1
|
Chen B, Butler N, O'Rourke T, Hodgkinson P, Stuart K, Shih E, Leggett D, Pryor D, Liu H, Lee D. Refining stereotactic body radiation therapy as a bridge to transplantation for hepatocellular carcinoma: An institutional experience. J Med Imaging Radiat Oncol 2023; 67:299-307. [PMID: 36825762 DOI: 10.1111/1754-9485.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/06/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Stereotactic body radiotherapy (SBRT) has been established as a safe and effective treatment for hepatocellular carcinoma (HCC). Currently, there are no consensus guidelines to advise optimal patient selection and radiotherapy planning parameters to minimise the risk of surgical and medical complications after liver transplant (LT) in patients who have had prior SBRT for HCC, whilst optimising treatment benefit. METHODS We performed a retrospective analysis of all adult patients who received liver SBRT as a bridge to LT at a tertiary institution between 2017 and 2019. RESULTS Nine patients received SBRT as bridging therapy to LT. HCC location varied from peripheral to central/hilar regions and HCC diameter was 13-54 mm. Median time between SBRT and LT was 141 days (range 27-461 days). Median operating time was 360 min (range 270-480 min). Four patients (44%) had visible SBRT reaction or fibrosis at the time of LT. SBRT reaction resulted in clinical impact in one patient (11%) only, where vascular clamping of the IVC was required for 10 min. CONCLUSION SBRT is a safe and effective treatment for HCC enabling patients to remain within LT criteria, even for lesions not amenable to other more conventional bridging therapies. We describe a preliminary decision pathway to guide the optimal use of SBRT as a bridge to LT developed in our institution.
Collapse
Affiliation(s)
- Beini Chen
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Nick Butler
- Department of Hepatobiliary and Pancreatic Surgery, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Queensland Liver Transplant Service, Brisbane, Queensland, Australia.,University of Queensland, Brisbane, Queensland, Australia
| | - Thomas O'Rourke
- Department of Hepatobiliary and Pancreatic Surgery, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Queensland Liver Transplant Service, Brisbane, Queensland, Australia.,University of Queensland, Brisbane, Queensland, Australia
| | - Peter Hodgkinson
- Department of Hepatobiliary and Pancreatic Surgery, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Queensland Liver Transplant Service, Brisbane, Queensland, Australia.,University of Queensland, Brisbane, Queensland, Australia
| | - Katherine Stuart
- Queensland Liver Transplant Service, Brisbane, Queensland, Australia.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Edwin Shih
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - David Leggett
- University of Queensland, Brisbane, Queensland, Australia.,Department of Medical Imaging, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - David Pryor
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,University of Queensland, Brisbane, Queensland, Australia
| | - Howard Liu
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,University of Queensland, Brisbane, Queensland, Australia
| | - Dominique Lee
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,University of Queensland, Brisbane, Queensland, Australia.,University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Yang P, Liu H, Li Y, Gao Q, Chen X, Chang J, Li Y, Chen S, Dong R, Wu H, Liu C, Liu G. Overexpression of TCERG1 as a prognostic marker in hepatocellular carcinoma: A TCGA data-based analysis. Front Genet 2022; 13:959832. [PMID: 36299588 PMCID: PMC9589486 DOI: 10.3389/fgene.2022.959832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: Transcription elongation factor 1 (TCERG1) is a nuclear protein consisted of multiple protein structural domains that plays an important role in regulating the transcription, extension, and splicing regulation of RNA polymerase II. However, the prognostic and immunological role of TCERG1 in human cancer remains unknown. In this study, we analyzed the expression of TCERG1 gene in hepatocellular carcinoma (HCC) patients, its clinical significance, and its possible prognostic value by bioinformatics. Methods: RNA sequencing data and clinicopathological characteristics of patients with HCC were collected from TCGA and CCLE databases. The Wilcoxon rank-sum test was used to analyze the expression of TCERG1 in HCC tissues and normal tissues. The protein levels of TCERG1 between normal and liver cancer tissues were analyzed by the Human Protein Atlas Database (HPA) (www.proteinatlas.org). Validation was performed using the Gene Expression Omnibus (GEO) dataset of 167 samples. The expression of TCERG1 in HCC cells were verified by qRT-PCR, and CCK-8, scratch assay and Transwell assay were performed to detect cell proliferation, migration and invasion ability. According to the median value of TCERG1 expression, patients were divided into high and low subgroups. Logistic regression, GSEA enrichment, TME, and single-sample set gene enrichment analysis (ssGSEA) were performed to explore the effects of TCERG1 on liver cancer biological function and immune infiltrates. TCERG1 co-expression networks were studied through the CCLE database and the LinkedOmics database to analyze genes that interact with TCERG1. Results: The expression levels of TCERG1 in HCC patient tissues were significantly higher than in normal tissues. Survival analysis showed that high levels of TCERG1 expression were significantly associated with low survival rates in HCC patients. Multifactorial analysis showed that high TCERG1 expression was an independent risk factor affecting tumor prognosis. This result was also verified in the GEO database. Cellular experiments demonstrated that cell proliferation, migration and invasion were inhibited after silencing of TCERG1 gene expression. Co-expression analysis revealed that CPSF6 and MAML1 expression were positively correlated with TCERG1. GSEA showed that in samples with high TCERG1 expression, relevant signaling pathways associated with cell cycle, apoptosis, pathways in cancer and enriched in known tumors included Wnt signaling pathway, Vegf signaling pathway, Notch signaling pathway, MAPK signaling pathway and MTOR pathways. The expression of TCERG1 was positively correlated with tumor immune infiltrating cells (T helper two cells, T helper cells). Conclusion:TCERG1 gene is highly expressed in hepatocellular carcinoma tissues, which is associated with the poor prognosis of liver cancer, and may be one of the markers for the diagnosis and screening of liver cancer and the prediction of prognosis effect. At the same time, TCERG1 may also become a new target for tumor immunotherapy.
