1
|
Bosada FM, van Duijvenboden K, Giovou AE, Rivaud MR, Uhm JS, Verkerk AO, Boukens BJ, Christoffels VM. An atrial fibrillation-associated regulatory region modulates cardiac Tbx5 levels and arrhythmia susceptibility. eLife 2023; 12:80317. [PMID: 36715501 PMCID: PMC9928424 DOI: 10.7554/elife.80317] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/29/2023] [Indexed: 01/31/2023] Open
Abstract
Heart development and rhythm control are highly Tbx5 dosage-sensitive. TBX5 haploinsufficiency causes congenital conduction disorders, whereas increased expression levels of TBX5 in human heart samples has been associated with atrial fibrillation (AF). We deleted the conserved mouse orthologues of two independent AF-associated genomic regions in the Tbx5 locus, one intronic (RE(int)) and one downstream (RE(down)) of Tbx5. In both lines, we observed a modest (30%) increase of Tbx5 in the postnatal atria. To gain insight into the effects of slight dosage increase in vivo, we investigated the atrial transcriptional, epigenetic and electrophysiological properties of both lines. Increased atrial Tbx5 expression was associated with induction of genes involved in development, ion transport and conduction, with increased susceptibility to atrial arrhythmias, and increased action potential duration of atrial cardiomyocytes. We identified an AF-associated variant in the human RE(int) that increases its transcriptional activity. Expression of the AF-associated transcription factor Prrx1 was induced in Tbx5RE(int)KO cardiomyocytes. We found that some of the transcriptional and functional changes in the atria caused by increased Tbx5 expression were normalized when reducing cardiac Prrx1 expression in Tbx5RE(int)KO mice, indicating an interaction between these two AF genes. We conclude that modest increases in expression of dose-dependent transcription factors, caused by common regulatory variants, significantly impact on the cardiac gene regulatory network and disease susceptibility.
Collapse
Affiliation(s)
- Fernanda M Bosada
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Alexandra E Giovou
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Mathilde R Rivaud
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Jae-Sun Uhm
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Cardiology, Severance Hospital, College of Medicine, Yonsei UniversitySeoulRepublic of Korea
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
- Department of Physiology, University of Maastricht, Cardiovascular Research Institute Maastricht, Maastricht University Medical CenterMaastrichtNetherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
2
|
van Ouwerkerk AF, Bosada FM, van Duijvenboden K, Houweling AC, Scholman KT, Wakker V, Allaart CP, Uhm JS, Mathijssen IB, Baartscheer T, Postma AV, Barnett P, Verkerk AO, Boukens BJ, Christoffels VM. Patient-specific TBX5-G125R Variant Induces Profound Transcriptional Deregulation and Atrial Dysfunction. Circulation 2022; 145:606-619. [PMID: 35113653 PMCID: PMC8860223 DOI: 10.1161/circulationaha.121.054347] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The pathogenic missense variant p.G125R in TBX5 causes Holt-Oram syndrome (HOS; hand-heart syndrome) and early onset of atrial fibrillation. Revealing how an altered key developmental transcription factor modulates cardiac physiology in vivo will provide unique insights into the mechanisms underlying atrial fibrillation in these patients. Methods: We analyzed electrocardiograms (ECGs) of an extended family pedigree of HOS patients. Next, we introduced the TBX5-p.G125R variant in the mouse genome (Tbx5G125R) and performed electrophysiological analyses (ECG, optical mapping, patch clamp, intracellular calcium measurements), transcriptomics (single nuclei and tissue RNA sequencing) and epigenetic profiling (ATAC-sequencing, H3K27ac CUT&RUN-sequencing). Results: We discovered high incidence of atrial extra systoles and atrioventricular conduction disturbances in HOS patients. Tbx5G125R/+ mice were morphologically unaffected and displayed variable RR intervals, atrial extra systoles and susceptibility to atrial fibrillation, reminiscent of TBX5-p.G125R patients. Atrial conduction velocity was not affected but systolic and diastolic intracellular calcium concentrations were decreased and action potentials prolonged in isolated cardiomyocytes of Tbx5G125R/+ mice compared to controls. Transcriptional profiling of atria revealed most profound transcriptional changes in cardiomyocytes versus other cell types, and identified over a thousand coding and non-coding transcripts that were differentially expressed. Epigenetic profiling uncovered thousands of TBX5-p.G125R sensitive putative regulatory elements (including enhancers) that gained accessibility in atrial cardiomyocytes. The majority of sites with increased accessibility were occupied by Tbx5. The small group of sites with reduced accessibility was enriched for DNA binding motifs of members of the SP- and KLF families of transcription factors. These data show that Tbx5-p.G125R induces changes in regulatory element activity, altered transcriptional regulation and changed cardiomyocyte behavior, possibly caused by altered DNA binding and cooperativity properties. Conclusions: Our data reveal how a disease-causing missense variant in TBX5 induces profound changes in the atrial transcriptional regulatory network and epigenetic state in vivo, leading to arrhythmia reminiscent of those seen in human TBX5-p.G125R variant carriers.
