1
|
Bartolini A, Morecchiato F, Antonelli A, Malentacchi F, Rossolini GM, Pollini S. Evaluation of STANDARD™ M10 SARS-CoV-2 from bronchoalveolar lavage samples. Diagn Microbiol Infect Dis 2024; 110:116466. [PMID: 39128208 DOI: 10.1016/j.diagmicrobio.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Detection of SARS-CoV-2 in bronchoalveolar lavage (BAL) is considered as a promising alternative method to detect COVID-19 infection. STANDARD™ M10 SARS-CoV-2 assay on 150 negative and 50 positives BAL samples for SARS-CoV-2 showed 96 % sensitivity, 100 % specificity compared to Allplex™ SARS-CoV-2 assay and a 31.25 genomic copies/mL limit of detection.
Collapse
Affiliation(s)
- Andrea Bartolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Fabio Morecchiato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy; NARR Joint Laboratory for antimicrobial resistance research and control, University of Florence-IRCCS Don Gnocchi Foundation, Florence, Italy
| | | | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy; NARR Joint Laboratory for antimicrobial resistance research and control, University of Florence-IRCCS Don Gnocchi Foundation, Florence, Italy
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy; NARR Joint Laboratory for antimicrobial resistance research and control, University of Florence-IRCCS Don Gnocchi Foundation, Florence, Italy.
| |
Collapse
|
2
|
Theel ES, Kirby JE, Pollock NR. Testing for SARS-CoV-2: lessons learned and current use cases. Clin Microbiol Rev 2024; 37:e0007223. [PMID: 38488364 PMCID: PMC11237512 DOI: 10.1128/cmr.00072-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYThe emergence and worldwide dissemination of SARS-CoV-2 required both urgent development of new diagnostic tests and expansion of diagnostic testing capacity on an unprecedented scale. The rapid evolution of technologies that allowed testing to move out of traditional laboratories and into point-of-care testing centers and the home transformed the diagnostic landscape. Four years later, with the end of the formal public health emergency but continued global circulation of the virus, it is important to take a fresh look at available SARS-CoV-2 testing technologies and consider how they should be used going forward. This review considers current use case scenarios for SARS-CoV-2 antigen, nucleic acid amplification, and immunologic tests, incorporating the latest evidence for analytical/clinical performance characteristics and advantages/limitations for each test type to inform current debates about how tests should or should not be used.
Collapse
Affiliation(s)
- Elitza S. Theel
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - James E. Kirby
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nira R. Pollock
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Laboratory Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Tomassetti S, Ciani L, Luzzi V, Gori L, Trigiani M, Giuntoli L, Lavorini F, Poletti V, Ravaglia C, Torrego A, Maldonado F, Lentz R, Annunziato F, Maggi L, Rossolini GM, Pollini S, Para O, Ciurleo G, Casini A, Rasero L, Bartoloni A, Spinicci M, Munavvar M, Gasparini S, Comin C, Cerinic MM, Peired A, Henket M, Ernst B, Louis R, Corhay JL, Nardi C, Guiot J. Utility of bronchoalveolar lavage for COVID-19: a perspective from the Dragon consortium. Front Med (Lausanne) 2024; 11:1259570. [PMID: 38371516 PMCID: PMC10869531 DOI: 10.3389/fmed.2024.1259570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024] Open
Abstract
Diagnosing COVID-19 and treating its complications remains a challenge. This review reflects the perspective of some of the Dragon (IMI 2-call 21, #101005122) research consortium collaborators on the utility of bronchoalveolar lavage (BAL) in COVID-19. BAL has been proposed as a potentially useful diagnostic tool to increase COVID-19 diagnosis sensitivity. In both critically ill and non-critically ill COVID-19 patients, BAL has a relevant role in detecting other infections or supporting alternative diagnoses and can change management decisions in up to two-thirds of patients. BAL is used to guide steroid and immunosuppressive treatment and to narrow or discontinue antibiotic treatment, reducing the use of unnecessary broad antibiotics. Moreover, cellular analysis and novel multi-omics techniques on BAL are of critical importance for understanding the microenvironment and interaction between epithelial cells and immunity, revealing novel potential prognostic and therapeutic targets. The BAL technique has been described as safe for both patients and healthcare workers in more than a thousand procedures reported to date in the literature. Based on these preliminary studies, we recognize that BAL is a feasible procedure in COVID-19 known or suspected cases, useful to properly guide patient management, and has great potential for research.
