1
|
Al-Sheikhli J, Tran P, Siang R, Niespialowska-Steuden M, Mayer J, Dhanjal T. Functional Substrate Mapping: A New Frontier in the Treatment of Ventricular Tachycardia in Structural Heart Disease. Arrhythm Electrophysiol Rev 2024; 13:e22. [PMID: 39872924 PMCID: PMC11770529 DOI: 10.15420/aer.2024.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/08/2024] [Indexed: 01/30/2025] Open
Abstract
Functional substrate mapping has emerged as an essential tool for electrophysiologists, overcoming many limitations of conventional mapping techniques and demonstrating favourable long-term outcomes in clinical studies. However, a consensus on the definition of 'functional substrate' mapping remains elusive, hindering a structured approach to research in the field. In this review, we highlight the differences between 'functional mapping' techniques (which assess tissue response to the 'electrophysiological stress' using short coupled extrastimuli) and those highlighting regions of slow conduction during sinus rhythm. We also address fundamental questions, including the optimal degree of electrophysiological stress that best underpins the critical isthmus and the role of wavefront activation in determining the most effective ablation site.
Collapse
Affiliation(s)
- Jaffar Al-Sheikhli
- Heart Rhythm Research Group, Division of Biomedical Sciences, Warwick Medical School, Clinical Sciences Research LaboratoryCoventry, UK
- University Hospital of Coventry and Warwickshire NHS TrustCoventry, UK
| | - Patrick Tran
- Heart Rhythm Research Group, Division of Biomedical Sciences, Warwick Medical School, Clinical Sciences Research LaboratoryCoventry, UK
- Centre for Health & Life Sciences, Coventry UniversityCoventry, UK
| | - Rafaella Siang
- Heart Rhythm Research Group, Division of Biomedical Sciences, Warwick Medical School, Clinical Sciences Research LaboratoryCoventry, UK
| | - Maria Niespialowska-Steuden
- Heart Rhythm Research Group, Division of Biomedical Sciences, Warwick Medical School, Clinical Sciences Research LaboratoryCoventry, UK
| | - Joseph Mayer
- University Hospitals of North MidlandsStoke-on-Trent, UK
| | - Tarvinder Dhanjal
- Heart Rhythm Research Group, Division of Biomedical Sciences, Warwick Medical School, Clinical Sciences Research LaboratoryCoventry, UK
- University Hospital of Coventry and Warwickshire NHS TrustCoventry, UK
| |
Collapse
|
2
|
Stevenson WG, Richardson TD, Kanagasundram AN, Tandri H. State of the Art: Mapping Strategies to Guide Ablation in Ischemic Heart Disease. JACC Clin Electrophysiol 2024; 10:2744-2761. [PMID: 39520431 DOI: 10.1016/j.jacep.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Catheter ablation to prevent ventricular tachycardia (VT) that emerges late after a myocardial infarction aims to interrupt the re-entry substrate. Interruption of potential channels and regions of slow conduction that can be identified during stable sinus or paced rhythm is often effective and a number of substrate markers for guiding this approach have been described. While there is substantial agreement with different markers in some patients, the different markers select different regions for ablation in others. Mapping during VT to identify critical re-entry circuit isthmuses is likely more specific, and most useful when VT is incessant or frequent during the procedure or when sinus rhythm substrate ablation fails. Both approaches are often combined. These methods for identifying and characterizing post-infarct-related arrhythmia substrate and the re-entry circuits are reviewed.