Collapse
Affiliation(s)
- Antoinette F van Ouwerkerk
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands; Aix-Marseille University, INSERM, TAGC, U1090, Marseille, France
| | - Fernanda M Bosada
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Koen T Scholman
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelis P Allaart
- Department of Cardiology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jae-Sun Uhm
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Inge B Mathijssen
- Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ton Baartscheer
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex V Postma
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands; Department of Human Genetics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands; Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Investigational Anti-Atrial Fibrillation Pharmacology and Mechanisms by Which Antiarrhythmics Terminate the Arrhythmia: Where Are We in 2020? J Cardiovasc Pharmacol 2021; 76:492-505. [PMID: 33165131 PMCID: PMC7641178 DOI: 10.1097/fjc.0000000000000892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antiarrhythmic drugs remain the mainstay therapy for patients with atrial fibrillation (AF). A major disadvantage of the currently available anti-AF agents is the risk of induction of ventricular proarrhythmias. Aiming to reduce this risk, several atrial-specific or -selective ion channel block approaches have been introduced for AF suppression, but only the atrial-selective inhibition of the sodium channel has been demonstrated to be valid in both experimental and clinical studies. Among the other pharmacological anti-AF approaches, “upstream therapy” has been prominent but largely disappointing, and pulmonary delivery of anti-AF drugs seems to be promising. Major contradictions exist in the literature about the electrophysiological mechanisms of AF (ie, reentry or focal?) and the mechanisms by which anti-AF drugs terminate AF, making the search for novel anti-AF approaches largely empirical. Drug-induced termination of AF may or may not be associated with prolongation of the atrial effective refractory period. Anti-AF drug research has been largely based on the “suppress reentry” ideology; however, results of the AF mapping studies increasingly indicate that nonreentrant mechanism(s) plays an important role in the maintenance of AF. Also, the analysis of anti-AF drug-induced electrophysiological alterations during AF, conducted in the current study, leans toward the focal source as the prime mechanism of AF maintenance. More effort should be placed on the investigation of pharmacological suppression of the focal mechanisms.