Collapse
Affiliation(s)
- Sara Tomassetti
- Interventional Pulmonology Unit, Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - Luca Ciani
- Interventional Pulmonology Unit, Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - Valentina Luzzi
- Interventional Pulmonology Unit, Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - Leonardo Gori
- Pulmonology Unit, Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - Marco Trigiani
- Interventional Pulmonology Unit, Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - Leonardo Giuntoli
- Interventional Pulmonology Unit, Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - Federico Lavorini
- Pulmonology Unit, Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - Venerino Poletti
- Department of Diseases of the Thorax, GB Morgagni Hospital, Forlì, Italy
| | - Claudia Ravaglia
- Department of Diseases of the Thorax, GB Morgagni Hospital, Forlì, Italy
| | - Alfons Torrego
- Respiratory Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Fabien Maldonado
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Robert Lentz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Thoracic Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Simona Pollini
- Department of Experimental Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Ombretta Para
- Internal Medicine Unit 1, AOU Careggi, Florence, Italy
| | - Greta Ciurleo
- Internal Medicine Unit 2, AOU Careggi, Florence, Italy
| | | | - Laura Rasero
- Department of Health Science, Clinical Innovations and Research Unit, Careggi University Hospital, Florence, Italy
| | - Alessandro Bartoloni
- Infectious and Tropical Diseases Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michele Spinicci
- Infectious and Tropical Diseases Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mohammed Munavvar
- School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- Department of Respiratory, Lancashire Teaching Hospital NHS Foundation Trust, Preston, United Kingdom
| | - Stefano Gasparini
- Interventional Pulmonology Unit, University Hospital Riuniti di Ancona, Ancona, Italy
| | - Camilla Comin
- Department of Experimental and Clinical Medicine Section of Surgery, Histopathology, and Molecular Pathology, University of Florence, Florence, Italy
| | - Marco Matucci Cerinic
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Anna Peired
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Monique Henket
- Department of Respiratory Medicine, Universitary Hospital of Liège, Liège, Belgium
| | - Benoit Ernst
- Department of Respiratory Medicine, Universitary Hospital of Liège, Liège, Belgium
| | - Renaud Louis
- Department of Respiratory Medicine, Universitary Hospital of Liège, Liège, Belgium
| | - Jean-louis Corhay
- Department of Respiratory Medicine, Universitary Hospital of Liège, Liège, Belgium
| | - Cosimo Nardi
- Department of Experimental and Clinical Biomedical Sciences, Radiodiagnostic Unit n. 2, University of Florence, Florence, Italy
| | - Julien Guiot
- Department of Respiratory Medicine, Universitary Hospital of Liège, Liège, Belgium
| |
Collapse
|
5
|
Diagnostic Role of Bronchoalveolar Lavage in Patients with Suspected SARS-CoV-2 Pneumonia and Negative Upper Respiratory Tract Swab: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:jcm11164656. [PMID: 36012892 PMCID: PMC9409822 DOI: 10.3390/jcm11164656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 12/01/2022] Open
Abstract
The added role of bronchoalveolar lavage (BAL) in SARS-CoV-2 detection in hospitalized patients with suspected COVID-19 pneumonia and at least one negative nasopharyngeal swab (NPS) has yet to be definitively established. We aimed to provide a systematic review and meta-analysis to summarize data from the literature on the diagnostic yield of BAL in this context. We searched Medline and Embase for all studies reporting outcomes of interest published up to October 2021. Two authors reviewed all titles/abstracts and retrieved the selected full texts according to predefined selection criteria. The summary estimate was derived using the random-effects model. Thirteen original studies, involving 868 patients, were included. The summary estimate of proportions of SARS-CoV-2 positivity in BAL fluid in patients with at least one previous negative NPS was 20% (95% confidence interval [CI]; 11–30%). Moreover, microbiological tests of BAL fluid led to the identification of other pathogens, mainly bacteria, in up to two-thirds of cases. BAL plays a crucial role in the diagnostic work-up of patients with clinical suspicion of COVID-19 and previous negative NPS, as it allowed to detect the infection in a significant proportion of subjects, who would have been otherwise misclassified, with relevant implications in the prevention of disease spread, especially in hospital settings.
Collapse
|