1
|
Montigaud Y, Georges Q, Leclerc L, Clotagatide A, Louf-Durier A, Pourchez J, Prévôt N, Périnel-Ragey S. Impact of gas humidification and nebulizer position under invasive ventilation: preclinical comparative study of regional aerosol deposition. Sci Rep 2023; 13:11056. [PMID: 37422519 PMCID: PMC10329710 DOI: 10.1038/s41598-023-38281-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023] Open
Abstract
Successful aerosol therapy in mechanically ventilated patients depends on multiple factors. Among these, position of nebulizer in ventilator circuit and humidification of inhaled gases can strongly influence the amount of drug deposited in airways. Indeed, the main objective was to preclinically evaluate impact of gas humidification and nebulizer position during invasive mechanical ventilation on whole lung and regional aerosol deposition and losses. Ex vivo porcine respiratory tracts were ventilated in controlled volumetric mode. Two conditions of relative humidity and temperature of inhaled gases were investigated. For each condition, four different positions of vibrating mesh nebulizer were studied: (i) next to the ventilator, (ii) right before humidifier, (iii) 15 cm to the Y-piece adapter and (iv) right after the Y-piece. Aerosol size distribution were calculated using cascade impactor. Nebulized dose, lung regional deposition and losses were assessed by scintigraphy using 99mtechnetium-labeled diethylene-triamine-penta-acetic acid. Mean nebulized dose was 95% ± 6%. For dry conditions, the mean respiratory tract deposited fractions reached 18% (± 4%) next to ventilator and 53% (± 4%) for proximal position. For humidified conditions, it reached 25% (± 3%) prior humidifier, 57% (± 8%) before Y-piece and 43% (± 11%) after this latter. Optimal nebulizer position is proximal before the Y-piece adapter showing a more than two-fold higher lung dose than positions next to the ventilator. Dry conditions are more likely to cause peripheral deposition of aerosols in the lungs. But gas humidification appears hard to interrupt efficiently and safely in clinical use. Considering the impact of optimized positioning, this study argues to maintain humidification.
Collapse
Affiliation(s)
- Yoann Montigaud
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose; Centre CIS, 42023, Saint-Etienne, France
| | - Quentin Georges
- Intensive Care Unit G, CHU Saint-Etienne, 42055, Saint-Etienne, France
| | - Lara Leclerc
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose; Centre CIS, 42023, Saint-Etienne, France
| | | | | | - Jérémie Pourchez
- Mines Saint-Etienne, Univ Jean Monnet, INSERM, U1059 Sainbiose; Centre CIS, 42023, Saint-Etienne, France
| | - Nathalie Prévôt
- Nuclear Medicine Unit, CHU Saint-Etienne, 42055, Saint-Etienne, France
- Université Jean Monnet, Mines Saint-Etienne, INSERM, U1059 Sainbiose, 42023, Saint-Etienne, France
| | - Sophie Périnel-Ragey
- Intensive Care Unit G, CHU Saint-Etienne, 42055, Saint-Etienne, France.
- Université Jean Monnet, Mines Saint-Etienne, INSERM, U1059 Sainbiose, 42023, Saint-Etienne, France.
- Intensive Care Unit G, Saint Etienne University Hospital, North Hospital, UMR INSERM U1059, Avenue Albert Raymond, 42270, Saint Priest en Jarez, France.
| |
Collapse
|
2
|
Lima CA, Campos SL, Bandeira MP, Leite WS, Brandão DC, Fernandes J, Fink JB, Dornelas de Andrade A. Influence of Mechanical Ventilation Modes on the Efficacy of Nebulized Bronchodilators in the Treatment of Intubated Adult Patients with Obstructive Pulmonary Disease. Pharmaceutics 2023; 15:pharmaceutics15051466. [PMID: 37242708 DOI: 10.3390/pharmaceutics15051466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Little has been reported in terms of clinical outcomes to confirm the benefits of nebulized bronchodilators during mechanical ventilation (MV). Electrical Impedance Tomography (EIT) could be a valuable method to elucidate this gap. OBJECTIVE The purpose of this study is to evaluate the impact of nebulized bronchodilators during invasive MV with EIT by comparing three ventilation modes on the overall and regional lung ventilation and aeration in critically ill patients with obstructive pulmonary disease. METHOD A blind clinical trial in which eligible patients underwent nebulization with salbutamol sulfate (5 mg/1 mL) and ipratropium bromide (0.5 mg/2 mL) in the ventilation mode they were receiving. EIT evaluation was performed before and after the intervention. A joint and stratified analysis into ventilation mode groups was performed, with p < 0.05. RESULTS Five of nineteen procedures occurred in controlled MV mode, seven in assisted mode and seven in spontaneous mode. In the intra-group analysis, the nebulization increased total ventilation in controlled (p = 0.04 and ⅆ = 2) and spontaneous (p = 0.01 and ⅆ = 1.5) MV modes. There was an increase in the dependent pulmonary region in assisted mode (p = 0.01 and ⅆ = 0.3) and in spontaneous mode (p = 0.02 and ⅆ = 1.6). There was no difference in the intergroup analysis. CONCLUSIONS Nebulized bronchodilators reduce the aeration of non-dependent pulmonary regions and increase overall lung ventilation but there was no difference between the ventilation modes. As a limitation, it is important to note that the muscular effort in PSV and A/C PCV modes influences the impedance variation, and consequently the aeration and ventilation values. Thus, future studies are needed to evaluate this effort as well as the time on ventilator, time in UCI and other variables.