Collapse
|
4
|
Rahm AK, Wieder T, Gramlich D, Müller ME, Wunsch MN, El Tahry FA, Heimberger T, Sandke S, Weis T, Most P, Katus HA, Thomas D, Lugenbiel P. Differential regulation of K Ca 2.1 (KCNN1) K + channel expression by histone deacetylases in atrial fibrillation with concomitant heart failure. Physiol Rep 2021; 9:e14835. [PMID: 34111326 PMCID: PMC8191401 DOI: 10.14814/phy2.14835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/12/2023] Open
Abstract
Atrial fibrillation (AF) with concomitant heart failure (HF) poses a significant therapeutic challenge. Mechanism‐based approaches may optimize AF therapy. Small‐conductance, calcium‐activated K+ (KCa, KCNN) channels contribute to cardiac action potential repolarization. KCNN1 exhibits predominant atrial expression and is downregulated in chronic AF patients with preserved cardiac function. Epigenetic regulation is suggested by AF suppression following histone deacetylase (HDAC) inhibition. We hypothesized that HDAC‐dependent KCNN1 remodeling contributes to arrhythmogenesis in AF complicated by HF. The aim of this study was to assess KCNN1 and HDAC1–7 and 9 transcript levels in AF/HF patients and in a pig model of atrial tachypacing‐induced AF with reduced left ventricular function. In HL‐1 atrial myocytes, tachypacing and anti‐Hdac siRNAs were employed to investigate effects on Kcnn1 mRNA levels. KCNN1 expression displayed side‐specific remodeling in AF/HF patients with upregulation in left and suppression in right atrium. In pigs, KCNN1 remodeling showed intermediate phenotypes. HDAC levels were differentially altered in humans and pigs, reflecting highly variable epigenetic regulation. Tachypacing recapitulated downregulation of Hdacs1, 3, 4, 6, and 7 with a tendency towards reduced Kcnn1 levels in vitro, indicating that atrial high rates induce remodeling. Finally, Kcnn1 expression was decreased by knockdown of Hdacs2, 3, 6, and 7 and enhanced by genetic Hdac9 inactivation, while anti‐Hdac1, 4, and 5 siRNAs did not affect Kcnn1 transcript levels. In conclusion, KCNN1 and HDAC expression is differentially remodeled in AF complicated by HF. Direct regulation of KCNN1 by HDACs in atrial myocytes provides a basis for mechanism‐based antiarrhythmic therapy.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Teresa Wieder
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany
| | - Dominik Gramlich
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Mara Elena Müller
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Maximilian N Wunsch
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Fadwa A El Tahry
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Tanja Heimberger
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Steffi Sandke
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Tanja Weis
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Patrick Most
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.,HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Wuopio J, Orho-Melander M, Ärnlöv J, Nowak C. Estimated salt intake and risk of atrial fibrillation in a prospective community-based cohort. J Intern Med 2021; 289:700-708. [PMID: 33210391 PMCID: PMC8246952 DOI: 10.1111/joim.13194] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Hypertension predisposes to atrial fibrillation (AF) - a major risk factor for ischaemic stroke. Since a high dietary salt consumption is associated with hypertension, we investigated the association between urinary sodium excretion as a marker for dietary sodium intake and risk of new-onset AF in community-dwelling adults. METHOD The UK Biobank includes 40- to 69-year-old British residents recruited 2006-2010. Participants were divided into sex-specific quintiles according to 24-hour sodium excretion estimated based on spot samples with the Kawasaki equation. We excluded participants with AF at baseline. Cox regression adjusted for cardiovascular risk factors was used to assess associations with risk of AF, using the third quintile as reference. RESULTS A total of 257 545 women and 215 535 men were included. During up to 10 years' follow-up, 2221 women and 3751 men were diagnosed with AF. There was a tendency for an increased risk of AF in the lowest and highest quintiles of estimated daily salt intake in both women and men. In the fully adjusted model, significant associations were seen amongst men in the lowest and highest quintiles of sodium excretion (hazard ratio, HRQv1 , 1.20; 95% CI, 1.08-1.32, P < 0.001, and HRQv5 1.15, 95% CI, 1.03-1.27, P = 0.011). CONCLUSION We found evidence for a U-shaped association between estimated daily salt intake and AF risk amongst men. A suggestive J-shaped association in women was not statistically confirmed, but analyses were likely underpowered. Our results suggest that above a certain physiological minimum level progressively higher salt intake is associated with increasing risk of AF.