Collapse
Affiliation(s)
- William G Stevenson
- Cardiac Electrophysiology Section, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Travis D Richardson
- Cardiac Electrophysiology Section, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Arvindh N Kanagasundram
- Cardiac Electrophysiology Section, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Harikrishna Tandri
- Cardiac Electrophysiology Section, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Tonko JB, Lozano C, Moreno J, Chow A, Dhinoja M, Lambiase PD. Near-field detection and peak frequency metric for substrate and activation mapping of ventricular tachycardias in two- and three-dimensional circuits. Europace 2024; 26:euae154. [PMID: 38833626 PMCID: PMC11259853 DOI: 10.1093/europace/euae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Successful ventricular arrhythmia (VA) ablation requires identification of functionally critical sites during contact mapping. Estimation of the peak frequency (PF) component of the electrogram (EGM) may improve correct near-field (NF) annotation to identify circuit segments on the mapped surface. In turn, assessment of NF and far-field (FF) EGMs may delineate the three-dimensional path of a ventricular tachycardia (VT) circuit. METHODS AND RESULTS A proprietary NF detection algorithm was applied retrospectively to scar-related re-entry VT maps and compared with manually reviewed maps employing first deflection (FDcorr) for VT activation maps and last deflection (LD) for substrate maps. Ventricular tachycardia isthmus location and characteristics mapped with FDcorr vs. NF were compared. Omnipolar low-voltage areas, late activating areas, and deceleration zones (DZ) in LD vs. NF substrate maps were compared. On substrate maps, PF estimation was compared between isthmus and bystander sites. Activation mapping with entrainment and/or VT termination with radiofrequency (RF) ablation confirmed critical sites. Eighteen patients with high-density VT activation and substrate maps (55.6% ischaemic) were included. Near-field detection correctly located critical parts of the circuit in 77.7% of the cases compared with manually reviewed VT maps as reference. In substrate maps, NF detection identified deceleration zones in 88.8% of cases, which overlapped with FDcorr VT isthmus in 72.2% compared with 83.3% overlap of DZ assessed by LD. Applied to substrate maps, PF as a stand-alone feature did not differentiate VT isthmus sites from low-voltage bystander sites. Omnipolar voltage was significantly higher at isthmus sites with longer EGM durations compared with low-voltage bystander sites. CONCLUSION The NF algorithm may enable rapid high-density activation mapping of VT circuits in the NF of the mapped surface. Integrated assessment and combined analysis of NF and FF EGM-components could support characterization of three-dimensional VT circuits with intramural segments. For scar-related substrate mapping, PF as a stand-alone EGM feature did not enable the differentiation of functionally critical sites of the dominant VT from low-voltage bystander sites in this cohort.
Collapse
Affiliation(s)
- Johanna B Tonko
- Institute for Cardiovascular Science, University College London, 5 University Street, London, WC1E 6JF, UK
- Barts Heart Centre, St Bartholomew s Hospital, W Smithfield, London EC1A 7BE, UK
| | - Cristina Lozano
- Department of Cardiology, Hospital Universitario Ramón Y Cajal, Colmenar Viejo road, km. 9,100, Madrid 28034, Spain
| | - Javier Moreno
- Department of Cardiology, Hospital Universitario Ramón Y Cajal, Colmenar Viejo road, km. 9,100, Madrid 28034, Spain
| | - Anthony Chow
- Barts Heart Centre, St Bartholomew s Hospital, W Smithfield, London EC1A 7BE, UK
| | - Mehul Dhinoja
- Barts Heart Centre, St Bartholomew s Hospital, W Smithfield, London EC1A 7BE, UK
| | - Pier D Lambiase
- Institute for Cardiovascular Science, University College London, 5 University Street, London, WC1E 6JF, UK
- Barts Heart Centre, St Bartholomew s Hospital, W Smithfield, London EC1A 7BE, UK
| |
Collapse
|
4
|
