1
|
Qian S, Connolly A, Mendonca-Costa C, Campos F, Williams SE, Whitaker J, Rinaldi CA, Bishop MJ. An in-silico assessment of efficacy of two novel intra-cardiac electrode configurations versus traditional anti-tachycardia pacing therapy for terminating sustained ventricular tachycardia. Comput Biol Med 2021; 139:104987. [PMID: 34741904 PMCID: PMC8669079 DOI: 10.1016/j.compbiomed.2021.104987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 11/06/2022]
Abstract
The implanted cardioverter defibrillator (ICD) is an effective direct therapy for the treatment of cardiac arrhythmias, including ventricular tachycardia (VT). Anti-tachycardia pacing (ATP) is often applied by the ICD as the first mode of therapy, but is often found to be ineffective, particularly for fast VTs. In such cases, strong, painful and damaging backup defibrillation shocks are applied by the device. Here, we propose two novel electrode configurations: "bipolar" and "transmural" which both combine the concept of targeted shock delivery with the advantage of reduced energy required for VT termination. We perform an in silico study to evaluate the efficacy of VT termination by applying one single (low-energy) monophasic shock from each novel configuration, comparing with conventional ATP therapy. Both bipolar and transmural configurations are able to achieve a higher efficacy (93% and 85%) than ATP (45%), with energy delivered similar to and two orders of magnitudes smaller than conventional ICD defibrillation shocks, respectively. Specifically, the transmural configuration (which applies the shock vector directly across the scar substrate sustaining the VT) is most efficient, requiring typically less than 1 J shock energy to achieve a high efficacy. The efficacy of both bipolar and transmural configurations are higher when applied to slow VTs (100% and 97%) compared to fast VTs (57% and 29%). Both novel electrode configurations introduced are able to improve electrotherapy efficacy while reducing the overall number of required therapies and need for strong backup shocks.
Collapse
Affiliation(s)
- Shuang Qian
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom.
| | - Adam Connolly
- Invicro, Burlington Danes Building, Du Cane Rd, London, W12 0N, United Kingdom
| | - Caroline Mendonca-Costa
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| | - Fernando Campos
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| | - Steven E Williams
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| | - John Whitaker
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom; Department of Cardiology, Guy's and St Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Christopher A Rinaldi
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom; Department of Cardiology, Guy's and St Thomas' Hospital, London, SE1 7EH, United Kingdom
| | - Martin J Bishop
- School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, 4th Floor, Lambeth Wing, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| |
Collapse
|
2
|
Connolly A, Williams S, Rhode K, Rinaldi CA, Bishop MJ. Conceptual Intra-Cardiac Electrode Configurations That Facilitate Directional Cardiac Stimulation for Optimal Electrotherapy. IEEE Trans Biomed Eng 2019; 66:1259-1268. [PMID: 31021745 PMCID: PMC7054045 DOI: 10.1109/tbme.2018.2871863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Electrotherapy remains the most effective direct therapy against lethal cardiac arrhythmias. When an arrhythmic event is sensed, either strong electric shocks or controlled rapid pacing is automatically applied directly to the heart via an implanted cardioverter defibrillator (ICDs). Despite their success, ICDs remain a highly non-optimal therapy: the strong shocks required for defibrillation cause significant extra-cardiac stimulation, resulting in pain and long-term tissue damage, and can also limit battery life. When used in anti-tachycardia pacing mode, ICDs are also often ineffective, as the pacing electrode can be far away from the centre of the arrhythmia, making it hard for the paced wave to interrupt and terminate it. METHODS In this paper, we present two conceptual intra-cardiac directional electrode configurations in silico based on novel arrangements of pairs of positive-negative electrodes. Both configurations have the potential to cause preferential excitation on specific regions of the heart. RESULTS We demonstrate how the properties of the induced field varies spatially around the electrodes and how it depends upon the specific arrangements of dipole electrode pairs. The results show that when tested within anatomically-realistic rabbit ventricular models, both electrode configurations produce strong virtual electrodes on the targeted endocardial surfaces, with weaker virtual electrodes produced elsewhere. CONCLUSIONS The proposed electrode configurations may facilitate targeted far-field anti-tachycardia pacing and/or defibrillation, which may be useful in cases where conventional anti-tachycardia pacing fails. In addition, the conceptual electrode designs intrinsically confine the electric field to the immediate vicinity of the electrodes, and may, thus, minimize pain due to unnecessary extra-cardiac stimulation.