Collapse
Affiliation(s)
- J Wuopio
- From the, Department of Medicine, Mora County Hospital, Mora, Sweden.,Clinical Research Center, Falun, Sweden
| | - M Orho-Melander
- Department of Clinical Sciences, Diabetes and Cardiovascular Disease, Genetic Epidemiology, Lund University, Malmö, Sweden
| | - J Ärnlöv
- School of Health and Social Studies, Dalarna University, Falun, Sweden.,Department of Neurobiology, Care Sciences and Society (NVS), Family Medicine and Primary Care Unit, Karolinska Institutet, Huddinge, Sweden
| | - C Nowak
- Department of Neurobiology, Care Sciences and Society (NVS), Family Medicine and Primary Care Unit, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
6
|
Rahm AK, Wieder T, Gramlich D, Müller ME, Wunsch MN, El Tahry FA, Heimberger T, Weis T, Most P, Katus HA, Thomas D, Lugenbiel P. HDAC2-dependent remodeling of K Ca2.2 (KCNN2) and K Ca2.3 (KCNN3) K + channels in atrial fibrillation with concomitant heart failure. Life Sci 2020; 266:118892. [PMID: 33310041 DOI: 10.1016/j.lfs.2020.118892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
AIMS Atrial fibrillation (AF) with concomitant heart failure (HF) is associated with prolonged atrial refractoriness. Small-conductance, calcium-activated K+ (KCa, KCNN) channels promote action potential (AP) repolarization. KCNN2 and KCNN3 variants are associated with AF risk. In addition, histone deacetylase (HDAC)-related epigenetic mechanisms have been implicated in AP regulation. We hypothesized that HDAC2-dependent remodeling of KCNN2 and KCNN3 expression contributes to atrial arrhythmogenesis in AF complicated by HF. The objectives were to assess HDAC2 and KCNN2/3 transcript levels in AF/HF patients and in a pig model, and to investigate cellular epigenetic effects of HDAC2 inactivation on KCNN expression. MATERIALS AND METHODS HDAC2 and KCNN2/3 transcript levels were quantified in patients with AF and HF, and in a porcine model of atrial tachypacing-induced AF and reduced left ventricular function. Tachypacing and anti-Hdac2 siRNA treatment were employed in HL-1 atrial myocytes to study effects on KCNN2/3 mRNA and KCa protein abundance. KEY FINDINGS Atrial KCNN2 and KCNN3 expression was reduced in AF/HF patients and in a corresponding pig model. HDAC2 displayed significant downregulation in humans and a tendency towards reduced expression in right atrial tissue of pigs. Tachypacing recapitulated downregulation of Kcnn2/KCa2.2, Kcnn3/KCa2.3 and Hdac2/HDAC2, indicating that high atrial rates trigger epigenetic remodeling mechanisms. Finally, knock-down of Hdac2 in vitro reduced Kcnn3/KCa2.3 expression. SIGNIFICANCE KCNN2/3 and HDAC2 expression is suppressed in AF complicated by HF. Hdac2 directly regulates Kcnn3 mRNA levels in atrial cells. The mechanistic and therapeutic significance of epigenetic electrophysiological effects in AF requires further validation.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Teresa Wieder
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Dominik Gramlich
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Mara Elena Müller
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Maximilian N Wunsch
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Fadwa A El Tahry
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Tanja Heimberger
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Tanja Weis
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Most
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
van Staveren LN, de Groot NMS. Exploring Refractoriness as an Adjunctive Electrical Biomarker for Staging of Atrial Fibrillation. J Am Heart Assoc 2020; 9:e018427. [PMID: 33238778 PMCID: PMC7763798 DOI: 10.1161/jaha.120.018427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Patients diagnosed with the same subtype of atrial fibrillation according to our current classification system may differ in symptom severity, severity of the arrhythmogenic substrate, and response to antiarrhythmic therapy. Hence, there is a need for an electrical biomarker as an indicator of the arrhythmogenic substrate underlying atrial fibrillation enabling patient‐tailored therapy. The aim of this review is to investigate whether atrial refractoriness, a well‐known electrophysiological parameter that is affected by electrical remodeling, can be used as an electrical biomarker of the arrhythmogenic substrate underlying atrial fibrillation. We discuss methodologies of atrial effective refractory period assessment, identify which changes in refractoriness‐related parameters reflect different degrees of electrical remodeling, and explore whether these parameters can be used to predict clinical outcomes.