Tonko JB, Lambiase P. Exploring the Full Potential of Radiofrequency Technology: A Practical Guide to Advanced Radiofrequency Ablation for Complex Ventricular Arrhythmias. Curr Cardiol Rep 2024; 26:269-282. [PMID: 38700597 PMCID: PMC11136806 DOI: 10.1007/s11886-024-02048-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW Percutaneous radiofrequency (RF) catheter ablation is an established strategy to prevent ventricular tachycardia (VT) recurrence and ICD shocks. Yet delivery of durable lesion sets by means of traditional unipolar radiofrequency ablation remains challenging, and left ventricular transmurality is rarely achieved. Failure to ablate and eliminate functionally relevant areas is particularly common in deep intramyocardial substrates, e.g. septal VT and cardiomyopathies. Here, we aim to give a practical-orientated overview of advanced and emerging RF ablation technologies to target these complex VT substrates. We summarize recent evidence in support of these technologies and share experiences from a tertiary VT centre to highlight important "hands-on" considerations for operators new to advanced RF ablation strategies. RECENT FINDINGS A number of innovative and modified radiofrequency ablation approaches have been proposed to increase energy delivery to the myocardium and maximize RF lesion dimensions and depth. These include measures of impedance modulation, combinations of simultaneous unipolar ablations or true bipolar ablation, intramyocardial RF delivery via wires or extendable RF needles and investigational linear or spherical catheter designs. Recent new clinical evidence for the efficacy and safety of these investigational technologies and strategies merits a re-evaluation of their role and clinic application for percutaneous VT ablations. Complexity of substrates targeted with percutaneous VT ablation is increasing and requires detailed preprocedural imaging to characterize the substrate to inform the procedural approach and selection of ablation technology. Depending on local experience, options for additional and/or complementary interventional treatments should be considered upfront in challenging substrates to improve the success rates of index procedures. Advanced RF technologies available for clinical VT ablations include impedance modulation via hypotonic irrigation or additional dispersive patches and simultaneous unipolar as well as true bipolar ablation. Promising investigational RF technologies involve an extendable needle RF catheter, intramyocardial RF delivery over intentionally perforated wires as well as a variety of innovative ablation catheter designs including multipolar linear, spherical and partially insulated ablation catheters.
Collapse
Affiliation(s)
- J B Tonko
- Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6DD, UK.
- Bartholomew s Hospital, W Smithfield, London, UK.
| | - P Lambiase
- Institute of Cardiovascular Science, University College London, 62 Huntley St, London, WC1E 6DD, UK
- Bartholomew s Hospital, W Smithfield, London, UK
| |
Collapse
|
5
|
Chrispin J, Tandri H. Association of Sinus Wavefront Activation and Ventricular Extrastimuli Mapping With Ventricular Tachycardia Re-Entrant Circuits. JACC Clin Electrophysiol 2023; 9:1697-1705. [PMID: 37480854 DOI: 10.1016/j.jacep.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Substrate-based ablation targets areas of delayed and fractionated electrograms during sinus rhythm, which are sensitive for identifying the ventricular tachycardia (VT) isthmus but is influenced by the activation wavefront direction and decremental pacing. OBJECTIVES The aim of this study was to correlate the areas of latest activation during varying wavefront activation mapping and decremental pacing mapping with sites critical to the VT isthmus. METHODS Three high-density electroanatomical substrate maps were created in patients presenting for ablation of monomorphic VT: 1) native sinus rhythm; 2) right ventricular (RV) apical pacing; and 3) an RV apical S2 map following the S1 drive train at 20 ms above the ventricular effective refractory period. Areas corresponding to the latest activation were compared with the VT isthmus identified by conventional mapping. RESULTS Twenty patients with structural heart disease with a mean age of 55.6 ± 16.9 years were included. The majority of the cohort consisted of patients with ischemic heart disease (50%) and arrhythmogenic RV cardiomyopathy (35%). Epicardial ablation was performed in 45% of patients. The concordance of the site of latest activation in sinus rhythm with the VT isthmus was 75%. The location of the latest activation during RV apical pacing corresponded with the VT isthmus in 85% of cases. However, in 95% of cases, the site of the latest activation following the S2 stimulus colocalized to the VT isthmus. CONCLUSIONS In a mix of underlying myocardial substrates, regions of conduction slowing during decremental pacing colocalize with the VT isthmus more frequently than sinus rhythm activation mapping and may have a role in substrate-based ablation where VT induction is undesirable.