Collapse
|
3
|
Caldwell BJ, Trew ML, Pertsov AM. Cardiac response to low-energy field pacing challenges the standard theory of defibrillation. Circ Arrhythm Electrophysiol 2015; 8:685-93. [PMID: 25772543 DOI: 10.1161/circep.114.002661] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 02/25/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND The electric response of myocardial tissue to periodic field stimuli has attracted significant attention as the basis for low-energy antifibrillation pacing, potentially more effective than traditional single high-energy shocks. In conventional models, an electric field produces a highly nonuniform response of the myocardial wall, with discrete excitations, or hot spots (HS), occurring at cathodal tissue surfaces or large coronary vessels. We test this prediction using novel 3-dimensional tomographic optical imaging. METHODS AND RESULTS Experiments were performed in isolated coronary perfused pig ventricular wall preparations stained with near-infrared voltage-sensitive fluorescent dye DI-4-ANBDQBS. The 3-dimensional coordinates of HS were determined using alternating transillumination. To relate HS formation with myocardial structures, we used ultradeep confocal imaging (interrogation depths, >4 mm). The peak HS distribution is located deep inside the heart wall, and the depth is not significantly affected by field polarity. We did not observe the strong colocalization of HS with major coronary vessels anticipated from theory. Yet, we observed considerable lateral displacement of HS with field polarity reversal. Models that de-emphasized lateral intracellular coupling and accounted for resistive heterogeneity in the extracellular space showed similar HS distributions to the experimental observations. CONCLUSIONS The HS distributions within the myocardial wall and the significant lateral displacements with field polarity reversal are inconsistent with standard theories of defibrillation. Extended theories based on enhanced descriptions of cellular scale electric mechanisms may be necessary. The considerable lateral displacement of HS with field polarity reversal supports the hypothesis of biphasic stimuli in low-energy antifibrillation pacing being advantageous.
Collapse
Affiliation(s)
- Bryan J Caldwell
- From the Department of Pharmacology, State University of New York Upstate Medical University, Syracuse (B.J.C., A.M.P.); and Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand (M.L.T.)
| | - Mark L Trew
- From the Department of Pharmacology, State University of New York Upstate Medical University, Syracuse (B.J.C., A.M.P.); and Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand (M.L.T.).
| | - Arkady M Pertsov
- From the Department of Pharmacology, State University of New York Upstate Medical University, Syracuse (B.J.C., A.M.P.); and Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand (M.L.T.)
| |
Collapse
|
4
|
Joung B, Park HW, Maruyama M, Tang L, Song J, Han S, Piccirillo G, Weiss JN, Lin SF, Chen PS. Intracellular calcium and the mechanism of anodal supernormal excitability in langendorff perfused rabbit ventricles. Circ J 2011; 75:834-43. [PMID: 21301131 DOI: 10.1253/circj.cj-10-1014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anodal stimulation hyperpolarizes the cell membrane and increases the intracellular Ca(2+) (Ca(i)) transient. This study tested the hypothesis that the maximum slope of the Ca(i) decline (-(dCa(i)/dt)(max)) corresponds to the timing of anodal dip on the strength-interval curve and the initiation of repetitive responses and ventricular fibrillation (VF) after a premature stimulus (S(2)). METHODS AND RESULTS We simultaneously mapped the membrane potential (V(m)) and Ca(i) in 23 rabbit ventricles. A dip in the anodal strength-interval curve was observed. During the anodal dip, ventricles were captured by anodal break excitation directly under the S(2) electrode. The Ca(i) following anodal stimuli is larger than that following cathodal stimuli. The S(1)-S(2) intervals of the anodal dip (203±10 ms) coincided with the -(dCa(i)/dt)(max) (199±10 ms, P=NS). BAPTA-AM (n=3), inhibition of the electrogenic Na(+)-Ca(2+) exchanger current (I(NCX)) by low extracellular Na(+) (n=3), and combined ryanodine and thapsigargin infusion (n=2) eliminated the anodal supernormality. Strong S(2) during the relative refractory period (n=5) induced 29 repetitive responses and 10 VF episodes. The interval between S(2) and the first non-driven beat was coincidental with the time of -(dCa(i)/dt)(max). CONCLUSIONS Larger Ca(i) transient and I(NCX) activation induced by anodal stimulation produces anodal supernormality. The time of maximum I(NCX) activation is coincidental to the induction of non-driven beats from the Ca(i) sinkhole after a strong premature stimulation.
