1
|
Zhang T, Li Q, Wei Y, Yao S, Yuan Y, Deng L, Wu D, Nie L, Wei X, Tang H, Song B. Preoperative evaluation of liver regeneration following hepatectomy in hepatocellular carcinoma using magnetic resonance elastography. Quant Imaging Med Surg 2022; 12:5433-5451. [PMID: 36465825 PMCID: PMC9703107 DOI: 10.21037/qims-22-306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/29/2022] [Indexed: 08/30/2023]
Abstract
BACKGROUND For patients with hepatocellular carcinoma (HCC) undergoing hepatectomy, insufficient remnant liver regenerative capacity can lead to liver failure. The aim of this study was to evaluate the potential role of magnetic resonance elastography (MRE) for the preoperative prediction of liver regeneration in patients with HCC after partial hepatectomy (PH). METHODS A total of 54 patients with HCC undergoing MRE prior to PH were retrospectively included. The total functional liver, volume of preoperative future liver remnant (LVpre), and volume of postoperative liver remnant (LVpost), respectively, were measured, and the regeneration index (RI) and parenchymal hepatic resection rate (PHRR) were manually calculated. Univariate and multivariate logistic regression analyses were conducted to identify factors associated with a high RI, and receiver operating characteristic (ROC) curves were employed to evaluate the diagnostic performance of the liver stiffness (LS) values. Patients were classified into three subgroups based on the value of PHRR: low PHRR (<30%), intermediate PHRR (30-50%), and high PHRR (>50%). Subsequently, Spearman correlation analysis was used to investigate the relationship between LS values and RI in the subgroups. RESULTS Multivariable analysis revealed a low LS value was associated with greater odds of a high RI [odds ratio (OR), 0.049; 95% confidence interval (CI): 0.002 to 0.980]. An optimal cutoff value of 3.30 kPa was used to divide all patients into a low RI group and a high RI group with an area under the curve (AUC) value of 0.882 (95% CI: 0.767 to 0.996). A significant negative relationship between RI and LS values (r=-0.799; P<0.001) was observed in the intermediate PHRR subgroup. CONCLUSIONS The LS values based on MRE may serve as a potential preoperative predictor of liver regeneration for patients with HCC undergoing PH.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Qian Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Liping Deng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongbo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | | | | | - Hehan Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Sanya People’s Hospital, Sanya, China
| |
Collapse
|
2
|
Qiu C, Xie S, Sun Y, Yu Y, Zhang K, Wang X, Zhu J, Grimm R, Shen W. Multi-parametric magnetic resonance imaging of liver regeneration in a standardized partial hepatectomy rat model. BMC Gastroenterol 2022; 22:430. [PMID: 36210451 PMCID: PMC9549623 DOI: 10.1186/s12876-022-02517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
We aimed to evaluate the correlation between the pathological changes and multi-parameter MRI characteristics of liver regeneration (LR) in a standard partial hepatectomy (PH) rat model.
Methods
Seventy Sprague–Dawley rats were randomly divided into two groups: MR scan group (n = 14) and pathologic analysis (PA) group (n = 56). All 14 rats in the MR group underwent liver T1 mapping, T2 mapping, and diffusion kurtosis imaging before and the 1st, 2nd, 3rd, 5th, 7th, 14th, and 21st day after 70% hepatectomy. Seven rats in the PA group were euthanized at each time point to determine Ki-67 indices, hepatocyte size (HTS), steatosis grade, and inflammation score.
Results
Liver T1 and T2 values increased to maximum on day 2 (P < 0.001 vs. baseline), D and K values decreased to minimum on day 3 and 2, respectively (P < 0.001 vs. baseline), then all parameters returned to baseline gradually. Hepatocyte Ki-67, hepatocyte size, steatosis grade, and inflammation score initially increased after surgery (P < 0.05 vs. baseline), followed by a gradual decline over time. Both T2 and K values correlated well with Ki-67 indices (r = 0.765 and − 0.807, respectively; both P < 0.001), inflammation (r = 0.809 and − 0.724, respectively; both P < 0.001), steatosis grade (r = 0.814 and − 0.725, respectively; both P < 0.001), and HTS (r = 0.830 and − 0.615, respectively; both P < 0.001).
Conclusions
PH induced liver changes that can be observed on MRI. The MRI parameters correlate with the LR activity and allow monitoring of LR process.