Collapse
Affiliation(s)
- Cibelle Andrade Lima
- Physiotherapy Depatment, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Shirley Lima Campos
- Physiotherapy Depatment, Universidade Federal de Pernambuco, Recife 50740-560, PE, Brazil
| | | | - Wagner Souza Leite
- Physiotherapy Depatment, Universidade Federal de Pernambuco, Recife 50740-560, PE, Brazil
| | - Daniella Cunha Brandão
- Physiotherapy Depatment, Universidade Federal de Pernambuco, Recife 50740-560, PE, Brazil
| | - Juliana Fernandes
- Physiotherapy Depatment, Universidade Federal de Pernambuco, Recife 50740-560, PE, Brazil
| | - James B Fink
- Department of Cardiopulmonary Science, Division of Respiratory, CA Rush University Medical Center, Chicago, IL 60612, USA
- Aerogen Pharma, San Mateo, CA 94402, USA
| | | |
Collapse
|
3
|
MacLoughlin R, Martin-Loeches I. Not all nebulizers are created equal: Considerations in choosing a nebulizer for aerosol delivery during mechanical ventilation. Expert Rev Respir Med 2023; 17:131-142. [PMID: 36803134 DOI: 10.1080/17476348.2023.2183194] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Aerosol therapy is commonly prescribed in the mechanically ventilated patient. Jet nebulizers (JN) and vibrating mesh nebulizers (VMN) are the most common nebulizer types, however, despite VMN's well established superior performance, JN use remains the most commonly used of the two. In this review, we describe the key differentiators between nebulizer types and how considered selection of nebulizer type may enable successful therapy and the optimization of drug/device combination products. AREAS COVERED Following a review of the published literature up to February 2023, the current state of the art in relation to JN and VMN is discussed under the headings of in vitro performance of nebulizers during mechanical ventilation, respective compatibility with formulations for inhalation, clinical trials making use of VMN during mechanical ventilation, distribution of nebulized aerosol throughout the lung, measuring the respective performance of nebulizers in the patient and non-drug delivery considerations in nebulizer choice. EXPERT OPINION Whether for standard care, or the development of drug/device combination products, the choice of nebulizer type should not be made without consideration of the unique needs of the combination of each of drug, disease and patient types, as well as target site for deposition, and healthcare professional and patient safety.
Collapse
Affiliation(s)
- Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, Dangan, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland.,School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), Dublin, Ireland
| |
Collapse
|
4
|
Chartrand L, Ploszay V, Tessier S. Optimal delivery of aerosolized medication to mechanically ventilated pediatric and neonatal patients: A scoping review. CANADIAN JOURNAL OF RESPIRATORY THERAPY : CJRT = REVUE CANADIENNE DE LA THERAPIE RESPIRATOIRE : RCTR 2022; 58:199-203. [PMID: 36545463 PMCID: PMC9757125 DOI: 10.29390/cjrt-2022-044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objectives Delivering aerosolized medication to patients during mechanical ventilation is a common practice in respiratory therapy for adult, pediatric, and neonatal populations. However, aerosol delivery in pediatric populations is inconsistent and challenging, impacting how the drug is delivered. Some factors that influence drug delivery efficiency are directly under the purview of the clinician or therapist administering the drugs. However, excessive variability exists amongst clinicians and therapists working at the same site and between different sites. This review aims to systematically summarize the literature to identify current practice variations, identify common practices, and provide suggestions to guide future research in this area. In addition, this scoping review aims to identify the available evidence and knowledge gaps in the literature regarding the delivery of aerosolized medication to pediatric populations during mechanical ventilation. More specifically, the question that guided our research was: What are the best strategies for optimizing aerosol delivery of medication to pediatric patients, including neonates, while on mechanical ventilation? Methods A scoping review, using the Joanna Briggs Institute methodology, was conducted until September 2022 in the CINAHL, EMBASE (Ovid), and Medline (Ovid) databases. Our initial search yielded 248 articles. After screening the titles, abstracts, and full text of the articles according to inclusion and exclusion criteria, five articles were analyzed. Results We identified three main topics for discussion: the type of device used for administering aerosolized medication, appropriate mechanical ventilation settings, and optimal placement of the nebulizer delivery system. Conclusion Of the three topics we intended to discuss, we only found enough evidence to suggest using mesh nebulizers to increase aerosol deposition. We found conflicting or outdated results for the other two topics. This demonstrates a significant gap in the literature since aerosol medications are routinely administered to mechanically ventilated neonatal and other pediatric patients.