Collapse
Affiliation(s)
- Pan Yang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Huaifeng Liu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Yan Li
- Department of Gynecologic Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Qunwei Gao
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Xin Chen
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Junyan Chang
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Yangyang Li
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Shuran Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Rui Dong
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Huazhang Wu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Changqing Liu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Gaofeng Liu
- School of Life Science, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
3
|
Xu L, Chen L, Zhang W. Neoadjuvant treatment strategies for hepatocellular carcinoma. World J Gastrointest Surg 2021; 13:1550-1566. [PMID: 35070063 PMCID: PMC8727178 DOI: 10.4240/wjgs.v13.i12.1550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/27/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence of hepatocellular carcinoma (HCC) remains high globally. Surgical treatment is the best treatment for improving the prognosis of patients with HCC. Neoadjuvant therapy plays a key role in preventing tumor progression and even downstaging HCC. The liver transplantation rate and resectability rate have increased for neoadjuvant therapy. Neoadjuvant therapy is effective in different stages of HCC. In this review, we summarized the definition, methods, effects, indications and contraindications of neoadjuvant therapy in HCC, which have significance for guiding treatment.
Collapse
Affiliation(s)
- Lei Xu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Lin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| |
Collapse
|
4
|
Gao Z, Jia H, Yu F, Guo H, Li B. KIF2C promotes the proliferation of hepatocellular carcinoma cells in vitro and in vivo. Exp Ther Med 2021; 22:1094. [PMID: 34504548 PMCID: PMC8383772 DOI: 10.3892/etm.2021.10528] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies with high mortality and morbidity rates. In recent years, HCC targeted therapy has gained increasing attention. Due to the heterogeneity and high metastasis of HCC, more effective therapeutic targets are needed. Kinesin family member 2C (KIF2C), also known as mitotic centromere-associated kinesin, is a microtubule-based motor protein which is involved in a variety of important cellular processes, such as mitosis. The effects of KIF2C on cancer progression and development have been widely studied; however, its potential effects on HCC remains unclear. In the present study, high expression of KIF2C in human HCC tissues was demonstrated using The Cancer Genome Atlas database and immunohistochemistry assays. KIF2C expression was associated with HCC prognosis, including overall survival and disease-free survival. KIF2C expression was also associated with clinical pathological characteristics including the number of tumor nodes (P=0.015) and tumor size (P=0.009). KIF2C knockdown inhibited the proliferation of HCC cells in vitro, confirmed by MTT and colony formation assays, and suppressed tumor growth in mice which was confirmed by a xenograft mouse model. Together, the results suggested that KIF2C may serve as a promising therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Zhenya Gao
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Huanxia Jia
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Fang Yu
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Hongfang Guo
- Department of Clinical Medicine, School of Medicine, Xuchang University, Xuchang, Henan 461000, P.R. China
| | - Baoyu Li
- Department of General Surgery, The Secondary Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
5
|
Shanker MD, Liu HY, Lee YY, Stuart KA, Powell EE, Wigg A, Pryor DI. Stereotactic radiotherapy for hepatocellular carcinoma: Expanding the multidisciplinary armamentarium. J Gastroenterol Hepatol 2021; 36:873-884. [PMID: 32632941 DOI: 10.1111/jgh.15175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the third most common cause of cancer-related death. Long-term prognosis remains poor with treatment options frequently limited by advanced tumor stage, tumor location, or underlying liver dysfunction. Stereotactic ablative body radiotherapy (SABR) utilizes technological advances to deliver highly precise, tumoricidal doses of radiation. There is an emerging body of literature on SABR in HCC demonstrating high rates of local control in the order of 80-90% at 3 years. SABR is associated with a low risk of radiation-induced liver disease or decompensation in appropriately selected HCC patients with compensated liver function and is now being incorporated into guidelines as an additional treatment option. This review outlines the emerging role of SABR in the multidisciplinary management of HCC and summarizes the current evidence for its use as an alternative ablative option for early-stage disease, as a bridge to transplant, and as palliation for advanced-stage disease. We outline specific considerations regarding patient selection, toxicities, and response assessment. Finally, we compare current international guidelines and recommendations for the use of SABR and summarize ongoing studies.
