1
|
Afatinib Targeted Therapy Affects the Immune Function and Serum Levels of EGFR and Gastrin-Releasing Peptide Precursor (pro-GRP) in Patients with Non-Small-Cell Lung Cancer (NSCLC). DISEASE MARKERS 2022; 2022:2869531. [PMID: 36157204 PMCID: PMC9492325 DOI: 10.1155/2022/2869531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022]
Abstract
Objective This study is aimed at investigating the clinical intervention effect of afatinib targeted therapy in patients with non-small-cell lung cancer. Methods The research object was a retrospective analysis of 86 patients with non-small-cell lung cancer who were admitted to our hospital from 1st January 2019 to 31st December 2021. The patients were divided into two groups. The patients in the two groups received conventional chemotherapy intervention, and the patients in group B received afatinib targeted therapy intervention on the basis of the treatment in group A. The clinical intervention effect, immune function, serum EGFR level, serum pro-GRP level, and incidence of adverse reactions were compared between the two groups of patients. Results After afatinib targeted therapy intervention, the total intervention effective rate of patients in treatment group B was significantly higher than that in patients in treatment group A. Compared with the treatment group A, the CD3+, CD4+, CD8+, and CD4+/CD8+ of the treatment group were significantly upregulated. After the intervention, the serum EGFR levels of patients in treatment groups A and B were significantly decreased, and the serum EGFR levels in patients in treatment group B were significantly lower than those in patients in treatment group A. The serum pro-GRP level in group B patients was significantly decreased. The overall incidence of adverse reactions in treatment group B was significantly lower than that in treatment group A. Conclusion Afatinib targeted therapy has a significant clinical intervention effect on patients with non-small-cell lung cancer, which not only helps to improve the immune function of patients but also effectively improves the serum EGFR and pro-GRP levels of patients.
Collapse
|
2
|
Xue Q, Liu X, Chen C, Zhang X, Xie P, Liu Y, Zhou S, Tang J. Erlotinib protests against LPS-induced parthanatos through inhibiting macrophage surface TLR4 expression. Cell Death Discov 2021; 7:181. [PMID: 34282120 PMCID: PMC8290014 DOI: 10.1038/s41420-021-00571-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/05/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
Sepsis is a life-threatening cascading systemic inflammatory response syndrome on account of serve infection. In inflamed tissues, activated macrophages generate large amounts of inflammatory cytokines reactive species, and are exposed to the damaging effects of reactive species. However, comparing with necroptosis and pyroptosis, so far, there are few studies focusing on the overproduction-related cell death, such as parthanatos in macrophage during sepsis. In LPS-treated macrophage, we observed PARP-1 activation, PAR formation and AIF translocation. All these phenomena could be inhibited by both erlotinib and 3-AB, indicating the presence of parthanatos in endotoxemia. We further found that LPS induced the increase of cell surface TLR4 expression responsible for the production of ROS and subsequent parthanatos in endotoxemia. All these results shed a new light on how TLR4 regulating the activation of PARP-1 by LPS in macrophage.
Collapse
Affiliation(s)
- Qiong Xue
- The Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaolei Liu
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cuiping Chen
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xuedi Zhang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Pengyun Xie
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yupin Liu
- Department of Medical Iconography, The Second Affiliated Hospital University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuangnan Zhou
- Department of Liver Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Jing Tang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
3
|
Musashi-2 (MSI2) regulates epidermal growth factor receptor (EGFR) expression and response to EGFR inhibitors in EGFR-mutated non-small cell lung cancer (NSCLC). Oncogenesis 2021; 10:29. [PMID: 33723247 PMCID: PMC7961039 DOI: 10.1038/s41389-021-00317-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 01/21/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) has limited treatment options. Expression of the RNA-binding protein (RBP) Musashi-2 (MSI2) is elevated in a subset of non-small cell lung cancer (NSCLC) tumors upon progression, and drives NSCLC metastasis. We evaluated the mechanism of MSI2 action in NSCLC to gain therapeutically useful insights. Reverse phase protein array (RPPA) analysis of MSI2-depleted versus control KrasLA1/+; Trp53R172HΔG/+ NSCLC cell lines identified EGFR as a MSI2-regulated protein. MSI2 control of EGFR expression and activity in an NSCLC cell line panel was studied using RT-PCR, Western blots, and RNA immunoprecipitation. Functional consequences of MSI2 depletion were explored for cell growth and response to EGFR-targeting drugs, in vitro and in vivo. Expression relationships were validated using human tissue microarrays. MSI2 depletion significantly reduced EGFR protein expression, phosphorylation, or both. Comparison of protein and mRNA expression indicated a post-transcriptional activity of MSI2 in control of steady state levels of EGFR. RNA immunoprecipitation analysis demonstrated that MSI2 directly binds to EGFR mRNA, and sequence analysis predicted MSI2 binding sites in the murine and human EGFR mRNAs. MSI2 depletion selectively impaired cell proliferation in NSCLC cell lines with activating mutations of EGFR (EGFRmut). Further, depletion of MSI2 in combination with EGFR inhibitors such as erlotinib, afatinib, and osimertinib selectively reduced the growth of EGFRmut NSCLC cells and xenografts. EGFR and MSI2 were significantly co-expressed in EGFRmut human NSCLCs. These results define MSI2 as a direct regulator of EGFR protein expression, and suggest inhibition of MSI2 could be of clinical value in EGFRmut NSCLC.