Collapse
Affiliation(s)
- Louise Chartrand
- Department of Respiratory Therapy, University of Manitoba, Winnipeg, MB
| | | | - Sébastien Tessier
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB
| |
Collapse
|
5
|
Katiyar SK, Gaur SN, Solanki RN, Sarangdhar N, Suri JC, Kumar R, Khilnani GC, Chaudhary D, Singla R, Koul PA, Mahashur AA, Ghoshal AG, Behera D, Christopher DJ, Talwar D, Ganguly D, Paramesh H, Gupta KB, Kumar T M, Motiani PD, Shankar PS, Chawla R, Guleria R, Jindal SK, Luhadia SK, Arora VK, Vijayan VK, Faye A, Jindal A, Murar AK, Jaiswal A, M A, Janmeja AK, Prajapat B, Ravindran C, Bhattacharyya D, D'Souza G, Sehgal IS, Samaria JK, Sarma J, Singh L, Sen MK, Bainara MK, Gupta M, Awad NT, Mishra N, Shah NN, Jain N, Mohapatra PR, Mrigpuri P, Tiwari P, Narasimhan R, Kumar RV, Prasad R, Swarnakar R, Chawla RK, Kumar R, Chakrabarti S, Katiyar S, Mittal S, Spalgais S, Saha S, Kant S, Singh VK, Hadda V, Kumar V, Singh V, Chopra V, B V. Indian Guidelines on Nebulization Therapy. Indian J Tuberc 2022; 69 Suppl 1:S1-S191. [PMID: 36372542 DOI: 10.1016/j.ijtb.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 06/16/2023]
Abstract
Inhalational therapy, today, happens to be the mainstay of treatment in obstructive airway diseases (OADs), such as asthma, chronic obstructive pulmonary disease (COPD), and is also in the present, used in a variety of other pulmonary and even non-pulmonary disorders. Hand-held inhalation devices may often be difficult to use, particularly for children, elderly, debilitated or distressed patients. Nebulization therapy emerges as a good option in these cases besides being useful in the home care, emergency room and critical care settings. With so many advancements taking place in nebulizer technology; availability of a plethora of drug formulations for its use, and the widening scope of this therapy; medical practitioners, respiratory therapists, and other health care personnel face the challenge of choosing appropriate inhalation devices and drug formulations, besides their rational application and use in different clinical situations. Adequate maintenance of nebulizer equipment including their disinfection and storage are the other relevant issues requiring guidance. Injudicious and improper use of nebulizers and their poor maintenance can sometimes lead to serious health hazards, nosocomial infections, transmission of infection, and other adverse outcomes. Thus, it is imperative to have a proper national guideline on nebulization practices to bridge the knowledge gaps amongst various health care personnel involved in this practice. It will also serve as an educational and scientific resource for healthcare professionals, as well as promote future research by identifying neglected and ignored areas in this field. Such comprehensive guidelines on this subject have not been available in the country and the only available proper international guidelines were released in 1997 which have not been updated for a noticeably long period of over two decades, though many changes and advancements have taken place in this technology in the recent past. Much of nebulization practices in the present may not be evidence-based and even some of these, the way they are currently used, may be ineffective or even harmful. Recognizing the knowledge deficit and paucity of guidelines on the usage of nebulizers in various settings such as inpatient, out-patient, emergency room, critical care, and domiciliary use in India in a wide variety of indications to standardize nebulization practices and to address many other related issues; National College of Chest Physicians (India), commissioned a National task force consisting of eminent experts in the field of Pulmonary Medicine from different backgrounds and different parts of the country to review the available evidence from the medical literature on the scientific principles and clinical practices of nebulization therapy and to formulate evidence-based guidelines on it. The guideline is based on all possible literature that could be explored with the best available evidence and incorporating expert opinions. To support the guideline with high-quality evidence, a systematic search of the electronic databases was performed to identify the relevant studies, position papers, consensus reports, and recommendations published. Rating of the level of the quality of evidence and the strength of recommendation was done using the GRADE system. Six topics were identified, each given to one group of experts comprising of advisors, chairpersons, convenor and members, and such six groups (A-F) were formed and the consensus recommendations of each group was included as a section in the guidelines (Sections I to VI). The topics included were: A. Introduction, basic principles and technical aspects of nebulization, types of equipment, their choice, use, and maintenance B. Nebulization therapy in obstructive airway diseases C. Nebulization therapy in the intensive care unit D. Use of various drugs (other than bronchodilators and inhaled corticosteroids) by nebulized route and miscellaneous uses of nebulization therapy E. Domiciliary/Home/Maintenance nebulization therapy; public & health care workers education, and F. Nebulization therapy in COVID-19 pandemic and in patients of other contagious viral respiratory infections (included later considering the crisis created due to COVID-19 pandemic). Various issues in different sections have been discussed in the form of questions, followed by point-wise evidence statements based on the existing knowledge, and recommendations have been formulated.