Collapse
Affiliation(s)
- Mihir D Shanker
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Howard Y Liu
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Yoo Young Lee
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Katherine A Stuart
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Elizabeth E Powell
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Alan Wigg
- Hepatology and Liver Transplantation Medicine Unit, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - David I Pryor
- Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Meningioma-associated protein 30 accelerates the proliferation and invasion of hepatocellular carcinoma by modulating Wnt/GSK-3β/β-catenin signaling. J Bioenerg Biomembr 2021; 53:73-83. [PMID: 33405049 DOI: 10.1007/s10863-020-09864-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022]
Abstract
Meningioma-associated protein 30 (MAC30) has been recently identified as a new tumor-associated protein that is implicated in multiple tumor types. However, the role of MAC30 in hepatocellular carcinoma (HCC) has not been studied. In the current study, we explored the expression, biological function and underlying mechanism of MAC30 in HCC. We found that MAC30 expression was significantly elevated in HCC tissues and cell lines. Functional in vitro assays demonstrated that the knockdown of MAC30 inhibited the proliferation and invasion of HCC cells, while MAC30 overexpression facilitated these biological behaviors. Moreover, the knockdown of MAC30 decreased glycogen synthase kinase (GSK)-3β phosphorylation level and β-catenin expression, leading to the inactivation of Wnt/β-catenin signaling in HCC cells. The inhibition of GSK-3β or reactivation Wnt/β-catenin signaling markedly reversed MAC30 knockdown-mediated inhibitory effects on the proliferation and invasion of HCC cells. Notably, the inhibition of Wnt/β-catenin signaling abrogated the MAC30-evoked oncogenic role in HCC cells. In addition, the knockdown of MAC30 impeded tumor formation and the growth rate of HCC cells in vivo. Taken together, our data recognized MAC30 as a potential tumor-promotion factor in HCC, which accelerated the proliferation and invasion of HCC through the up-regulation of Wnt/β-catenin signaling. Our study suggests MAC30 as a potential anticancer target for HCC.
Collapse
|
7
|
Moris D, Shaw BI, McElroy L, Barbas AS. Using Hepatocellular Carcinoma Tumor Burden Score to Stratify Prognosis after Liver Transplantation. Cancers (Basel) 2020; 12:E3372. [PMID: 33202588 PMCID: PMC7697953 DOI: 10.3390/cancers12113372] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Liver transplantation (LT) remains a mainstay of treatment for hepatocellular carcinoma (HCC). Tumor factors such as size and number of tumors define eligibility for LT using the Milan criteria. The tumor burden score (TBS) incorporates both tumor number and size into a single continuous variable and has been used to differentiate prognosis among patients undergoing resection for HCC. The objective of the present study was to evaluate the ability of the TBS to predict overall and recurrence-free survival in patients undergoing LT for HCC. The Scientific Registry of Transplant Recipients (SRTR) was used to analyze all liver transplants for HCC, with initial tumor size data from 2004 to 2018. There were 12,486 patients in the study period. In the unadjusted analyses, patients with a high TBS had worse overall (p < 0.0001) and recurrence-free (p < 0.0001) survival. In the adjusted analyses, a high TBS was associated with a greater hazard ratio (HR) of death (HR = 1.21; 95%CI, [1.13-1.30]; p < 0.001) and recurrence (HR = 1.49; 95%CI [1.3-1.7]; p < 0.001). When we superimposed the TBS on the Milan criteria, we saw that a higher TBS was associated with a higher hazard of recurrence at values that were either all within (HR = 1.20; 95%CI, [1.04-1.37]; p = 0.011) or variably within (HR = 1.53; 95%CI, [1.16-2.01]; p = 0.002) the Milan criteria. In conclusion, the TBS is a promising tool in predicting outcomes in patients with HCC after LT.