Collapse
|
8
|
Ganglionated Plexi Ablation for the Treatment of Atrial Fibrillation. J Clin Med 2020; 9:jcm9103081. [PMID: 32987820 PMCID: PMC7598705 DOI: 10.3390/jcm9103081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 01/11/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and is associated with significant morbidity and mortality. The autonomic nervous system (ANS) plays an important role in the initiation and development of AF, causing alterations in atrial structure and electrophysiological defects. The intrinsic ANS of the heart consists of multiple ganglionated plexi (GP), commonly nestled in epicardial fat pads. These GPs contain both parasympathetic and sympathetic afferent and efferent neuronal circuits that control the electrophysiological properties of the myocardium. Pulmonary vein isolation and other cardiac catheter ablation targets including GP ablation can disrupt the fibers connecting GPs or directly damage the GPs, mediating the benefits of the ablation procedure. Ablation of GPs has been evaluated over the past decade as an adjunctive procedure for the treatment of patients suffering from AF. The success rate of GP ablation is strongly associated with specific ablation sites, surgical techniques, localization techniques, method of access and the incorporation of additional interventions. In this review, we present the current data on the clinical utility of GP ablation and its significance in AF elimination and the restoration of normal sinus rhythm in humans.
Collapse
|
9
|
Lipovsky CE, Jimenez J, Guo Q, Li G, Yin T, Hicks SC, Bhatnagar S, Takahashi K, Zhang DM, Brumback BD, Goldsztejn U, Nadadur RD, Perez-Cervantez C, Moskowitz IP, Liu S, Zhang B, Rentschler SL. Chamber-specific transcriptional responses in atrial fibrillation. JCI Insight 2020; 5:135319. [PMID: 32841220 PMCID: PMC7526559 DOI: 10.1172/jci.insight.135319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/19/2020] [Indexed: 12/30/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, yet the molecular signature of the vulnerable atrial substrate is not well understood. Here, we delineated a distinct transcriptional signature in right versus left atrial cardiomyocytes (CMs) at baseline and identified chamber-specific gene expression changes in patients with a history of AF in the setting of end-stage heart failure (AF+HF) that are not present in heart failure alone (HF). We observed that human left atrial (LA) CMs exhibited Notch pathway activation and increased ploidy in AF+HF but not in HF alone. Transient activation of Notch signaling within adult CMs in a murine genetic model is sufficient to increase ploidy in both atrial chambers. Notch activation within LA CMs generated a transcriptomic fingerprint resembling AF, with dysregulation of transcription factor and ion channel genes, including Pitx2, Tbx5, Kcnh2, Kcnq1, and Kcnip2. Notch activation also produced distinct cellular electrophysiologic responses in LA versus right atrial CMs, prolonging the action potential duration (APD) without altering the upstroke velocity in the left atrium and reducing the maximal upstroke velocity without altering the APD in the right atrium. Our results support a shared human/murine model of increased Notch pathway activity predisposing to AF. Distinct transcriptional changes occur in human left versus right atrial cardiomyocytes in atrial fibrillation, including Notch pathway activation, which alters electric properties and ploidy in murine models.