Collapse
Affiliation(s)
- S K Katiyar
- Department of Tuberculosis & Respiratory Diseases, G.S.V.M. Medical College & C.S.J.M. University, Kanpur, Uttar Pradesh, India.
| | - S N Gaur
- Vallabhbhai Patel Chest Institute, University of Delhi, Respiratory Medicine, School of Medical Sciences and Research, Sharda University, Greater NOIDA, Uttar Pradesh, India
| | - R N Solanki
- Department of Tuberculosis & Chest Diseases, B. J. Medical College, Ahmedabad, Gujarat, India
| | - Nikhil Sarangdhar
- Department of Pulmonary Medicine, D. Y. Patil School of Medicine, Navi Mumbai, Maharashtra, India
| | - J C Suri
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Raj Kumar
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, National Centre of Allergy, Asthma & Immunology; University of Delhi, Delhi, India
| | - G C Khilnani
- PSRI Institute of Pulmonary, Critical Care, & Sleep Medicine, PSRI Hospital, Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Dhruva Chaudhary
- Department of Pulmonary & Critical Care Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Rupak Singla
- Department of Tuberculosis & Respiratory Diseases, National Institute of Tuberculosis & Respiratory Diseases (formerly L.R.S. Institute), Delhi, India
| | - Parvaiz A Koul
- Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Jammu & Kashmir, India
| | - Ashok A Mahashur
- Department of Respiratory Medicine, P. D. Hinduja Hospital, Mumbai, Maharashtra, India
| | - A G Ghoshal
- National Allergy Asthma Bronchitis Institute, Kolkata, West Bengal, India
| | - D Behera
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - D J Christopher
- Department of Pulmonary Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Deepak Talwar
- Metro Centre for Respiratory Diseases, Noida, Uttar Pradesh, India
| | | | - H Paramesh
- Paediatric Pulmonologist & Environmentalist, Lakeside Hospital & Education Trust, Bengaluru, Karnataka, India
| | - K B Gupta
- Department of Tuberculosis & Respiratory Medicine, Pt. Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences Rohtak, Haryana, India
| | - Mohan Kumar T
- Department of Pulmonary, Critical Care & Sleep Medicine, One Care Medical Centre, Coimbatore, Tamil Nadu, India
| | - P D Motiani
- Department of Pulmonary Diseases, Dr. S. N. Medical College, Jodhpur, Rajasthan, India
| | - P S Shankar
- SCEO, KBN Hospital, Kalaburagi, Karnataka, India
| | - Rajesh Chawla
- Respiratory and Critical Care Medicine, Indraprastha Apollo Hospitals, New Delhi, India
| | - Randeep Guleria
- All India Institute of Medical Sciences, Department of Pulmonary Medicine & Sleep Disorders, AIIMS, New Delhi, India
| | - S K Jindal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - S K Luhadia
- Department of Tuberculosis and Respiratory Medicine, Geetanjali Medical College and Hospital, Udaipur, Rajasthan, India
| | - V K Arora
- Indian Journal of Tuberculosis, Santosh University, NCR Delhi, National Institute of TB & Respiratory Diseases Delhi, India; JIPMER, Puducherry, India
| | - V K Vijayan
- Vallabhbhai Patel Chest Institute, Department of Pulmonary Medicine, University of Delhi, Delhi, India
| | - Abhishek Faye
- Centre for Lung and Sleep Disorders, Nagpur, Maharashtra, India
| | | | - Amit K Murar
- Respiratory Medicine, Cronus Multi-Specialty Hospital, New Delhi, India
| | - Anand Jaiswal
- Respiratory & Sleep Medicine, Medanta Medicity, Gurugram, Haryana, India
| | - Arunachalam M
- All India Institute of Medical Sciences, New Delhi, India
| | - A K Janmeja
- Department of Respiratory Medicine, Government Medical College, Chandigarh, India
| | - Brijesh Prajapat
- Pulmonary and Critical Care Medicine, Yashoda Hospital and Research Centre, Ghaziabad, Uttar Pradesh, India
| | - C Ravindran
- Department of TB & Chest, Government Medical College, Kozhikode, Kerala, India
| | - Debajyoti Bhattacharyya
- Department of Pulmonary Medicine, Institute of Liver and Biliary Sciences, Army Hospital (Research & Referral), New Delhi, India
| | | | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - J K Samaria
- Centre for Research and Treatment of Allergy, Asthma & Bronchitis, Department of Chest Diseases, IMS, BHU, Varanasi, Uttar Pradesh, India
| | - Jogesh Sarma
- Department of Pulmonary Medicine, Gauhati Medical College and Hospital, Guwahati, Assam, India
| | - Lalit Singh
- Department of Respiratory Medicine, SRMS Institute of Medical Sciences, Bareilly, Uttar Pradesh, India
| | - M K Sen
- Department of Respiratory Medicine, ESIC Medical College, NIT Faridabad, Haryana, India; Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - Mahendra K Bainara