Collapse
|
3
|
Xie S, Qiu C, Sun Y, Yu Y, Hu Z, Zhang K, Chen L, Cheng Y, Bao M, Zhang Q, Zhu J, Grimm R, Shen W. Assessment of Fibrotic Liver Regeneration After Partial Hepatectomy With Intravoxel Incoherent Motion Diffusion-Weighted Imaging: An Experimental Study in a Rat Model With Carbon Tetrachloride Induced Liver Injury. Front Physiol 2022; 13:822763. [PMID: 35250624 PMCID: PMC8894856 DOI: 10.3389/fphys.2022.822763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To determine whether intravoxel incoherent motion (IVIM) parameters correlate with liver regeneration and function recovery after partial hepatectomy (PH) in rats with carbon tetrachloride (CCl4)-induced liver fibrosis. Methods Sixty-two adult Sprague-Dawley rats were divided into the control group and the fibrosis group with CCl4 injection for 8 weeks. At the end of the 8th week, all rats received left lateral lobe liver resection. Within each group, IVIM imaging (n = 10/group) and histologic and biochemical analyses (n = 3/group/time point) were performed pre- and post-PH (on days 1, 2, 3, 5, 7, 14, and 21). Differences in liver IVIM parameters and correlation between IVIM parameters and Ki-67 indices, hepatocyte diameter, alanine transaminase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBil) values were analyzed. Results Post-PH, liver true diffusion coefficient (D) values decreased and pseudodiffusion coefficient (D*) and perfusion fraction (PF) values increased, then recovered to pre-PH levels gradually in both fibrosis and control rats. PF in fibrosis group were significantly higher than in controls from 3 to 21 days (P < 0.05). In fibrosis rats, both Ki-67 indices and hepatocyte diameters increased, and a strong correlation was found between PF and Ki-67 indices (r = −0.756; P = 0.03), D* and PF values and ALT, AST, and TBil values (r = −0.762 to −0.905; P < 0.05). In control rats, only hepatocyte diameters increased, and all IVIM parameters correlated well with hepatocyte diameters, ALT, AST and TBil values (r = 0.810 to −1.000; P < 0.05). Conclusion The regeneration pattern in fibrotic liver tissue was different compared with control livers. IVIM parameters can monitor liver regeneration and functional recovery non-invasively after PH.
Collapse
Affiliation(s)
- Shuangshuang Xie
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Caixin Qiu
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Yajie Sun
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Yongquan Yu
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Zhandong Hu
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Kun Zhang
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Lihua Chen
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Yue Cheng
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Mingzhu Bao
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Quansheng Zhang
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Jinxia Zhu
- Siemens Healthcare (China), Beijing, China
| | | | - Wen Shen
- Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
- *Correspondence: Wen Shen,
| |
Collapse
|
4
|
Gutiérrez Sáenz de Santa María J, Herrero de la Parte B, Gutiérrez-Sánchez G, Ruiz Montesinos I, Iturrizaga Correcher S, Mar Medina C, García-Alonso I. Folinic Acid Potentiates the Liver Regeneration Process after Selective Portal Vein Ligation in Rats. Cancers (Basel) 2022; 14:cancers14020371. [PMID: 35053534 PMCID: PMC8773925 DOI: 10.3390/cancers14020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Fewer than 30% of patients with liver metastases are eligible for major liver resection, because liver remaining after such a surgery would be insufficient to cover the patient’s needs; this is called a low percentage of future liver remnant (FLR). Folinic acid (FA) has been shown to play a crucial role in cellular synthesis, regeneration, and nucleotide and amino acid biosynthesis. The aim of this piece of research was to evaluate the effect of FA as a potential hypertrophic hepatic enhancer agent after selective portal vein ligation (PVL) to ensure adequate FLR. We have confirmed in our rodent model that FA accelerates liver regeneration after PVL and enhances recovery of liver function. These findings may allow more patients to be eligible for liver resection without jeopardizing postoperative liver function. Abstract Liver resection remains the gold standard for hepatic metastases. The future liver remnant (FLR) and its functional status are two key points to consider before performing major liver resections, since patients with less than 25% FLR or a Child–Pugh B or C grade are not eligible for this procedure. Folinic acid (FA) is an essential agent in cell replication processes. Herein, we analyze the effect of FA as an enhancer of liver regeneration after selective portal vein ligation (PVL). Sixty-four male WAG/RijHsd rats were randomly distributed into eight groups: a control group and seven subjected to 50% PVL, by ligation of left portal branch. The treated animals received FA (2.5 m/kg), while the rest were given saline. After 36 h, 3 days or 7 days, liver tissue and blood samples were obtained. FA slightly but significantly increased FLR percentage (FLR%) on the 7th day (91.88 ± 0.61%) compared to control or saline-treated groups (86.72 ± 2.5 vs. 87 ± 3.33%; p < 0.01). The hepatocyte nuclear area was also increased both at 36 h and 7days with FA (61.55 ± 16.09 µm2, and 49.91 ± 15.38 µm2; p < 0.001). Finally, FA also improved liver function. In conclusion, FA has boosted liver regeneration assessed by FLR%, nuclear area size and restoration of liver function after PVL.