Collapse
Affiliation(s)
- Jonathan Chrispin
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Harikrishna Tandri
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Rahimi M, Suszko AM, Chauhan VS. Predicting lethal ventricular arrhythmias in hypertrophic cardiomyopathy using non-electrophysiologic methods: Invasive EGM vs. non-invasive ECG analysis of fragmentation. Europace 2023; 25:euad182. [PMID: 37379522 PMCID: PMC10331799 DOI: 10.1093/europace/euad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Affiliation(s)
- Mahbod Rahimi
- Division of Cardiology, Peter Munk Cardiac Center, University Health
Network, Toronto General Hospital, Gerrard Wing, Rm 3-522,
150 Gerrard St. W., Toronto, ON M5g 2C4, Canada
| | - Adrian M Suszko
- Division of Cardiology, Peter Munk Cardiac Center, University Health
Network, Toronto General Hospital, Gerrard Wing, Rm 3-522,
150 Gerrard St. W., Toronto, ON M5g 2C4, Canada
| | - Vijay S Chauhan
- Division of Cardiology, Peter Munk Cardiac Center, University Health
Network, Toronto General Hospital, Gerrard Wing, Rm 3-522,
150 Gerrard St. W., Toronto, ON M5g 2C4, Canada
| |
Collapse
|
7
|
Sung E, Prakosa A, Kyranakis S, Berger RD, Chrispin J, Trayanova NA. Wavefront directionality and decremental stimuli synergistically improve identification of ventricular tachycardia substrate: insights from personalized computational heart models. Europace 2023; 25:223-235. [PMID: 36006658 PMCID: PMC10103576 DOI: 10.1093/europace/euac140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/16/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS Multiple wavefront pacing (MWP) and decremental pacing (DP) are two electroanatomic mapping (EAM) strategies that have emerged to better characterize the ventricular tachycardia (VT) substrate. The aim of this study was to assess how well MWP, DP, and their combination improve identification of electrophysiological abnormalities on EAM that reflect infarct remodelling and critical VT sites. METHODS AND RESULTS Forty-eight personalized computational heart models were reconstructed using images from post-infarct patients undergoing VT ablation. Paced rhythms were simulated by delivering an initial (S1) and an extra-stimulus (S2) from one of 100 locations throughout each heart model. For each pacing, unipolar signals were computed along the myocardial surface to simulate substrate EAM. Six EAM features were extracted and compared with the infarct remodelling and critical VT sites. Concordance of S1 EAM features between different maps was lower in hearts with smaller amounts of remodelling. Incorporating S1 EAM features from multiple maps greatly improved the detection of remodelling, especially in hearts with less remodelling. Adding S2 EAM features from multiple maps decreased the number of maps required to achieve the same detection accuracy. S1 EAM features from multiple maps poorly identified critical VT sites. However, combining S1 and S2 EAM features from multiple maps paced near VT circuits greatly improved identification of critical VT sites. CONCLUSION Electroanatomic mapping with MWP is more advantageous for characterization of substrate in hearts with less remodelling. During substrate EAM, MWP and DP should be combined and delivered from locations proximal to a suspected VT circuit to optimize identification of the critical VT site.
Collapse
Affiliation(s)
- Eric Sung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Adityo Prakosa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Stephen Kyranakis
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ronald D Berger
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Jonathan Chrispin
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
8
|
Enriquez A, Korogyi A, Bakker D, Chacko S, Neira V, Simpson C, Abdollah H, Baranchuk A, Redfearn D. Late, Slow, or Decremental: Elucidating the Ideal Surrogate for Ventricular Tachycardia Isthmus. JACC Clin Electrophysiol 2023; 9:280-282. [PMID: 36858702 DOI: 10.1016/j.jacep.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022]
Affiliation(s)
- Andres Enriquez
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada.