- Department of Pulmonary Medicine, R.N.T. Medical College, Udaipur, Rajasthan, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi PostGraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Nilkanth T Awad
- Department of Pulmonary Medicine, Lokmanya Tilak Municipal Medical College, Mumbai, Maharashtra, India
| | - Narayan Mishra
- Department of Pulmonary Medicine, M.K.C.G. Medical College, Berhampur, Orissa, India
| | - Naveed N Shah
- Department of Pulmonary Medicine, Chest Diseases Hospital, Government Medical College, Srinagar, Jammu & Kashmir, India
| | - Neetu Jain
- Department of Pulmonary, Critical Care & Sleep Medicine, PSRI, New Delhi, India
| | - Prasanta R Mohapatra
- Department of Pulmonary Medicine & Critical Care, All India Institute of Medical Sciences, Bhubaneswar, Orissa, India
| | - Parul Mrigpuri
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Pawan Tiwari
- School of Excellence in Pulmonary Medicine, NSCB Medical College, Jabalpur, Madhya Pradesh, India
| | - R Narasimhan
- Department of EBUS and Bronchial Thermoplasty Services at Apollo Hospitals, Chennai, Tamil Nadu, India
| | - R Vijai Kumar
- Department of Pulmonary Medicine, MediCiti Medical College, Hyderabad, Telangana, India
| | - Rajendra Prasad
- Vallabhbhai Patel Chest Institute, University of Delhi and U.P. Rural Institute of Medical Sciences & Research, Safai, Uttar Pradesh, India
| | - Rajesh Swarnakar
- Department of Respiratory, Critical Care, Sleep Medicine and Interventional Pulmonology, Getwell Hospital & Research Institute, Nagpur, Maharashtra, India
| | - Rakesh K Chawla
- Department of, Respiratory Medicine, Critical Care, Sleep & Interventional Pulmonology, Saroj Super Speciality Hospital, Jaipur Golden Hospital, Rajiv Gandhi Cancer Hospital, Delhi, India
| | - Rohit Kumar
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | - S Chakrabarti
- Department of Pulmonary, Critical Care & Sleep Medicine, Vardhman Mahavir Medical College & Safdarjung Hospital, New Delhi, India
| | | | - Saurabh Mittal
- Department of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sonam Spalgais
- Department of Pulmonary Medicine, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | | | - Surya Kant
- Department of Respiratory (Pulmonary) Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - V K Singh
- Centre for Visceral Mechanisms, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Vijay Hadda
- Department of Pulmonary Medicine & Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Vikas Kumar
- All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Virendra Singh
- Mahavir Jaipuria Rajasthan Hospital, Jaipur, Rajasthan, India
| | - Vishal Chopra
- Department of Chest & Tuberculosis, Government Medical College, Patiala, Punjab, India
| | - Visweswaran B
- Interventional Pulmonology, Yashoda Hospitals, Hyderabad, Telangana, India
| |
Collapse
|
6
|
The Clinical Practice and Best Aerosol Delivery Location in Intubated and Mechanically Ventilated Patients: A Randomized Clinical Trial. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6671671. [PMID: 33884269 PMCID: PMC8041534 DOI: 10.1155/2021/6671671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 03/18/2021] [Accepted: 03/27/2021] [Indexed: 11/25/2022]
Abstract
This randomized clinical trial (RCT) is aimed at exploring the best nebulizer position for aerosol delivery within the mechanical ventilation (MV) circuitry. This study enrolled 75 intubated and MV patients with respiratory failure and randomly divided them into three groups. The nebulizer position of patients in group A was between the tracheal tube and Y-piece. For group B, the nebulizer was placed at the inspiratory limb near the ventilator water cup (80 cm away from the Y-piece). For group C, the nebulizer was placed between the ventilator inlet and the heated humidifier. An indirect competitive enzyme-linked immunosorbent assay (ELISA) was used to measure salbutamol drug concentrations in serum and urine. The serum and urine salbutamol concentrations of the three groups were the highest in group B, followed by group C, and the lowest in group A. Serum and urine salbutamol concentrations significantly differed among the three groups (P < 0.05). It was found that the drug was statistically significant between group differences for groups B and A (P = 0.001; P = 0.002, respectively) for both serum and urine salbutamol concentrations. There were no significant differences observed among the other groups. It was found that the drug concentrations were the highest when the nebulizer was placed 80 cm away from the Y-piece, while the location between the tracheal tube and the Y-piece with the higher frequency of nebulizer placement was the location with the lowest drug concentration.
