1
|
Ounalli A, Moumni I, Mechaal A, Chakroun A, Barmat M, Rhim REE, Menif S, Safra I. TP53 Gene 72 Arg/Pro (rs1042522) single nucleotide polymorphism increases the risk and the severity of chronic lymphocytic leukemia. Front Oncol 2023; 13:1272876. [PMID: 37909012 PMCID: PMC10613635 DOI: 10.3389/fonc.2023.1272876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/30/2023] [Indexed: 11/02/2023] Open
Abstract
Background Genetic variations in TP53 gene are known to be important in chronic lymphocytic leukemia (CLL) and may cause its inactivation which is associated with an aggressive form of the disease. Single nucleotide polymorphism (rs1042522:G>C) in TP53 gene at codon 72 encodes for arginine (Arg) or proline (Pro) variant which results in amino acid substitution affecting the apoptotic potential of TP53 protein. The aim of this study was to assess the correlation between TP53 codon 72 polymorphism and risk susceptibility as well as severity of CLL among Tunisian patients. Materials and methods A case-control study was conducted in Tunisia from February 2019 to November 2021, 160 de novo CLL patients and 160 healthy volunteers matched in age and gender were involved. DNA was extracted from peripheral blood mononuclear cells and the rs1042522 was analyzed using PCR-RFLP. Results Pro variant was associated with higher susceptibility to CLL than Arg variant (p= 0.023). A significant association was found between Pro variant and prognostic classification of Binet stage C (p= 0.001), low hemoglobin level (p= 0.003) and low platelet count (p= 0.016). Conclusion We suggest that Pro variant may increase the risk of developing CLL in our population and could be associated with the severity of the disease.
Collapse
Affiliation(s)
- Asma Ounalli
- Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Faculty of Mathematics, Physics and Natural Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imen Moumni
- Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Amal Mechaal
- Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Aya Chakroun
- Laboratory of Hematology, Rabta Hospital, Tunis, Tunisia
| | - Mbarka Barmat
- Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rim El Elj Rhim
- Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Samia Menif
- Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ines Safra
- Laboratory of Molecular and Cellular Hematology, Pasteur Institute of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
2
|
Marks JA, Wang X, Fenu EM, Bagg A, Lai C. TP53 in AML and MDS: The new (old) kid on the block. Blood Rev 2023; 60:101055. [PMID: 36841672 DOI: 10.1016/j.blre.2023.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
MDS and AML are clonal hematopoietic stem cell disorders of increasing incidence, having a variable prognosis based, among others, on co-occurring molecular abnormalities. TP53 mutations are frequently detected in these myeloid neoplasms and portend a poor prognosis with known therapeutic resistance. This article provides a timely review of the complexity of TP53 alterations, providing updates in diagnosis and prognosis based on new 2022 International Consensus Classification (ICC) and World Health Organization (WHO) guidelines. The article addresses optimal testing strategies and reviews current and arising therapeutic approaches. While the treatment landscape for this molecular subgroup is under active development, further exploration is needed to optimize the care of this group of patients with unmet needs.
Collapse
Affiliation(s)
- Jennifer A Marks
- Department of Medicine, Division of Hematology and Oncology, Georgetown University, 3800 Reservoir Road NW, Washington, D.C. 20007, USA.
| | - Xin Wang
- Department of Medicine, Division of Hematology and Oncology, Georgetown University, 3800 Reservoir Road NW, Washington, D.C. 20007, USA; Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, 12 South Pavilion, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Elena M Fenu
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Division of Hematopathology, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | - Catherine Lai
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, 12 South Pavilion, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Human chromosome 3p21.3 carries TERT transcriptional regulators in pancreatic cancer. Sci Rep 2021; 11:15355. [PMID: 34321527 PMCID: PMC8319171 DOI: 10.1038/s41598-021-94711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022] Open
Abstract
Frequent loss of heterozygosity (LOH) on the short arm of human chromosome 3 (3p) region has been found in pancreatic cancer (PC), which suggests the likely presence of tumor suppressor genes in this region. However, the functional significance of LOH in this region in the development of PC has not been clearly defined. The human telomerase reverse transcriptase gene (hTERT) contributes to unlimited proliferative and tumorigenicity of malignant tumors. We previously demonstrated that hTERT expression was suppressed by the introduction of human chromosome 3 in several cancer cell lines. To examine the functional role of putative TERT suppressor genes on chromosome 3 in PC, we introduced an intact human chromosome 3 into the human PK9 and murine LTPA PC cell lines using microcell-mediated chromosome transfer. PK9 microcell hybrids with an introduced human chromosome 3 showed significant morphological changes and rapid growth arrest. Intriguingly, microcell hybrid clones of LTPA cells with an introduced human chromosome 3 (LTPA#3) showed suppression of mTert transcription, cell proliferation, and invasion compared with LTPA#4 cells containing human chromosome 4 and parental LTPA cells. Additionally, the promoter activity of mTert was downregulated in LTPA#3. Furthermore, we confirmed that TERT regulatory gene(s) are present in the 3p21.3 region by transfer of truncated chromosomes at arbitrary regions. These results provide important information on the functional significance of the LOH at 3p for development and progression of PC.
