to 70 MHz)
available on the market under the EEC mark (Vevo "MD, FUJIFILM Visual Sonics, Amsterdam, the
Netherlands) equipped with a linear probe of 50-70 MHz.
Results:
From the ultrasonographic analysis of 14 nodular melanoma thickness was determined for the
presence of two hyperechogenic laminae, separated by a hypo / anechoic space. The twelve lesions
were in situ while the other two lesions showed ultrasonography for example; the satellite lesions (less
than two centimeters from the primary lesion) and in transit (localizable to more than two centimeters
from the primary lesion). Four of these lesions were ulcerated. A comparsion was made the 7 lesions
on between the thickness calculated with this method, and that obtained on the bioptic piece. The presence
of a positive concordance has been evident in all of the cases.
Conclusions:
If further studies are needed to support its widespread clinical use, its is believed that, in
expert hands and with an interdisciplinary team, HFUS is already capable to reliably calculate a
Breslow index in a large majority of patients with cutaneous melanoma.
Collapse
Affiliation(s)
- Alfonso Reginelli
- Section of Radiology and Radiotherapy, Department of Precision Medicine, University of Campania “L. Vanvitelli”; Naples, Italy
| | - Maria P. Belfiore
- Section of Radiology and Radiotherapy, Department of Precision Medicine, University of Campania “L. Vanvitelli”; Naples, Italy
| | - Anna Russo
- Section of Radiology and Radiotherapy, Department of Precision Medicine, University of Campania “L. Vanvitelli”; Naples, Italy
| | - Fabrizio Turriziani
- Section of Radiology and Radiotherapy, Department of Precision Medicine, University of Campania “L. Vanvitelli”; Naples, Italy
| | - Elvira Moscarella
- Section of Dermatology, Department of Preventive Medicine, University of Campania “L. Vanvitelli”; Naples, Italy
| | - Teresa Troiani
- Section of Medical Oncology, Department of Precision Medicine, University of Campania “L. Vanvitelli”; Naples, Italy
| | - Gabriella Brancaccio
- Section of Dermatology, Department of Preventive Medicine, University of Campania “L. Vanvitelli”; Naples, Italy
| | - Andrea Ronchi
- Section of Pathological Anatomy, Department of Preventive Medicine, University of Campania “L. Vanvitelli”; Naples, Italy
| | - Emilio Giunta
- Section of Medical Oncology, Department of Precision Medicine, University of Campania “L. Vanvitelli”; Naples, Italy
| | - Antonello Sica
- Section of Medical Oncology, Department of Precision Medicine, University of Campania “L. Vanvitelli”; Naples, Italy
| | - Francesco Iovino
- Section of General Surgery, Department of Cardiothoracic Surgery, University of Campania “L:Vanvitelli”, Naples, Italy
| | - Fortunato Ciardiello
- Section of Medical Oncology, Department of Precision Medicine, University of Campania “L. Vanvitelli”; Naples, Italy
| | - Renato Franco
- Section of Pathological Anatomy, Department of Preventive Medicine, University of Campania “L. Vanvitelli”; Naples, Italy
| | - Giuseppe Argenziano
- Section of Dermatology, Department of Preventive Medicine, University of Campania “L. Vanvitelli”; Naples, Italy
| | - Roberto Grassi
- Section of Radiology and Radiotherapy, Department of Precision Medicine, University of Campania “L. Vanvitelli”; Naples, Italy
| | - Salvatore Cappabianca
- Section of Radiology and Radiotherapy, Department of Precision Medicine, University of Campania “L. Vanvitelli”; Naples, Italy
| |
Collapse
|
6
|
Juin C, Oliveira Junior RGD, Fleury A, Oudinet C, Pytowski L, Bérard JB, Nicolau E, Thiéry V, Lanneluc I, Beaugeard L, Prunier G, Almeida JRGDS, Picot L. Zeaxanthin from Porphyridium purpureum induces apoptosis in human melanoma cells expressing the oncogenic BRAF V600E mutation and sensitizes them to the BRAF inhibitor vemurafenib. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2018. [DOI: 10.1016/j.bjp.2018.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Weinstock MJ, Uhlmann EJ, Zwicker JI. Intracranial hemorrhage in cancer patients treated with anticoagulation. Thromb Res 2016; 140 Suppl 1:S60-5. [DOI: 10.1016/s0049-3848(16)30100-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Ferrari de Andrade L. Methods to microscopically analyze melanoma tumors in mice. J Histotechnol 2015. [DOI: 10.1179/2046023615y.0000000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Dittz D, Figueiredo C, Lemos FO, Viana CTR, Andrade SP, Souza-Fagundes EM, Fujiwara RT, Salas CE, Lopes MTP. Antiangiogenesis, loss of cell adhesion and apoptosis are involved in the antitumoral activity of Proteases from V. cundinamarcensis (C. candamarcensis) in murine melanoma B16F1. Int J Mol Sci 2015; 16:7027-44. [PMID: 25826531 PMCID: PMC4425002 DOI: 10.3390/ijms16047027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 01/05/2023] Open