Collapse
|
7
|
Lin HL, Fink JB, Ge H. Aerosol delivery via invasive ventilation: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:588. [PMID: 33987286 DOI: 10.21037/atm-20-5665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In comparison with spontaneously breathing non-intubated subjects, intubated, mechanically ventilated patients encounter various challenges, barriers, and opportunities in receiving medical aerosols. Since the introduction of mechanical ventilation as a part of modern critical care medicine during the middle of the last century, aerosolized drug delivery by jet nebulizers has become a common practice. However, early evidence suggested that aerosol generators differed in their efficacies, and the introduction of newer aerosol technology (metered dose inhalers, ultrasonic nebulizer, vibrating mesh nebulizers, and soft moist inhaler) into the ventilator circuit opened up the possibility of optimizing inhaled aerosol delivery during mechanical ventilation that could meet or exceed the delivery of the same aerosols in spontaneously breathing patients. This narrative review will catalogue the primary variables associated with this process and provide evidence to guide optimal aerosol delivery and dosing during mechanical ventilation. While gaps exist in relation to the appropriate aerosol drug dose, discrepancies in practice, and cost-effectiveness of the administered aerosol drugs, we also present areas for future research and practice. Clinical practice should expand to incorporate these techniques to improve the consistency of drug delivery and provide safer and more effective care for patients.
Collapse
Affiliation(s)
- Hui-Ling Lin
- Department of Respiratory Therapy, Chang Gung University, Taoyuan.,Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi.,Department of Respiratory Therapy, Chiayi Chang Gung Memorial Hospital, Chiayi
| | - James B Fink
- Division of Respiratory Care, Rush University Medical Center, Chicago, IL, USA.,Aerogen Pharma Corp., San Mateo, California, USA
| | - Huiqing Ge
- Department of Respiratory Care, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Zhang Z, Xu P, Fang Q, Ma P, Lin H, Fink JB, Liang Z, Chen R, Ge H. Practice pattern of aerosol therapy among patients undergoing mechanical ventilation in mainland China: A web-based survey involving 447 hospitals. PLoS One 2019; 14:e0221577. [PMID: 31465523 PMCID: PMC6715194 DOI: 10.1371/journal.pone.0221577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Aerosol therapies are widely used for mechanically ventilated patients. However, the practice pattern of aerosol therapy in mainland China remains unknown. This study aimed to determine the current practice of aerosol therapy in mainland China. METHODS A web-based survey was conducted by the China Union of Respiratory Care (CURC) from August 2018 to January 2019. The survey was disseminated via Email or WeChat to members of CURC. A questionnaire comprising 16 questions related to hospital information and 12 questions related to the practice of aerosol therapy. Latent class analysis was employed to identify the distinct classes of aerosol therapy practice. MAIN RESULTS A total of 693 valid questionnaires were returned by respiratory care practitioners from 447 hospitals. Most of the practitioners used aerosol therapy for both invasive mechanical ventilation (90.8%) and non-invasive mechanical ventilation (91.3%). Practitioners from tertiary care centers were more likely to use aerosol therapy compared with those from non-tertiary care centers (91.9% vs. 85.4%, respectively; p = 0.035). The most commonly used drugs for aerosol therapy were bronchodilators (64.8%) followed by mucolytic agents (44.2%), topical corticosteroids (43.4%) and antibiotics (16.5%). The ultrasonic nebulizer (48.3%) was the most commonly used followed by the jet nebulizer (39.2%), the metered dose inhaler (15.4%) and the vibrating mesh nebulizer (14.6%). Six latent classes were identified via latent class analysis. Class 1 was characterized by the aggressive use of aerosol therapy without a standard protocol, while class 3 was characterized by the absence of aerosol therapy. CONCLUSIONS Substantial heterogeneity among institutions with regard to the use of aerosol therapy was noted. The implementation of aerosol therapy during mechanical ventilation was inconsistent in light of recent practice guidelines. Additional efforts by the CURC to improve the implementation of aerosol therapy in mainland China are warranted.