Collapse
Affiliation(s)
- Catherine E Lipovsky
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and
| | | | - Qiusha Guo
- Department of Medicine, Cardiovascular Division
| | - Gang Li
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tiankai Yin
- Department of Medicine, Cardiovascular Division
| | | | - Somya Bhatnagar
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and
| | | | | | - Brittany D Brumback
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Uri Goldsztejn
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Carlos Perez-Cervantez
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | | | - Bo Zhang
- Department of Developmental Biology, and
| | - Stacey L Rentschler
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Mehra N, Kowlgi GN, Deshmukh AJ. Predictors of Outcomes in Patients with Atrial Fibrillation: What Can Be Used Now and What Hope Is in the Future. CURRENT CARDIOVASCULAR RISK REPORTS 2020. [DOI: 10.1007/s12170-020-00645-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Choi JI, Baek YS, Roh SY, Piccini JP, Kim YH. Chromosome 4q25 variants and biomarkers of myocardial fibrosis in patients with atrial fibrillation. J Cardiovasc Electrophysiol 2019; 30:1904-1913. [PMID: 31393025 DOI: 10.1111/jce.14104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/16/2019] [Accepted: 08/03/2019] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Little is known about how genetic predisposition and fibrosis relate in atrial fibrillation (AF). Hence, we sought to determine whether the genetic variants and biomarkers for fibrosis enhance prediction of outcomes after catheter ablation. METHODS AND RESULTS Consecutive patients who underwent catheter ablation of AF (paroxysmal, 158; nonparoxysmal, 137) or supraventricular tachycardia without AF (n = 70) were studied retrospectively. Plasma levels of transforming growth factor β1 (TGF-β1), tissue inhibitor of metalloproteinase 1 (TIMP-1), and 4q25 single-nucleotide polymorphisms (SNPs) (rs10033464 and rs220073) were measured. Mean plasma levels of both TGF-β1 and TIMP-1 were higher in patients with AF than in the control (all P < .001). Plasma levels of TIMP-1 were higher in patients with recurrence compared with those without recurrence (P = .039). Patients with variant alleles of rs10033464 showed increased recurrence after catheter ablation in patients with paroxysmal AF including after adjustment (P = .027). Patients with TIMP-1 < 107 ng/mL and no variant allele (GG) at rs10033464 had lower recurrence rates compared with other groups in those with paroxysmal AF (logrank; P = .007), whereas there was no significant difference among those patients with persistent forms of AF. Inclusion of biomarkers and genotype improved discrimination of AF recurrence in patients with paroxysmal AF (C-statistic .499 vs .600). CONCLUSIONS The combination of plasma TIMP-1 concentrations less than 107 ng/mL and the absence of a variant allele at rs10033464 was associated with lower recurrence rates in patients with paroxysmal AF. This study suggests that 4q25 SNPs and biomarkers for fibrosis may provide additive value in risk stratification for AF recurrence after catheter ablation.
Collapse
Affiliation(s)
- Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Yong Soo Baek
- Division of Cardiology, Department of Internal Medicine, Inha University Hospital, Incheon, Republic of Korea
| | - Seung Young Roh
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Jonathan P Piccini
- Duke Center for Atrial Fibrillation, Duke Clinical Research Institute, Duke University Medical Center, Durham, North Carolina
| | - Young-Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
12
|
Błaszyk K, Gwizdała A, Waśniewski M, Hiczkiewicz J, Seniuk W, Michalak M. Double atrial potentials in left-sided accessory pathways are associated with paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol 2017; 29:22-29. [PMID: 28940905 DOI: 10.1111/jce.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Muscular connections between the coronary sinus (CS) and left atrium probably impact distribution of electrical activity. Double atrial potentials (DP) may be their presentation. The aim was to investigate the presence of DP in CS recordings during atrioventricular reentrant tachycardia (AVRT) and its contribution to the occurrence of paroxysmal atrial fibrillation (AF). METHODS A group of 247 patients with accessory pathways (AP) were screened for DP. The patients with DP during AVRT were compared to those without DP. RESULTS DP during AVRT were found only among the left-sided AP (AP-L). Patients with AP-L were divided into Group 1 (n = 17) with DP during AVRT and Group 2 (n = 108) without DP. Patients in Group 1 had higher incidence of AF in history (47.1% vs. 23.1%; P = 0.0376), AF induced during electrophysiological (EP) study (70.6% vs. 25%; P = 0.0002). Group 1 had higher heart rate (HR) during AVRT in the EP study (197.2 ± 27 vs. 175.1 ± 26.3 bpm; P = 0.0019), but HR of clinical AVRT (208.5 ± 30.8 vs. 191.6 ± 27.8 bpm) was not significant different (P = ns). Additionally, electrical alternans of QRS amplitude during AVRT in the EP study was more frequent in Group 1 (52.9 vs. 20.4 %; P = 0.0048). CONCLUSION Patients with DP and AP-L were more prone to develop AF. The presence of DP was associated with faster AVRT rate. The direction of atrium depolarization during AVRT may be different in the presence of DP and probably plays a role in development of AF in this group of patients.