Abstract
The proteolytic enzymes from V. cundinamarcensis latex, (P1G10), display healing activity in animal models following various types of lesions. P1G10 or the purified isoforms act as mitogens on fibroblast and epithelial cells by stimulating angiogenesis and wound healing in gastric and cutaneous ulcers models. Based on evidence that plant proteinases act as antitumorals, we verified this effect on a murine melanoma model. The antitumoral effect analyzed mice survival and tumor development after subcutaneous administration of P1G10 into C57BL/6J mice bearing B16F1 low metastatic melanoma. Possible factors involved in the antitumoral action were assessed, i.e., cytotoxicity, cell adhesion and apoptosis in vitro, haemoglobin (Hb), vascular endothelial growth factor (VEGF), tumor growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α) content and N-acetyl-glucosaminidase (NAG) activity. We observed that P1G10 inhibited angiogenesis measured by the decline of Hb and VEGF within the tumor, and TGF-β displayed a non-significant increase and TNF-α showed a minor non-significant reduction. On the other hand, there was an increase in NAG activity. In treated B16F1 cells, apoptosis was induced along with decreased cell binding to extracellular matrix components (ECM) and anchorage, without impairing viability.
Collapse
Affiliation(s)
- Dalton Dittz
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| | - Cinthia Figueiredo
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| | - Fernanda O. Lemos
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| | - Celso T. R. Viana
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (C.T.R.V.); (S.P.A.); (E.M.S.-F.)
| | - Silvia P. Andrade
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (C.T.R.V.); (S.P.A.); (E.M.S.-F.)
| | - Elaine M. Souza-Fagundes
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (C.T.R.V.); (S.P.A.); (E.M.S.-F.)
| | - Ricardo T. Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mail:
| | - Carlos E. Salas
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +55-31-3409-2646
| | - Miriam T. P. Lopes
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| |
Collapse
|
10
|
Lee S, Goldfinger LE. RLIP76 regulates HIF-1 activity, VEGF expression and secretion in tumor cells, and secretome transactivation of endothelial cells. FASEB J 2014; 28:4158-68. [PMID: 24928198 DOI: 10.1096/fj.14-255711] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/02/2014] [Indexed: 02/02/2023]
Abstract
This study was undertaken to reveal the mechanisms by which RLIP76 regulates endothelial cell angiogenic responses. RLIP76 is an effector of the angiogenic modulator, R-Ras. RLIP76 is overexpressed in many tumors, required for tumor angiogenesis, and blockade of RLIP76 results in tumor regression in multiple models. We report here that RLIP76 was required for expression and secretion of vascular endothelial growth factor (VEGF) in carcinoma and melanoma cells. Conditioned medium derived from RLIP76-depleted tumor cells, but not control knockdown cells, could not stimulate proliferation, migration, or Matrigel cord formation in endothelial cell cultures, which indicates that RLIP76 regulates angiogenic components of the tumor cell secretome. Recombinant VEGF added to conditioned medium from RLIP76-knockdown tumor cells restored these endothelial cell functions. Transcriptional activity of hypoxia-inducible factor 1 (HIF-1), which drives VEGF expression, was blocked in RLIP76-depleted tumor cells. RLIP76 was required for PI3-kinase activation, known to regulate HIF-1, in these cells. However, HIF-1α expression and nuclear localization were unaffected by RLIP76 knockdown, which suggests that RLIP76 regulates HIF-1 at the functional level. Thus, RLIP76 regulates tumor cell transactivation of endothelial cells via control of VEGF expression and secretion, providing a new important link in the mechanism of tumor cell induction of angiogenesis.