Collapse
|
4
|
Lee CS, Sharma S, Miao E, Mensah C, Sullivan K, Seetharamu N. A Comprehensive Review of Contemporary Literature for Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer and Their Toxicity. LUNG CANCER (AUCKLAND, N.Z.) 2020; 11:73-103. [PMID: 33117017 PMCID: PMC7548332 DOI: 10.2147/lctt.s258444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/26/2020] [Indexed: 01/10/2023]
Abstract
Mutations in the epidermal growth factor receptor (EGFR) are common amongst those with non-small cell lung cancer and represent a major factor in treatment decisions, most notably in the advanced stages. Small molecule tyrosine kinase inhibitors (TKIs) that target the EGFR, such as erlotinib, gefitinib, icotinib, afatinib, dacomitinib and osimertinib, have all shown to be effective in this setting. Osimertinib, a third-generation EGFR TKI, is a favorable option, but almost all patients develop resistance at some time point. There are no effective treatment options for patients who progress on osimertinib, but ongoing trials will hopefully address this unmet need. The aim of this review is to provide a comprehensive review of the data with EGFR TKIs, management of the toxicities and the ongoing trials with this class of agents.
Collapse
Affiliation(s)
- Chung-Shien Lee
- Department of Clinical Health Professions, St. John’s University, College of Pharmacy and Health Sciences, Queens, NY11439, USA
- Division of Medical Oncology and Hematology, Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY11042, USA
| | - Sandhya Sharma
- Department of Hematology and Oncology, Denver Health, Denver, CO80204, USA
| | - Emily Miao
- Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cheryl Mensah
- Weil Cornell School of Medicine, Department of Hematology and Oncology, Weill Cornell of Medicine, New York, NY, USA
| | - Kevin Sullivan
- Division of Medical Oncology and Hematology, Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY11042, USA
| | - Nagashree Seetharamu
- Division of Medical Oncology and Hematology, Northwell Health Cancer Institute, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, NY11042, USA
| |
Collapse
|
5
|
Fan X, Wang X, Zhang M, Deng H, Liu Y. Comparison detection methods for EGFR in formalin-fixed paraffin-embedded tissues of patients with NSCLC. Pathol Res Pract 2019; 216:152783. [PMID: 31859115 DOI: 10.1016/j.prp.2019.152783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022]
Abstract
Epidermal growth factor receptor (EGFR) is an important gene in the development of lung cancer. Non-small cell lung cancer (NSCLC) is the most common lung cancer. In the present study, the expression of EGFR in 717 patients with NSCLC was detected by Ventana automatic immunohistochemical technique, and the samples was verified by Real-time PCR, and then the results were compared with the data acquired by next-generation sequencing technology (NGS), which is the high throughput, multiple sites for EGFR gene mutation testing. The expression of Ventana EGFR in 717 cases of NSCLC was detected by immunohistochemistry, and the positive rate was 60.70 % (435 / 717). The mutation rate of EGFR was 57.60 % (413/717). The coincidence rate of Ventana EGFR immunohistochemical assay and Real-time PCR assay reached 94.94 %, and the two had high consistency. The coincidence rate of Ventana EGFR immunohistochemical assay and NGS were high correlation. Based on these results, Ventana EGFR automatic immunohistochemical detection has high accuracy, simple operation process, low price and easy interpretation. It can be used as the preferred method for EGFR detection.
