1
|
Mao D, Li C, Zheng D, Jiang K, He Y, Fang Y, Bai Y, Luo B, Yao H, Zhao S, Tang S, Liu S, Li Q, Li X, Yang Q, Mo Y, Liu X, Quan L, Huang E. Morphological phenotype of right ventricular outflow tract is associated with cardiovascular outcomes and premature death. Sci Rep 2024; 14:25128. [PMID: 39448696 PMCID: PMC11502750 DOI: 10.1038/s41598-024-77023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Morphology of right ventricular outflow tract (RVOT) is potentially related to cardiovascular outcomes. However, this relationship still remains to be verified with direct evidence. We retrospectively reviewed cases from the autopsy specimen library in the Center of Forensic Medicine in Sun Yat-sen University from 2017 to 2023. Six RVOT morphological characteristics were measured and their association with cardiovascular diseases (CVDs), sudden cardiac death (SCD) and age at death was evaluated. Relationship between myocardial fibrosis in RVOT and CVDs was investigated. RVOT characteristics were recruited by machine learning algorithms for diagnosing CVDs. A total of 2370 cases were finally recruited. Perimeter of sub-valve plane (pSBV) in RVOT was positively associated with risk of CVDs and SCD (OR: 1.21, 95%CI: 1.07-1.37, p = 0.003; OR: 1.33, 95%CI: 1.16-1.52, p < 0.001). Compared with thickness of septum (tS) < 3.0 mm, tS ≥ 3.0 mm was associated with premature death in disease-dominant death (β=-0.16, 95%CI: -0.20 to -0.11, p < 0.001) and SCD (β=-0.15, 95%CI: -0.21 to -0.10, p < 0.001). Degree of myocardial fibrosis in the posterior septum was increased in coronary atherosclerosis (6.86%±2.48% vs. 4.91%±2.14%, p = 0.011) and cardiomyopathies (8.11%±3.24% vs. 4.88%±3.11%, p = 0.005). A logistic regression model, recruiting age, left and right ventricular wall thickness, pSBV, circumference of pulmonary annulus and aortic annulus, was elected as an optimal diagnostic model of CVDs, yielding AUC of 0.734 (95%CI: 0.705-0.763), 0.781 (0.740-0.821) and 0.763 (0.725-0.800) in training, validation and test sets. Increased pSBV significantly correlates with higher risk of CVDs and SCD. And tS ≥ 3.0 mm is an independent risk factor of premature death regardless of diseases.
Collapse
Affiliation(s)
- Danmi Mao
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Chao Li
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Da Zheng
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Kaisheng Jiang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yang He
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Ying Fang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yang Bai
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Bin Luo
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Hui Yao
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Shuquan Zhao
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Shuangbo Tang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Shuiping Liu
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Qiuchen Li
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Xinyan Li
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Qiang Yang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yuye Mo
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Xiaoshan Liu
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| | - Li Quan
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| | - Erwen Huang
- Faculty of Forensic Medicine, Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
2
|
Kotake Y, Barua S, Kazi S, Virk S, Bhaskaran A, Campbell T, Bennett RG, Kumar S. Efficacy and safety of catheter ablation for Brugada syndrome: an updated systematic review. Clin Res Cardiol 2023; 112:1715-1726. [PMID: 35451610 PMCID: PMC10698106 DOI: 10.1007/s00392-022-02020-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/31/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Patients with Brugada syndrome (BrS) may experience recurrent ventricular arrhythmias (VAs). Catheter ablation is becoming an emerging paradigm for treatment of BrS. OBJECTIVE To assess the efficacy and safety of catheter ablation in BrS in an updated systematic review. METHODS We comprehensively searched the databases of Pubmed/Medline, EMBASE, and Cochrane Central Register of Controlled Trials from inception to 11th of August 2021. RESULTS Fifty-six studies involving 388 patients were included. A substrate-based strategy was used in 338 cases (87%), and a strategy of targeting premature ventricular complex (PVCs)/ventricular tachycardias (VTs) that triggered ventricular fibrillation (VF) in 47 cases (12%), with combined abnormal electrogram and PVC/VT ablation in 3 cases (1%). Sodium channel blocker was frequently used to augment the arrhythmogenic substrate in 309/388 cases (80%), which included a variety of agents, of which ajmaline was most commonly used. After ablation procedure, the pooled incidence of non-inducibility of VA was 87.1% (95% confidence interval [CI], 73.4-94.3; I2 = 51%), and acute resolution of type I ECG was seen in 74.5% (95% CI [52.3-88.6]; I2 = 75%). Over a weighted mean follow up of 28 months, 7.6% (95% CI [2.1-24]; I2 = 67%) had recurrence of type I ECG either spontaneously or with drug challenge and 17.6% (95% CI [10.2-28.6]; I2 = 60%) had recurrence of VA. CONCLUSION Catheter ablation appears to be an efficacious strategy for elimination of arrhythmias or substrate associated with BrS. Further study is needed to identify which patients stand to benefit, and optimal provocation protocol for identifying ablation targets.
Collapse
Affiliation(s)
- Yasuhito Kotake
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
- Westmead Applied Research Centre, University of Sydney, Westmead, NSW, Australia
| | - Sumita Barua
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
| | - Samia Kazi
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
| | - Sohaib Virk
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
| | - Ashwin Bhaskaran
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
- Westmead Applied Research Centre, University of Sydney, Westmead, NSW, Australia
| | - Timothy Campbell
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
- Westmead Applied Research Centre, University of Sydney, Westmead, NSW, Australia
| | - Richard G Bennett
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia
- Westmead Applied Research Centre, University of Sydney, Westmead, NSW, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Westmead, NSW, Australia.