Collapse
Affiliation(s)
- Boyoung Joung
- Krannert Institute of Cardiology and the Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Caldwell BJ, Wellner M, Mitrea BG, Pertsov AM, Zemlin CW. Probing field-induced tissue polarization using transillumination fluorescent imaging. Biophys J 2011; 99:2058-66. [PMID: 20923639 DOI: 10.1016/j.bpj.2010.07.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022] Open
Abstract
Despite major successes of biophysical theories in predicting the effects of electrical shocks within the heart, recent optical mapping studies have revealed two major discrepancies between theory and experiment: 1), the presence of negative bulk polarization recorded during strong shocks; and 2), the unexpectedly small surface polarization under shock electrodes. There is little consensus as to whether these differences result from deficiencies of experimental techniques, artifacts of tissue damage, or deficiencies of existing theories. Here, we take advantage of recently developed near-infrared voltage-sensitive dyes and transillumination optical imaging to perform, for the first time that we know of, noninvasive probing of field effects deep inside the intact ventricular wall. This technique removes some of the limitations encountered in previous experimental studies. We explicitly demonstrate that deep inside intact myocardial tissue preparations, strong electrical shocks do produce considerable negative bulk polarization previously inferred from surface recordings. We also demonstrate that near-threshold diastolic field stimulation produces activation of deep myocardial layers 2-6 mm away from the cathodal surface, contrary to theory. Using bidomain simulations we explore factors that may improve the agreement between theory and experiment. We show that the inclusion of negative asymmetric current can qualitatively explain negative bulk polarization in a discontinuous bidomain model.
Collapse
Affiliation(s)
- Bryan J Caldwell
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, New York, NY, USA.
| | | | | | | | | |
Collapse
|
6
|
Maleckar MM, Woods MC, Sidorov VY, Holcomb MR, Mashburn DN, Wikswo JP, Trayanova NA. Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms. Am J Physiol Heart Circ Physiol 2008; 295:H1626-33. [PMID: 18708441 DOI: 10.1152/ajpheart.00706.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To fully characterize the mechanisms of defibrillation, it is necessary to understand the response, within the three-dimensional (3D) volume of the ventricles, to shocks given in diastole. Studies that have examined diastolic responses conducted measurements on the epicardium or on a transmural surface of the left ventricular (LV) wall only. The goal of this study was to use optical imaging experiments and 3D bidomain simulations, including a model of optical mapping, to ascertain the shock-induced virtual electrode and activation patterns throughout the rabbit ventricles following diastolic shocks. We tested the hypothesis that the locations of shock-induced regions of hyperpolarization govern the different diastolic activation patterns for shocks of reversed polarity. In model and experiment, uniform-field monophasic shocks of reversed polarities (cathode over the right ventricle is RV-, reverse polarity is LV-) were applied to the ventricles in diastole. Experiments and simulations revealed that RV- shocks resulted in longer activation times compared with LV- shocks of the same strength. 3D simulations demonstrated that RV- shocks induced a greater volume of hyperpolarization at shock end compared with LV- shocks; most of these hyperpolarized regions were located in the LV. The results of this study indicate that ventricular geometry plays an important role in both the location and size of the shock-induced virtual anodes that determine activation delay during the shock and subsequently affect shock-induced propagation. If regions of hyperpolarization that develop during the shock are sufficiently large, activation delay may persist until shock end.
Collapse
Affiliation(s)
- M M Maleckar
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Hooks DA, Trew ML, Caldwell BJ, Sands GB, LeGrice IJ, Smaill BH. Laminar Arrangement of Ventricular Myocytes Influences Electrical Behavior of the Heart. Circ Res 2007; 101:e103-12. [PMID: 17947797 DOI: 10.1161/circresaha.107.161075] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The response of the heart to electrical shock, electrical propagation in sinus rhythm, and the spatiotemporal dynamics of ventricular fibrillation all depend critically on the electrical anisotropy of cardiac tissue. A long-held view of cardiac electrical anisotropy is that electrical conductivity is greatest along the myocyte axis allowing most rapid propagation of electrical activation in this direction, and that conductivity is isotropic transverse to the myocyte axis supporting a slower uniform spread of activation in this plane. In this context, knowledge of conductivity in two directions, parallel and transverse to the myofiber axis, is sufficient to characterize the electrical action of the heart. Here we present new experimental data that challenge this view. We have used a novel combination of intramural electrical mapping, and experiment-specific computer modeling, to demonstrate that left ventricular myocardium has unique bulk conductivities associated with three microstructurally-defined axes. We show that voltage fields induced by intramural current injection are influenced by not only myofiber direction, but also the transmural arrangement of muscle layers or myolaminae. Computer models of these experiments, in which measured 3D tissue structure was reconstructed in-silico, best matched recorded voltages with conductivities in the myofiber direction, and parallel and normal to myolaminae, set in the ratio 4:2:1, respectively. These findings redefine cardiac tissue as an electrically orthotropic substrate and enhance our understanding of how external shocks may act to successfully reset the fibrillating heart into a uniform electrical state. More generally, the mechanisms governing the destabilization of coordinated electrical propagation into ventricular arrhythmia need to be evaluated in the light of this discovery.