Collapse
Affiliation(s)
- Dimitrios Moris
- Box 3512, DUMC, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA; (B.I.S.); (L.M.); (A.S.B.)
| | | | | | | |
Collapse
|
8
|
Abstract
External beam radiotherapy (EBRT) has improved efficacy and safety with advancements in technology and techniques. EBRT plays an important role in management of hepatocellular carcinoma (HCC). In resectable cases, EBRT serves as a bridge to transplantation or improves local control through adjuvant radiotherapy. In unresectable patients, EBRT offers high local control rates. In metastatic settings, EBRT provides effective palliation. This review presents an overview of radiotherapy treatment modalities used for HCC, current treatment guidelines for the role of EBRT in HCC, clinical outcomes between various EBRT approaches and other locoregional treatments for HCC, and the future role of EBRT for HCC.
Collapse
Affiliation(s)
- Chien Peter Chen
- Department of Radiation Oncology, Scripps Radiation Therapy Center, 10670 John Jay Hopkins Drive, San Diego, CA 92121, USA.
| |
Collapse
|
9
|
Garg R, Foley K, Movahedi B, Masciocchi MJ, Bledsoe JR, Ding L, Rava P, Fitzgerald TJ, Sioshansi S. Outcomes After Stereotactic Body Radiation Therapy as a Bridging Modality to Liver Transplantation for Hepatocellular Carcinoma. Adv Radiat Oncol 2020; 6:100559. [PMID: 33665482 PMCID: PMC7897771 DOI: 10.1016/j.adro.2020.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 01/04/2023] Open
Abstract
Purpose For patients with hepatocellular carcinoma awaiting liver transplantation (LT), stereotactic body radiation therapy (SBRT) has emerged as a bridging treatment to ensure patients maintain priority status and eligibility per Milan criteria. In this study, we aimed to determine the efficacy and safety of SBRT in such situations. Methods and Materials A retrospective analysis was conducted of the outcomes of 27 patients treated with SBRT who were listed for LT at 1 institution. Among these, 20 patients with 26 tumors went on to LT and were the focus of this study. Operative reports and postoperative charts were evaluated for potential radiation-related complications. The explant pathology findings were correlated with equivalent dose in 2 Gy fractions and tumor size. Results Median pretreatment tumor size was 3.05 cm. Median total dose of radiation was 50 Gy delivered in 5 fractions. Pathologic complete response (pCR) was achieved in 16 tumors (62%). Median interval from end of SBRT to transplant was 287 days. Of the 21 tumors imaged before transplant, 16 or 76% demonstrated a clinical complete response based on modified Response Evaluation Criteria in Solid Tumors criteria. There was no significant correlation between pCR rate and increasing tumor size (odds ratio [OR], 0.95; 95% confidence interval, 0.595-1.53) or pCR rate and equivalent dose in 2 Gy fractions (OR, 1.03; 95% confidence interval, 0.984-1.07.) No patients experienced radiation-related operative or postoperative complications. Of the 27 patients who were listed for transplant, the dropout rate was 22%. Two of the 5 patients with Child-Pugh score 10 died of liver failure. Conclusions These data demonstrate that SBRT as a bridging modality is a feasible option, with a pCR rate comparable to that of other bridging modalities and no additional radiation-related operative or postoperative complications. There was no dose dependence nor size dependence for pCR rate, which may indicate that for the tumor sizes in this study, the radiation doses delivered were sufficiently high.
Collapse
Affiliation(s)
- Rashi Garg
- Department of Radiation Oncology, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts
| | - Kimberly Foley
- Department of Transplant Surgery, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts
| | - Babak Movahedi
- Department of Transplant Surgery, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts
| | - Mark J Masciocchi
- Department of Radiology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts
| | - Jacob R Bledsoe
- Department of Pathology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts
| | - Linda Ding
- Department of Radiation Oncology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts
| | - Paul Rava
- Department of Radiation Oncology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts
| | - Thomas J Fitzgerald
- Department of Radiation Oncology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts
| | - Shirin Sioshansi
- Department of Radiation Oncology, University of Massachusetts Memorial Medical Center, Worcester, Massachusetts
| |
Collapse
|