Collapse
Affiliation(s)
- Xiaojie Fan
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Xiaoxiao Wang
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Meng Zhang
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Huiyan Deng
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China.
| |
Collapse
|
6
|
Lu Y, Liu Y, Oeck S, Glazer PM. Hypoxia Promotes Resistance to EGFR Inhibition in NSCLC Cells via the Histone Demethylases, LSD1 and PLU-1. Mol Cancer Res 2018; 16:1458-1469. [PMID: 29934325 PMCID: PMC6170700 DOI: 10.1158/1541-7786.mcr-17-0637] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/23/2018] [Accepted: 06/13/2018] [Indexed: 12/27/2022]
Abstract
The development of small-molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptors (EGFR) with activating mutations has led to a new paradigm in the treatment of non-small cell lung cancer (NSCLC) patients. However, most patients eventually develop resistance. Hypoxia is a key microenvironmental stress in solid tumors that is associated with poor prognosis due, in part, to acquired resistance to conventional therapy. This study documents that long-term, moderate hypoxia promotes resistance to the EGFR TKI, gefitinib, in the NSCLC cell line HCC827, which harbors an activating EGFR mutation. Following hypoxic growth conditions, HCC827 cells treated with gefitinib upregulated N-cadherin, fibronectin, and vimentin expression and downregulated E-cadherin, characteristic of an epithelial-mesenchymal transition (EMT), which prior studies have linked to EGFR TKI resistance. Mechanistically, knockdown of the histone demethylases, LSD1 and PLU-1, prevented and reversed hypoxia-induced gefitinib resistance, with inhibition of the associated EMT, suggesting that LSD1 and PLU-1 play key roles in hypoxia-induced gefitinib resistance and EMT. Moreover, hypoxia-treated HCC827 cells demonstrated more aggressive tumor growth in vivo compared with cells grown in normoxia, but inhibition of LSD1 function by shRNA-mediated knockdown or by the small-molecular inhibitor SP2509 suppressed tumor growth and enhanced gefitinib response in vivo These results suggest that hypoxia is a driving force for acquired resistance to EGFR TKIs through epigenetic change and coordination of EMT in NSCLC. This study suggests that combination of therapy with EGFR TKIs and LSD1 inhibitors may offer an attractive therapeutic strategy for NSCLCs. Mol Cancer Res; 16(10); 1458-69. ©2018 AACR.
Collapse
Affiliation(s)
- Yuhong Lu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Yanfeng Liu
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Sebastian Oeck
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut.
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
7
|
Antiproliferative and toxicological properties of drimanes obtained from Drimys brasiliensis stem barks. Biomed Pharmacother 2018; 103:1498-1506. [DOI: 10.1016/j.biopha.2018.04.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/04/2023] Open
|
8
|
Wang X, Chen K, Yu Y, Xiang Y, Kim JH, Gong W, Huang J, Shi G, Li Q, Zhou M, Sayers T, Tewary P, Gao B, Wang JM. Metformin sensitizes lung cancer cells to treatment by the tyrosine kinase inhibitor erlotinib. Oncotarget 2017; 8:109068-109078. [PMID: 29312591 PMCID: PMC5752504 DOI: 10.18632/oncotarget.22596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/21/2017] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is one of the deadliest malignant tumors with limited treatment options. Although targeted therapy, using tyrosine-kinase inhibitors such as erlotinib (Erlo), has shown therapeutic benefit, only 15 % patients with mutated epidermal growth factor receptor (EGFR) in lung cancer cells are sensitive. Therefore, additional therapeutic strategy should be developed. In this study, we found that metformin (Met), which is widely used for the treatment of type 2 diabetes (T2D), sensitized lung cancer cells bearing wild-type EGFR to Erlo treatment by enriching cancer cells expressing higher levels of EGFR with persistent phosphorylation. As a consequence, combination of Met and Erlo more efficiently inhibited the growth of lung cancer cells both in vitro and in mice with xenografted tumors. Our results suggest a novel approach to treating lung cancer cases which are originally resistant to Erlo.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ying Yu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Eye Institute, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yi Xiang
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Jae Hong Kim
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Sciences, Beijing Jiaoton University, Beijing 100044, China
| | - Guochao Shi
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Qingyun Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Min Zhou
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Thomas Sayers
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Poonam Tewary
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Beili Gao
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
9
|
Yousef M, Tsiani E. Metformin in Lung Cancer: Review of in Vitro and in Vivo Animal Studies. Cancers (Basel) 2017; 9:cancers9050045. [PMID: 28481268 PMCID: PMC5447955 DOI: 10.3390/cancers9050045] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
Cancer cells display enhanced growth rates and a resistance to apoptosis. The ability of cancer cells to evade homeostasis and proliferate uncontrollably while avoiding programmed cell death/apoptosis is acquired through mutations to key signaling molecules, which regulate pathways involved in cell proliferation and survival and these mutations allow them to develop resistance to many chemotherapeutic agents, highlighting the need for development of new potent anti-cancer agents. Metformin has long been used as a treatment for type 2 diabetes and has recently attracted attention as a potential agent to be used in the treatment of cancer. The present review summarizes the existing in vitro and in vivo animal studies focusing on the anti-lung cancer effects of metformin and its effects on key proliferative and anti-apoptotic signaling pathways.
Collapse
Affiliation(s)
- Michael Yousef
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| | - Evangelia Tsiani
- Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|