| | - Adam Korogyi
- Abbott Laboratories, Mississauga, Ontario, Canada
| | - David Bakker
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Sanoj Chacko
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Victor Neira
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | | | - Hoshiar Abdollah
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| | - Damian Redfearn
- Division of Cardiology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
9
|
Kattel S, Enriquez AD. Contemporary approach to catheter ablation of ventricular tachycardia in nonischemic cardiomyopathy. J Interv Card Electrophysiol 2022; 66:793-805. [PMID: 36056222 DOI: 10.1007/s10840-022-01363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Nonischemic cardiomyopathy (NICM) comprises a heterogenous group of disorders with myocardial dysfunction unrelated to significant coronary disease. As the use of implantable defibrillators has increased in this patient population, catheter ablation is being utilized more frequently to treat NICM patients with ventricular tachycardia (VT). Progress has been made in identifying multiple subtypes of NICM with variable scar patterns. The distribution of scar is often mid-myocardial and subepicardial, and identifying and ablating this substrate can be challenging. Here, we will review the current understanding of NICM subtypes and the outcomes of VT ablation in this population. We will discuss the use of cardiac imaging, electrocardiography, and electroanatomic mapping to define the VT substrate and the ablation techniques required to successfully prevent VT recurrence.
Collapse
Affiliation(s)
- Sharma Kattel
- Cardiovascular Medicine, Yale University School of Medicine, PO Box 208017, New Haven, CT, 06520-8017, USA
| | - Alan D Enriquez
- Cardiovascular Medicine, Yale University School of Medicine, PO Box 208017, New Haven, CT, 06520-8017, USA.
| |
Collapse
|
10
|
Tong L, Zhao C, Fu Z, Dong R, Wu Z, Wang Z, Zhang N, Wang X, Cao B, Sun Y, Zheng D, Xia L, Deng D. Preliminary Study: Learning the Impact of Simulation Time on Reentry Location and Morphology Induced by Personalized Cardiac Modeling. Front Physiol 2021; 12:733500. [PMID: 35002750 PMCID: PMC8739986 DOI: 10.3389/fphys.2021.733500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Personalized cardiac modeling is widely used for studying the mechanisms of cardiac arrythmias. Due to the high demanding of computational resource of modeling, the arrhythmias induced in the models are usually simulated for just a few seconds. In clinic, it is common that arrhythmias last for more than several minutes and the morphologies of reentries are not always stable, so it is not clear that whether the simulation of arrythmias for just a few seconds is long enough to match the arrhythmias detected in patients. This study aimed to observe how long simulation of the induced arrhythmias in the personalized cardiac models is sufficient to match the arrhythmias detected in patients. A total of 5 contrast enhanced MRI datasets of patient hearts with myocardial infarction were used in this study. Then, a classification method based on Gaussian mixture model was used to detect the infarct tissue. For each reentry, 3 s and 10 s were simulated. The characteristics of each reentry simulated for different duration were studied. Reentries were induced in all 5 ventricular models and sustained reentries were induced at 39 stimulation sites in the model. By analyzing the simulation results, we found that 41% of the sustained reentries in the 3 s simulation group terminated in the longer simulation groups (10 s). The second finding in our simulation was that only 23.1% of the sustained reentries in the 3 s simulation did not change location and morphology in the extended 10 s simulation. The third finding was that 35.9% reentries were stable in the 3 s simulation and should be extended for the simulation time. The fourth finding was that the simulation results in 10 s simulation matched better with the clinical measurements than the 3 s simulation. It was shown that 10 s simulation was sufficient to make simulation results stable. The findings of this study not only improve the simulation accuracy, but also reduce the unnecessary simulation time to achieve the optimal use of computer resources to improve the simulation efficiency and shorten the simulation time to meet the time node requirements of clinical operation on patients.
Collapse
Affiliation(s)
- Lv Tong
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Caiming Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenyin Fu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Ruiqing Dong
- Department of Cardiology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Zhenghong Wu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Zefeng Wang
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Nan Zhang
- Department of Radiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xinlu Wang
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Boyang Cao
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Yutong Sun
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Dingchang Zheng
- Research Centre for Intelligent Healthcare, Faculty of Health and Life Science, Coventry University, Coventry, United Kingdom
| | - Ling Xia
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Dongdong Deng
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
11
|
Dynamic high-density functional substrate mapping to treat ventricular tachycardia-Time for electrophysiology to come home. Heart Rhythm 2021; 18:732-733. [PMID: 33482384 DOI: 10.1016/j.hrthm.2021.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 11/23/2022]
|