Collapse
Affiliation(s)
- Seunghyung Lee
- Department of Anatomy and Cell Biology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; and
| | - Lawrence E Goldfinger
- Department of Anatomy and Cell Biology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, USA; and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
The VEGF pathway in lung cancer. Cancer Chemother Pharmacol 2013; 72:1169-81. [DOI: 10.1007/s00280-013-2298-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/13/2013] [Indexed: 12/21/2022]
|
12
|
Jatrorrhizine hydrochloride inhibits the proliferation and neovascularization of C8161 metastatic melanoma cells. Anticancer Drugs 2013; 24:667-76. [PMID: 23695011 DOI: 10.1097/cad.0b013e328361ab28] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Liu R, Cao Z, Tu J, Pan Y, Shang B, Zhang G, Bao M, Zhang S, Yang P, Zhou Q. Lycorine hydrochloride inhibits metastatic melanoma cell-dominant vasculogenic mimicry. Pigment Cell Melanoma Res 2013; 25:630-8. [PMID: 22781316 DOI: 10.1111/j.1755-148x.2012.01036.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Melanoma cells actively participate in tumor angiogenesis and vasculogenic mimicry. However, anti-angiogenic therapy in patients with melanoma has not shown a significant survival gain. Thus, new anti-melanoma angiogenic and vasculogenic drugs are highly desired. Using the metastatic melanoma cell line C8161 as a model, we explored melanoma vasculogenic inhibitors and found that lycorine hydrochloride (LH) effectively suppressed C8161 cell-dominant formation of capillary-like tubes in vitro and generation of tumor blood vessels in vivo with low toxicity. Mechanistic studies revealed that LH markedly hindered expression of VE-cadherin in C8161 cells, but did not affect expression of six other important angiogenic and vasculogenic genes. Luciferase assays showed that LH significantly impeded promoter activity of the VE-cadherin gene in a dose-dependent manner. Together, these data suggest that LH inhibits melanoma C8161 cell-dominant vasculogenic mimicry by reducing VE-cadherin gene expression and diminishing cell surface exposure of the protein.
Collapse
Affiliation(s)
- Ruifang Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mathieu V, de Lassalle EM, Toelen J, Mohr T, Bellahcène A, Van Goietsenoven G, Verschuere T, Bouzin C, Debyser Z, De Vleeschouwer S, Van Gool S, Poirier F, Castronovo V, Kiss R, Feron O. Galectin-1 in Melanoma Biology and Related Neo-Angiogenesis Processes. J Invest Dermatol 2012; 132:2245-54. [DOI: 10.1038/jid.2012.142] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Kim KB. Is there a role for targeting vascular endothelial growth factor/receptor axis in the treatment of patients with metastatic melanoma? Cancer 2012; 119:477-80. [PMID: 22915026 DOI: 10.1002/cncr.27756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 06/22/2012] [Accepted: 06/27/2012] [Indexed: 01/08/2023]
|
16
|
Shahani L. Castleman's disease in a patient with melanoma: the role of VEGF. BMJ Case Rep 2012; 2012:bcr.07.2011.4519. [PMID: 22605002 DOI: 10.1136/bcr.07.2011.4519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Castleman's disease is a rare lymphoproliferative disorder characterised by lymph node follicular hyperplasia with abnormal interfollicular vascular growth. The authors report a female patient presenting with erythematous and pruritic skin lesion. A shave biopsy of the lesion revealed a Clark level III melanoma and sentinel lymph node biopsy revealed a microscopic focus. Staging positron emission tomography scan revealed an abnormal soft tissue mass with increased 18F-fluorodeoxyglucose accumulation in the anterior mediastinum, raising suspicions of malignancy. The patient underwent an elective resection of the mass and histological sections revealed features of Castleman's disease of the hyaline vascular type. Vascular endothelial growth factor (VEGF) has been associated with the increased vessel density in this condition. VEGF secretion by tumour cells in solid tumours such as melanomas could be a predisposing factor for Castleman's disease. Future research is needed to find an association between VEGF-secreting solid tumours and the development of lymphoproliferative tumours such as Castleman's disease.