Collapse
Affiliation(s)
- Krzysztof Błaszyk
- Department of Cardiology, University of Medical Sciences, Poznań, Poland
| | - Adrian Gwizdała
- Department of Cardiology, University of Medical Sciences, Poznań, Poland
| | - Michał Waśniewski
- Department of Cardiology, University of Medical Sciences, Poznań, Poland
| | - Jarosław Hiczkiewicz
- Department of Cardiology, Multidisciplinary District's Hospital, Nowa Sól, Poland
| | - Wojciech Seniuk
- Department of Cardiology, University of Medical Sciences, Poznań, Poland
| | - Michał Michalak
- Department of Statistic & Computers, University of Medical Sciences, Poznań, Poland
| |
Collapse
|
13
|
O'Neill L, Harrison J, O'Neill M, Williams SE. Clinical, electrophysiological and imaging predictors of atrial fibrillation ablation outcome. Expert Rev Cardiovasc Ther 2017; 15:289-305. [PMID: 28267401 DOI: 10.1080/14779072.2017.1303378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Significant technological advances for catheter ablation of atrial fibrillation (AF) have occurred over the last decade, with a consequent increase in numbers of patients referred for AF ablation worldwide. Despite this, long-term success rates, particularly in those with persistent AF, remain modest. The patient population presenting for AF ablation are heterogeneous with regard to age, type of AF and presence of associated cardiovascular disease. Improved understanding of factors predicting response to AF ablation may therefore help to improve patient selection for ablation procedures. Areas covered: This review outlines the clinical, electrophysiological and imaging predictors of response to radiofrequency ablation for AF in contemporary practice. Recently developed scoring systems incorporating these parameters are examined, as are factors identified thus far which may predict the outcome of cryoballoon ablation. Expert commentary: Traditional clinical factors associated with ablation outcomes serve as surrogates rather than direct measures of the underlying arrhythmia substrate. An improved understanding of this substrate could improve the prediction of response to radiofrequency ablation. Continued development of methods for characterising the arrhythmia substrate, including atrial cardiac magnetic resonance imaging and invasive voltage mapping, may inform patient risk assessment and help guide selection for catheter ablation on an increasingly individualistic basis.