- Westmead Applied Research Centre, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
3
|
Cheng WH, Chung FP, Lin YJ, Lo LW, Chang SL, Hu YF, Tuan TC, Chao TF, Liao JN, Lin CY, Chang TY, Kuo L, Wu CI, Liu CM, Liu SH, Chen SA. Catheter Ablation in Arrhythmic Cardiac Diseases: Endocardial and Epicardial Ablation. Rev Cardiovasc Med 2022; 23:324. [PMID: 39077706 PMCID: PMC11262352 DOI: 10.31083/j.rcm2309324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 07/31/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a group of arrhythmogenic disorders of the myocardium that are not caused by ischemic, hypertensive, or valvular heart disease. The clinical manifestations of ACMs may overlap those of dilated cardiomyopathy, complicating the differential diagnosis. In several ACMs, ventricular tachycardia (VT) has been observed at an early stage, regardless of the severity of the disease. Therefore, preventing recurrences of VT can be a clinical challenge. There is a wide range of efficacy and side effects associated with the use of antiarrhythmic drugs (AADs) in the treatment of VT. In addition to AADs, patients with ACM and ventricular tachyarrhythmias may benefit from catheter ablation, especially if they are drug-refractory. The differences in pathogenesis between the various types of ACMs can lead to heterogeneous distributions of arrhythmogenic substrates, non-uniform ablation strategies, and distinct ablation outcomes. Ablation has been documented to be effective in eliminating ventricular tachyarrhythmias in arrhythmogenic right ventricular dysplasia (ARVC), sarcoidosis, Chagas cardiomyopathy, and Brugada syndrome (BrS). As an entity that is rare in nature, ablation for ventricular tachycardia in certain forms of ACM may only be reported through case reports, such as amyloidosis and left ventricular noncompaction. Several types of ACMs, including ARVC, sarcoidosis, Chagas cardiomyopathy, BrS, and left ventricular noncompaction, may exhibit diseased substrates within or adjacent to the epicardium that may be accountable for ventricular arrhythmogenesis. As a result, combining endocardial and epicardial ablation is of clinical importance for successful ablation. The purpose of this article is to provide a comprehensive overview of the substrate characteristics, ablation strategies, and ablation outcomes of various types of ACMs using endocardial and epicardial approaches.
Collapse
Affiliation(s)
- Wen-Han Cheng
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
- Department of Medicine, Taipei Veterans General Hospital Taitung Branch, 95050 Taitung, Taiwan
| | - Fa-Po Chung
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Yenn-Jiang Lin
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Li-Wei Lo
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Shih-Lin Chang
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Yu-Feng Hu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Ta-Chuan Tuan
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Tze-Fan Chao
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Jo-Nan Liao
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Chin-Yu Lin
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Ting-Yung Chang
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Ling Kuo
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Cheng-I Wu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Chih-Min Liu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Shin-Huei Liu
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
| | - Shih-Ann Chen
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, 11217 Taipei, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, 112304 Taipei, Taiwan
- Cardiovascular Center, Taichung Veterans General Hospital, 40705 Taichung, Taiwan
| |
Collapse
|
4
|
Zoppo F, Gagno G, Perazza L, Cocciolo A, Mugnai G, Vaccari D, Calzolari V. Electroanatomic voltage mapping for tissue characterization beyond arrhythmia definition: A systematic review. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2021; 44:1432-1448. [PMID: 34096635 DOI: 10.1111/pace.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/17/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
Three-dimensional (3D) reconstruction by means of electroanatomic mapping (EAM) systems, allows for the understanding of the mechanism of focal or re-entrant arrhythmic circuits, which can be identified by means of dynamic (activation and propagation) and static (voltage) color-coded maps. However, besides this conventional use, EAM may offer helpful anatomical and functional information for tissue characterisation in several clinical settings. Today, data regarding electromechanical myocardial viability, scar detection in ischaemic and nonischaemic cardiomyopathy and arrhythmogenic right ventricle dysplasia (ARVC/D) definition are mostly consolidated, while emerging results are becoming available in contexts such as Brugada syndrome and cardiac resynchronisation therapy (CRT) implant procedures. As part of an invasive procedure, EAM has not yet been widely adopted as a stand-alone tool in the diagnostic path. We aim to review the data in the current literature regarding the use of 3D EAM systems beyond the definition of arrhythmia.
Collapse
Affiliation(s)
- Franco Zoppo
- Elettrofisiologia, U.O.C. di Cardiologia, Ospedale Civile Gorizia, Gorizia, Italy
| | - Giulia Gagno
- Dipartimento di Cardiologia, Azienda Sanitaria Universitaria Giuliano Isontina, ed Università degli Studi di Trieste, Trieste, Italy
| | - Luca Perazza
- Elettrofisiologia, U.O.C. di Cardiologia, Ospedale Civile Gorizia, Gorizia, Italy
| | - Andrea Cocciolo
- Elettrofisiologia, U.O.C. di Cardiologia, Ospedale Civile Gorizia, Gorizia, Italy
| | - Giacomo Mugnai
- Elettrofisiologia, U.O.C di Cardiologia, Ospedale Civile Arzignano, Vicenza, Italy
| | - Diego Vaccari
- Elettrofisiologia, U.O.C di Cardiologia, Ospedale Civile Feltre, Belluno, Italy
| | - Vittorio Calzolari
- Elettrofisiologia, U.O.C di Cardiologia, Ospedale Civile Treviso, Treviso, Italy
| |
Collapse
|
5
|
Ablation strategies for the management of symptomatic Brugada syndrome: A systematic review. Heart Rhythm 2018; 15:1140-1147. [DOI: 10.1016/j.hrthm.2018.03.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Indexed: 11/18/2022]
|