Collapse
Affiliation(s)
- Lokesh Shahani
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, United States.
| |
Collapse
|
17
|
Lefranc F, Mathieu V, Kiss R. Galectin-1-mediated biochemical controls of melanoma and glioma aggressive behavior. World J Biol Chem 2011; 2:193-201. [PMID: 21949569 PMCID: PMC3178756 DOI: 10.4331/wjbc.v2.i9.193] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 08/23/2011] [Accepted: 08/30/2011] [Indexed: 02/06/2023] Open
Abstract
Gliomas and melanomas are associated with dismal prognosis because of their marked intrinsic resistance to proapoptotic stimuli, such as conventional chemotherapy and radiotherapy, as well as their ability to escape immune cell attacks. In addition, gliomas and melanomas display pronounced neoangiogenesis. Galectin-1 is a hypoxia-sensitive protein, which is abundantly secreted by glioma and melanoma cells, which displays marked proangiogenic effects. It also provides immune tolerogenic environments to melanoma and glioma cells through the killing of activated T cells that attack these tumor cells. Galectin-1 protects glioma and melanoma cells against cytotoxic insults (including chemotherapy and radiotherapy) through a direct role in the unfolded protein response. Altogether, these facts clearly point to galectin-1 as an important target to be combated in gliomas and melanomas in order to: (1) weaken the defenses of these two types of cancers against radiotherapy, chemotherapy and immunotherapy/vaccine therapy; and (2) reinforce antiangiogenic therapies. In the present article, we review the biochemical and molecular biology-related pathways controlled by galectin-1, which are actually beneficial for melanoma and glioma cells, and therefore detrimental for melanoma and glioma patients.
Collapse
Affiliation(s)
- Florence Lefranc
- Florence Lefranc, Véronique Mathieu, Robert Kiss, Laboratory of Toxicology, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels 1050, Belgium
| | | | | |
Collapse
|
18
|
Lutzky J. New therapeutic options in the medical management of advanced melanoma. ACTA ACUST UNITED AC 2011; 29:249-57. [PMID: 21277538 DOI: 10.1016/j.sder.2010.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During the past 3 decades, the incidence, morbidity, and mortality of malignant melanoma have increased dramatically. Advanced melanoma has remained a disease that is for the most part incurable and has challenged all therapeutic efforts to make a dent in its natural history. Recent advances in the understanding of the molecular alterations in melanoma and in the immunologic mechanisms playing a role in this malignancy have brought hope that significant progress can be achieved, as evidenced by early encouraging clinical data. This review will summarize these recent developments and their impact on current clinical practice.
Collapse
Affiliation(s)
- Jose Lutzky
- Melanoma Program, Division of Hematology/Oncology, Mount Sinai Comprehensive Cancer Center, Miami Beach, FL, USA.