Collapse
Affiliation(s)
- Zhongheng Zhang
- Department of emergency medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peifeng Xu
- Department of Respiratory Care, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Fang
- Department of critical care medicine, First hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Penglin Ma
- Department of Critical Care Medicine, Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Huiling Lin
- Department of Respiratory Therapy, Chang Gung University, Taoyuan City, Taiwan
| | - Jim B. Fink
- Aerogen Pharma Corp., San Mateo, California, United States of America
| | - Zongan Liang
- Department of Respiratory and Critical Care Medicine, West China Medical Center, Sichuan University, China
| | - Rongchang Chen
- Guangzhou Institute of Respiratory Diseases, Guangzhou, China
| | - Huiqing Ge
- Department of Respiratory Care, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- * E-mail:
| | | |
Collapse
|
9
|
Dugernier J, Ehrmann S, Sottiaux T, Roeseler J, Wittebole X, Dugernier T, Jamar F, Laterre PF, Reychler G. Aerosol delivery during invasive mechanical ventilation: a systematic review. Crit Care 2017; 21:264. [PMID: 29058607 PMCID: PMC5651640 DOI: 10.1186/s13054-017-1844-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This systematic review aimed to assess inhaled drug delivery in mechanically ventilated patients or in animal models. Whole lung and regional deposition and the impact of the ventilator circuit, the artificial airways and the administration technique for aerosol delivery were analyzed. METHODS In vivo studies assessing lung deposition during invasive mechanical ventilation were selected based on a systematic search among four databases. Two investigators independently assessed the eligibility and the risk of bias. RESULTS Twenty-six clinical and ten experimental studies were included. Between 30% and 43% of nominal drug dose was lost to the circuit in ventilated patients. Whole lung deposition of up to 16% and 38% of nominal dose (proportion of drug charged in the device) were reported with nebulizers and metered-dose inhalers, respectively. A penetration index inferior to 1 observed in scintigraphic studies indicated major proximal deposition. However, substantial concentrations of antibiotics were measured in the epithelial lining fluid (887 (406-12,819) μg/mL of amikacin) of infected patients and in sub-pleural specimens (e.g., 197 μg/g of amikacin) dissected from infected piglets, suggesting a significant distal deposition. The administration technique varied among studies and may explain a degree of the variability of deposition that was observed. CONCLUSIONS Lung deposition was lower than 20% of nominal dose delivered with nebulizers and mostly occurred in proximal airways. Further studies are needed to link substantial concentrations of antibiotics in infected pulmonary fluids to pulmonary deposition. The administration technique with nebulizers should be improved in ventilated patients in order to ensure an efficient but safe, feasible and reproducible technique.
Collapse
Affiliation(s)
- Jonathan Dugernier
- Institut de Recherche Expérimentale et Clinique (IREC), Pneumologie, ORL & Dermatologie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium. .,Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium. .,Médecine Physique, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.
| | - Stephan Ehrmann
- Université François Rabelais, UMR 1100, F-37032, Tours, France.,INSERM, Centre d'étude des Pathologies Respiratoires, UMR 1100, F-37032, Tours, France.,CHRU de Tours, Réanimation polyvalente, F-37044, Tours, France
| | - Thierry Sottiaux
- Soins Intensifs, Clinique Notre-Dame de Grace, Chaussée de Nivelles 212, 6041, Charleroi, Belgium
| | - Jean Roeseler
- Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Xavier Wittebole
- Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Thierry Dugernier
- Soins Intensifs, Clinique Saint-Pierre, Avenue Reine Fabiola 9, 1340, Ottignies, Belgium
| | - François Jamar
- Médecine Nucléaire, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Pierre-François Laterre
- Soins Intensifs, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - Gregory Reychler
- Institut de Recherche Expérimentale et Clinique (IREC), Pneumologie, ORL & Dermatologie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Médecine Physique, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.,Pneumologie, Cliniques universitaires Saint-Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| |
Collapse
|
10
|
Michotte JB, Staderini E, Aubriot AS, Jossen E, Dugernier J, Liistro G, Reychler G. Pulmonary Drug Delivery Following Continuous Vibrating Mesh Nebulization and Inspiratory Synchronized Vibrating Mesh Nebulization During Noninvasive Ventilation in Healthy Volunteers. J Aerosol Med Pulm Drug Deliv 2017; 31:33-41. [PMID: 28683216 DOI: 10.1089/jamp.2016.1339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND A breath-synchronized nebulization option that could potentially improve drug delivery during noninvasive positive pressure ventilation (NIPPV) is currently not available on single-limb circuit bilevel ventilators. The aim of this study was to compare urinary excretion of amikacin following aerosol delivery with a vibrating mesh nebulizer coupled to a single-limb circuit bilevel ventilator, using conventional continuous (Conti-Neb) and experimental inspiratory synchronized (Inspi-Neb) nebulization modes. MATERIALS AND METHODS A crossover clinical trial involving 6 noninvasive ventilated healthy volunteers (mean age of 32.3 ± 9.5 y) randomly assigned to both vibrating mesh nebulization modes was conducted: Inspi-Neb delivered aerosol during only the whole inspiratory phase, whereas Conti-Neb delivered aerosol continuously. All subjects inhaled amikacin solution (500 mg/4 mL) during NIPPV using a single-limb bilevel ventilator (inspiratory positive airway pressure: 12 cm H2O, and expiratory positive airway pressure: 5 cm H2O). Pulmonary drug delivery of amikacin following both nebulization modes was compared by urinary excretion of drug for 24 hours post-inhalation. RESULTS The total daily amount of amikacin excreted in the urine was significantly higher with Inspi-Neb (median: 44.72 mg; interquartile range [IQR]: 40.50-65.13) than with Conti-Neb (median: 40.07 mg; IQR: 31.00-43.73), (p = 0.02). The elimination rate constant of amikacin (indirect measure of the depth of drug penetration into the lungs) was significantly higher with Inspi-Neb (median: 0.137; IQR: 0.113-0.146) than with Conti-Neb (median: 0.116; IQR: 0.105-0.130), (p = 0.02). However, the mean pulmonary drug delivery rate, expressed as the ratio between total daily urinary amount of amikacin and nebulization time, was significantly higher with Conti-Neb (2.03 mg/min) than with Inspi-Neb (1.09 mg/min) (p < 0.01). CONCLUSIONS During NIPPV with a single-limb circuit bilevel ventilator, the use of inspiratory synchronized vibrating mesh nebulization may improve pulmonary drug delivery compared with conventional continuous vibrating mesh nebulization.