Collapse
Affiliation(s)
| | - Borja Herrero de la Parte
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, ES48940 Leioa, Spain;
- Interventional Radiology Research Group, Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain
- Correspondence: (B.H.d.l.P.); (I.R.M.)
| | - Gaizka Gutiérrez-Sánchez
- Department of Anesthesiology, Santa Creu i Sant Pau University Hospital, ES08025 Barcelona, Spain;
| | - Inmaculada Ruiz Montesinos
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, ES48940 Leioa, Spain;
- Department of Gastrointestinal Surgery, Donostia University Hospital, ES20014 Donostia, Spain
- Correspondence: (B.H.d.l.P.); (I.R.M.)
| | - Sira Iturrizaga Correcher
- Department of Clinical Analyses, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain; (S.I.C.); (C.M.M.)
| | - Carmen Mar Medina
- Department of Clinical Analyses, Galdakao-Usansolo Hospital, ES48960 Galdakao, Spain; (S.I.C.); (C.M.M.)
| | - Ignacio García-Alonso
- Department of Surgery and Radiology and Physical Medicine, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, ES48940 Leioa, Spain;
- Interventional Radiology Research Group, Biocruces Bizkaia Health Research Institute, ES48903 Barakaldo, Spain
| |
Collapse
|
5
|
Christ B, Collatz M, Dahmen U, Herrmann KH, Höpfl S, König M, Lambers L, Marz M, Meyer D, Radde N, Reichenbach JR, Ricken T, Tautenhahn HM. Hepatectomy-Induced Alterations in Hepatic Perfusion and Function - Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Function. Front Physiol 2021; 12:733868. [PMID: 34867441 PMCID: PMC8637208 DOI: 10.3389/fphys.2021.733868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Liver resection causes marked perfusion alterations in the liver remnant both on the organ scale (vascular anatomy) and on the microscale (sinusoidal blood flow on tissue level). These changes in perfusion affect hepatic functions via direct alterations in blood supply and drainage, followed by indirect changes of biomechanical tissue properties and cellular function. Changes in blood flow impose compression, tension and shear forces on the liver tissue. These forces are perceived by mechanosensors on parenchymal and non-parenchymal cells of the liver and regulate cell-cell and cell-matrix interactions as well as cellular signaling and metabolism. These interactions are key players in tissue growth and remodeling, a prerequisite to restore tissue function after PHx. Their dysregulation is associated with metabolic impairment of the liver eventually leading to liver failure, a serious post-hepatectomy complication with high morbidity and mortality. Though certain links are known, the overall functional change after liver surgery is not understood due to complex feedback loops, non-linearities, spatial heterogeneities and different time-scales of events. Computational modeling is a unique approach to gain a better understanding of complex biomedical systems. This approach allows (i) integration of heterogeneous data and knowledge on multiple scales into a consistent view of how perfusion is related to hepatic function; (ii) testing and generating hypotheses based on predictive models, which must be validated experimentally and clinically. In the long term, computational modeling will (iii) support surgical planning by predicting surgery-induced perfusion perturbations and their functional (metabolic) consequences; and thereby (iv) allow minimizing surgical risks for the individual patient. Here, we review the alterations of hepatic perfusion, biomechanical properties and function associated with hepatectomy. Specifically, we provide an overview over the clinical problem, preoperative diagnostics, functional imaging approaches, experimental approaches in animal models, mechanoperception in the liver and impact on cellular metabolism, omics approaches with a focus on transcriptomics, data integration and uncertainty analysis, and computational modeling on multiple scales. Finally, we provide a perspective on how multi-scale computational models, which couple perfusion changes to hepatic function, could become part of clinical workflows to predict and optimize patient outcome after complex liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Maximilian Collatz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
- Optisch-Molekulare Diagnostik und Systemtechnologié, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus Jena, Jena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Sebastian Höpfl
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Matthias König
- Systems Medicine of the Liver Lab, Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, Germany
| | - Lena Lambers
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Daria Meyer
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Nicole Radde
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Tim Ricken
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
6
|
Shi JH, Line PD. Hallmarks of postoperative liver regeneration: An updated insight on the regulatory mechanisms. J Gastroenterol Hepatol 2020; 35:960-966. [PMID: 31782974 DOI: 10.1111/jgh.14944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/14/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Performance and advances in liver surgery makes remarkable progress of the understanding of liver regeneration. Liver regeneration after liver resection has been widely researched, and the underlying mechanism mostly concerns proliferation of hepatocytes and the influence by inflammation through activation of Kupffer cells and the other parenchymal cells, the second regenerative pathway by hepatic progenitor cells (HPCs), inducing angiogenesis, remodeling of a extracellular matrix (ECM), and termination mechanisms. New clinical surgeries and the updated multiomics analysis are exploiting the remarkable progress, especially in immune regulation and metabolic process of two emerging hallmarks. This review briefly represents a systemic outline of eight hallmarks, including hepatocyte proliferation, contribution of hepatic progenitor cells, inducing angiogenesis, reprogramming of the extracellular matrix, apoptosis and termination of proliferation, inflammation, immune and metabolic regulation, which are set as organizing characteristics of postoperative liver regeneration and future directions of refining treatment targets.
Collapse
Affiliation(s)
- Ji-Hua Shi
- Department of Hepatobiliary and Pancreatic Surgery, Henan Key Laboratory of Digestive Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Pål-Dag Line
- Department of Transplantation Medicine, Institute of Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|