| |
Collapse
|
19
|
Metastatic tumor dormancy in cutaneous melanoma: does surgery induce escape? Cancers (Basel) 2011; 3:730-46. [PMID: 24212638 PMCID: PMC3756387 DOI: 10.3390/cancers3010730] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/28/2011] [Accepted: 02/11/2011] [Indexed: 01/05/2023] Open
Abstract
According to the concept of tumor dormancy, tumor cells may exist as single cells or microscopic clusters of cells that are clinically undetectable, but remain viable and have the potential for malignant outgrowth. At metastatic sites, escape from tumor dormancy under more favorable local microenvironmental conditions or through other, yet undefined stimuli, may account for distant recurrence after supposed "cure" following surgical treatment of the primary tumor. The vast majority of evidence to date in support of the concept of tumor dormancy originates from animal studies; however, extensive epidemiologic data from breast cancer strongly suggests that this process does occur in human disease. In this review, we aim to demonstrate that metastatic tumor dormancy does exist in cutaneous melanoma based on evidence from mouse models and clinical observations of late recurrence and occult transmission by organ transplantation. Experimental data underscores the critical role of impaired angiogenesis and immune regulation as major mechanisms for maintenance of tumor dormancy. Finally, we examine evidence for the role of surgery in promoting escape from tumor dormancy at metastatic sites in cutaneous melanoma.
Collapse
|
20
|
Chami L, Lassau N, Chebil M, Robert C. Imaging of melanoma: usefulness of ultrasonography before and after contrast injection for diagnosis and early evaluation of treatment. Clin Cosmet Investig Dermatol 2011; 4:1-6. [PMID: 21673868 PMCID: PMC3108283 DOI: 10.2147/ccid.s13499] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Indexed: 11/23/2022]
Abstract
High-frequency ultrasound (8–14 MHz) is routinely used to display cutaneous melanomas. Maximum thickness measurement (Breslow index) has been shown to be well correlated to histologic findings for lesions of more than 0.75 mm. Some morphological criteria (strong delineation, hypoechoic texture, homogeneity) have been reported to help differentiate between malignant and benign pigmented blue lesions, but remain insufficient. Vascular ultrasound analysis using Doppler mode provides additional information and showed good specificity for malignancy (90%–100%), but variable sensitivity (34%–100%). Recent advances in ultrasound imaging allow functional evaluation. Likewise, dynamic contrast-enhanced ultrasound using contrast medium injection and specific perfusion and quantification software showed promising results in clinical and preclinical trials for early prediction of tumor response to target treatments.
Collapse
Affiliation(s)
- Linda Chami
- Imaging Department Institut Gustave Roussy, Villejuif, France
| | | | | | | |
Collapse
|
21
|
Tarapore RS, Siddiqui IA, Saleem M, Adhami VM, Spiegelman VS, Mukhtar H. Specific targeting of Wnt/β-catenin signaling in human melanoma cells by a dietary triterpene lupeol. Carcinogenesis 2010; 31:1844-53. [PMID: 20732907 DOI: 10.1093/carcin/bgq169] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Wingless (Wnt) signaling pathway regulates a variety of cellular processes including proliferation, differentiation, survival, apoptosis and cell motility. Aberrant activation of Wnt/β-catenin pathway has been observed in approximately one-third of melanomas and this subset has very poor prognosis suggesting that targeting Wnt signaling could be a promising strategy against this subtype. Mel 928 and Mel 1241 melanoma cells representative of cells with constitutive activation of Wnt/β-catenin signaling pathway and Mel 1011 representative of cells that lack this pathway were treated with a dietary triterpene lupeol and its effects on growth, proliferation, β-catenin transcriptional activity and Wnt target genes were determined both in vitro and in vivo. Lupeol treatment to Mel 928 and Mel 1241 but not Mel 1011 cells resulted in a dose-dependent (i) decrease in cell viability, (ii) induction of apoptosis, (iii) decrease in colonogenic potential, (iv) decrease in β-catenin transcriptional activity and (v) decrease in the expression of Wnt target genes. Most importantly, lupeol restricted the translocation of β-catenin from the cytoplasm to the nucleus. Lupeol also decreased the growth of Mel 928 but not Mel 1011-derived tumors implanted in the athymic nude mice. The decrease in Mel 928-derived tumor growth was associated with a decrease in the expression of Wnt target genes c-myc, cyclin D1, proliferation markers proliferating cell nuclear antigen and Ki-67 and invasion marker osteopontin. We suggest that lupeol alone or as an adjuvant to current therapies could be developed as an agent for the management of human melanomas harboring constitutive Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Rohinton S Tarapore
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|