Collapse
Affiliation(s)
- Jean-Bernard Michotte
- 1 Western Switzerland University of Applied Sciences-Haute Ecole de Santé Vaud (HESAV), Filière Physiothérapie, 1011 Lausanne, Switzerland
| | - Enrico Staderini
- 2 Western Switzerland University of Applied Sciences-Haute Ecole d'Ingénierie et de Gestion du Canton de Vaud (HEIG-VD), 1401 Yverdon-les-Bains, Switzerland
| | - Anne-Sophie Aubriot
- 3 Cliniques Universitaires Saint-Luc, Centre de Référence pour la Mucoviscidose, 1200 Brussels, Belgium
| | - Emilie Jossen
- 4 Ligue pulmonaire neuchâteloise, 2034 Peseux, Switzerland
| | - Jonathan Dugernier
- 5 Cliniques Universitaires Saint-Luc, Service des soins intensifs, 1200 Brussels, Belgium
| | - Giuseppe Liistro
- 6 Cliniques Universitaires Saint-Luc, Service de Pneumologie; Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, 1200 Brussels, Belgium
| | - Gregory Reychler
- 6 Cliniques Universitaires Saint-Luc, Service de Pneumologie; Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL & Dermatologie, 1200 Brussels, Belgium
| |
Collapse
|
11
|
Ari A, Fink JB. Differential Medical Aerosol Device and Interface Selection in Patients during Spontaneous, Conventional Mechanical and Noninvasive Ventilation. J Aerosol Med Pulm Drug Deliv 2016; 29:95-106. [DOI: 10.1089/jamp.2015.1266] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Arzu Ari
- Division of Respiratory Therapy, Georgia State University, Atlanta, Georgia
| | - James B. Fink
- Division of Respiratory Therapy, Georgia State University, Atlanta, Georgia
| |
Collapse
|
12
|
|
13
|
Ari A, Fink JB, Dhand R. Inhalation therapy in patients receiving mechanical ventilation: an update. J Aerosol Med Pulm Drug Deliv 2012; 25:319-32. [PMID: 22856594 DOI: 10.1089/jamp.2011.0936] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Incremental gains in understanding the influence of various factors on aerosol delivery in concert with technological advancements over the past 2 decades have fueled an ever burgeoning literature on aerosol therapy during mechanical ventilation. In-line use of pressurized metered-dose inhalers (pMDIs) and nebulizers is influenced by a host of factors, some of which are unique to ventilator-supported patients. This article reviews the impact of various factors on aerosol delivery with pMDIs and nebulizers, and elucidates the correlation between in-vitro estimates and in-vivo measurement of aerosol deposition in the lung. Aerosolized bronchodilator therapy with pMDIs and nebulizers is commonly employed in intensive care units (ICUs), and bronchodilators are among the most frequently used therapies in mechanically ventilated patients. The use of inhaled bronchodilators is not restricted to mechanically ventilated patients with chronic obstructive pulmonary disease (COPD) and asthma, as they are routinely employed in other ventilator-dependent patients without confirmed airflow obstruction. The efficacy and safety of bronchodilator therapy has generated a great deal of interest in employing other inhaled therapies, such as surfactant, antibiotics, prostacyclins, diuretics, anticoagulants and mucoactive agents, among others, in attempts to improve outcomes in critically ill ICU patients receiving mechanical ventilation.
Collapse
Affiliation(s)
- Arzu Ari
- Georgia State University, Division of Respiratory Therapy, Atlanta, GA, USA
| | | | | |
Collapse
|
14
|
Pornputtapitak W, El-gendy N, Berkland C. Nanocluster Budesonide Formulations Enhance Drug Delivery through Endotracheal Tubes. J Pharm Sci 2012; 101:1063-72. [DOI: 10.1002/jps.22818] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/28/2011] [Indexed: 11/09/2022]
|