Collapse
Affiliation(s)
- Louisa O'Neill
- a Division of Imaging Sciences and Biomedical Imaging , King's College London , London , United Kingdom
| | - James Harrison
- a Division of Imaging Sciences and Biomedical Imaging , King's College London , London , United Kingdom
| | - Mark O'Neill
- a Division of Imaging Sciences and Biomedical Imaging , King's College London , London , United Kingdom
| | - Steven E Williams
- a Division of Imaging Sciences and Biomedical Imaging , King's College London , London , United Kingdom
| |
Collapse
|
14
|
TREK-1 (K2P2.1) K+ channels are suppressed in patients with atrial fibrillation and heart failure and provide therapeutic targets for rhythm control. Basic Res Cardiol 2016; 112:8. [DOI: 10.1007/s00395-016-0597-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
|
15
|
Stirbys P. Neuro-atriomyodegenerative origin of atrial fibrillation and superimposed conventional risk factors: continued search to configure the genuine etiology of "eternal arrhythmia". J Atr Fibrillation 2016; 9:1503. [PMID: 29250260 PMCID: PMC5673319 DOI: 10.4022/jafib.1503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 01/26/2023]
Abstract
Atrial fibrillation (AF) is the most challenging rhythm disturbance worldwide. Arrhythmia and its behavior represent complex pathogenesis highly opposing to contemporary curative modalities. Increasing age of patients carries a certain level of risk for AF. Some underlying diseases in concordance with aging actually accelerate the occurrence of AF. Underestimated superimposed risk factors - aging plus any known risk factor or condition (hypertension, diabetes etc.) - elicit great interest and concern. In light of these concerns we offer an elaborated universal hypothesis in attempt to elucidate the genuine origin of AF substrate. Putative chronic toxicity - toxins and/or involution related pseudo-toxins potentially generate micro- and macro-structural changes in atrial myocardium thus inciting both intracellular damage (degeneration of myocites, apoptosis) and extracellular fibrotic proliferation (interstitial fibrosis, formation of matrices, degeneration of cells with fibrotic replacement). The co-products of related underlying diseases in cooperation with cellular senescence, endogenous overproduction of specific lipids/lipoproteins and other pro-atherosclerotic and/or inflammatory components generate a total atrial response - vascular/microvascular damage, intracellular and extracellular injuries. These organizational arrangements covering the entire atrial myocardium and perhaps ganglionated plexi/autonomic branches of the nervous system eventually cause clinical havoc - atrial overstretch, atrial adaptation/maladaptation, electromechanical dysfunction, arrhythmias, heart failure, etc. In essence, valvular heart disease potentially evokes similar changes "violating" thin atrial walls to obey the same scenario. Depicted atriomyodegenerative processes most likely represent the true nature of AF substrate development. Available clinical and morphological evidence potentially designates the atriomyodegenerative or plausible neuro-atriomyodegenerative origin of AF. Deductively fusion of reasons rather than purely heterogeneity is responsible for AF induction. Thus, the uniform approach and synoptic vision of clinical and pathohistological entity may offer an alternative or refreshed viewpoint in AF substrate formation.
Collapse
|
16
|
Nguyen KT, Gladstone RA, Dukes JW, Nazer B, Vittinghoff E, Badhwar N, Vedantham V, Gerstenfeld EP, Lee BK, Lee RJ, Tseng ZH, Olgin JE, Scheinman MM, Marcus GM. The QT Interval as a Noninvasive Marker of Atrial Refractoriness. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2016; 39:1366-1372. [PMID: 27753113 DOI: 10.1111/pace.12962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/25/2016] [Accepted: 10/09/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Atrial refractoriness may be an important determinant of atrial fibrillation (AF) risk, but its measurement is not clinically accessible. Because the QT interval predicts incident AF and the atrium and ventricle share repolarizing ion currents, we investigated the association between an individual's QT interval and atrial effective refractory period (AERP). METHODS In paroxysmal AF patients presenting for catheter ablation, the QT interval was measured from the surface 12-lead electrocardiogram. The AERP was defined as the longest S1-S2 coupling interval without atrial capture using a 600-ms drive cycle length. RESULTS In 28 patients, there was a positive correlation between QTc and mean AERP. After multivariate adjustment, a 1-ms increase in QTc predicted a 0.70-ms increase in AERP. CONCLUSIONS The QTc interval reflects the AERP, suggesting that the QTc interval may be used as a marker of atrial refractoriness relevant to assessing AF risk and mechanism-specific therapeutic strategies.
Collapse
Affiliation(s)
- Kaylin T Nguyen
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Rachel A Gladstone
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Jonathan W Dukes
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Babak Nazer
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Nitish Badhwar
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Vasanth Vedantham
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Byron K Lee
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Randall J Lee
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Zian H Tseng
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Jeffrey E Olgin
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Melvin M Scheinman
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Gregory M Marcus
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|