Collapse
Affiliation(s)
- Darren A. Hooks
- From the Bioengineering Institute (D.A.H., M.L.T., B.J.C., G.B.S., I.J.L., B.H.S.), and the Department of Physiology, School of Medicine (I.J.L., B.H.S.), University of Auckland, New Zealand
| | - Mark L. Trew
- From the Bioengineering Institute (D.A.H., M.L.T., B.J.C., G.B.S., I.J.L., B.H.S.), and the Department of Physiology, School of Medicine (I.J.L., B.H.S.), University of Auckland, New Zealand
| | - Bryan J. Caldwell
- From the Bioengineering Institute (D.A.H., M.L.T., B.J.C., G.B.S., I.J.L., B.H.S.), and the Department of Physiology, School of Medicine (I.J.L., B.H.S.), University of Auckland, New Zealand
| | - Gregory B. Sands
- From the Bioengineering Institute (D.A.H., M.L.T., B.J.C., G.B.S., I.J.L., B.H.S.), and the Department of Physiology, School of Medicine (I.J.L., B.H.S.), University of Auckland, New Zealand
| | - Ian J. LeGrice
- From the Bioengineering Institute (D.A.H., M.L.T., B.J.C., G.B.S., I.J.L., B.H.S.), and the Department of Physiology, School of Medicine (I.J.L., B.H.S.), University of Auckland, New Zealand
| | - Bruce H. Smaill
- From the Bioengineering Institute (D.A.H., M.L.T., B.J.C., G.B.S., I.J.L., B.H.S.), and the Department of Physiology, School of Medicine (I.J.L., B.H.S.), University of Auckland, New Zealand
| |
Collapse
|
8
|
Evaluating intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions. Biophys J 2007; 94:1904-15. [PMID: 17993491 DOI: 10.1529/biophysj.107.121343] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While defibrillation is the only means for prevention of sudden cardiac death, key aspects of the process, such as the intramural virtual electrodes (VEs), remain controversial. Experimental studies had attempted to assess intramural VEs by using wedge preparations and recording activity from the cut surface; however, applicability of this approach remains unclear. These studies found, surprisingly, that for strong shocks, the entire cut surface was negatively polarized, regardless of boundary conditions. The goal of this study is to examine, by means of bidomain simulations, whether VEs on the cut surface represent a good approximation to VEs in depth of the intact wall. Furthermore, we aim to explore mechanisms that could give rise to negative polarization on the cut surface. A model of wedge preparation was used, in which fiber orientation could be changed, and where the cut surface was subjected to permeable and impermeable boundary conditions. Small-scale mechanisms for polarization were also considered. To determine whether any distortions in the recorded VEs arise from averaging during optical mapping, a model of fluorescent recording was employed. The results indicate that, when an applied field is spatially uniform and impermeable boundary conditions are enforced, regardless of the fiber orientation VEs on the cut surface faithfully represent those intramurally, provided tissue properties are not altered by dissection. Results also demonstrate that VEs are sensitive to the conductive layer thickness above the cut surface. Finally, averaging during fluorescent recordings results in large negative VEs on the cut surface, but these do not arise from small-scale heterogeneities.
Collapse
|
9
|
Windisch H, Platzer D, Bilgici E. Quantification of shock-induced microscopic virtual electrodes assessed by subcellular resolution optical potential mapping in guinea pig papillary muscle. J Cardiovasc Electrophysiol 2007; 18:1086-94. [PMID: 17655676 DOI: 10.1111/j.1540-8167.2007.00908.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The primary objective of this study was the quantitative description of shock-induced, locally occurring virtual electrodes in natural cardiac tissue. METHODS AND RESULTS Multiscale optical potential mapping using 10x, 20x, and 40x magnifying objectives, achieving resolutions of 0.13, 0.065, and 0.033 mm, was performed when applying uniform shocks (+/-10 V/cm, 5 ms) during diastole and action potential plateau. A procedure was developed to identify local potential deviations as depolarizing or hyperpolarizing peaks and to quantify their occurrence and characteristic amplitudes, lateral extents, and dynamics. At shock onset, peaks of either polarity developed significantly faster (tau = 0.92 +/- 0.65 ms, N = 64) than the average bulk polarization (tau = 2.25 +/- 0.96 ms, P < 0.001) and appeared locally fixed, changing their polarity at shock reversal. The mean peak magnitude (21.2 +/- 12 mV) and the amplitude distribution were essentially independent from the magnification. The peak density continuously increased with decreasing peak extent (taken at 70% of the amplitude), reaching a maximum of approximately 3 peaks/mm2 in the range of approximately 30-65 microm. There was no correlation between peak amplitude and size throughout. Potentially exciting peaks were found with a density of 0.04-0.2 peaks/mm2 corresponding to estimated 1-5 peaks/mm3. CONCLUSIONS Our results suggest that microscopic inhomogeneities form a substantial substrate for far-field excitation in natural cardiac tissue. Here, we effectively bridged the gap between the extensively studied myocyte cultures and larger heart preparations.
Collapse
Affiliation(s)
- Herbert Windisch
- Institute for Biophysics, Center for Physiological Medicine, Medical University Graz, Graz, Austria.
| | | | | |
Collapse
|