Collapse
|
4
|
Eid OM, Abdel Kader RMA, Fathalla LA, Abdelrahman AH, Rabea A, Mahrous R, Eid MM. Evaluation of MLPA as a comprehensive molecular cytogenetic tool to detect cytogenetic markers of chronic lymphocytic leukemia in Egyptian patients. J Genet Eng Biotechnol 2021; 19:98. [PMID: 34181122 PMCID: PMC8239093 DOI: 10.1186/s43141-021-00198-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022]
Abstract
Background Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia. This disease is genetically heterogeneous, and approximately 85% of patients with CLL harbor chromosomal aberrations that are considered effective prognostic biomarkers. The most frequent aberrations include deletions in 13q14, followed by trisomy 12, and deletions in 11q22.3 and 17p13 (TP53). Currently, fluorescence in situ hybridization (FISH) is the most widely used molecular cytogenetic technique to detect these aberrations. However, FISH is laborious, time-consuming, expensive, and has a low throughput. In contrast, multiplex ligation-dependent probe amplification (MLPA) is a reliable, cost-effective, and relatively rapid technique that can be used as a first-line screening tool and complement with FISH analysis. This study aimed to evaluate the contributions of MLPA as a routine standalone screening platform for recurrent chromosomal aberrations in CLL in comparison to other procedures. Thirty patients with CLL were screened for the most common genomic aberrations using MLPA with SALSA MLPA probemix P038-B1 CLL and FISH. Results In 24 of the 30 cases (80%), the MLPA and FISH results were concordant. Discordant results were attributed to a low percentage of mosaicism. Moreover, the MLPA probemix contains probes that target other genomic areas known to be linked to CLL in addition to those targeting common recurrent CLL aberrations. Conclusions The usage of MLPA as the first screening platform followed by FISH technique for only the negative cases is the most appropriate approach for CLL diagnosis and prognosis.
Collapse
Affiliation(s)
- Ola M Eid
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Bohouth Street, 12311 Dokki, Cairo, Egypt
| | - Rania M A Abdel Kader
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Bohouth Street, 12311 Dokki, Cairo, Egypt.
| | - Lamiaa A Fathalla
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Ahmed Rabea
- Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rana Mahrous
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Bohouth Street, 12311 Dokki, Cairo, Egypt
| | - Maha M Eid
- Human Cytogenetics Department, Human Genetics and Genome Research Division, National Research Centre, Bohouth Street, 12311 Dokki, Cairo, Egypt
| |
Collapse
|
5
|
Khanlari M, Wang SA, Fowler NH, Tang G, Saluja K, Muzzafar T, Medeiros LJ, Thakral B. Concurrent TP53 Mutation and Deletion in Refractory Low-grade Follicular Lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:e626-e629. [PMID: 33867306 DOI: 10.1016/j.clml.2021.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/14/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Mahsa Khanlari
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| | - Sa A Wang
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| | - Nathan H Fowler
- Department of Lymphoma and Myeloma Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX
| | - Guilin Tang
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| | - Karan Saluja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX
| | - Tariq Muzzafar
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX
| | | | - Beenu Thakral
- Department of Hematopathology, MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
6
|
Zhang X, Sjöblom T. Targeting Loss of Heterozygosity: A Novel Paradigm for Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:ph14010057. [PMID: 33450833 PMCID: PMC7828287 DOI: 10.3390/ph14010057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Loss of heterozygosity (LOH) is a common genetic event in the development of cancer. In certain tumor types, LOH can affect more than 20% of the genome, entailing loss of allelic variation in thousands of genes. This reduction of heterozygosity creates genetic differences between tumor and normal cells, providing opportunities for development of novel cancer therapies. Here, we review and summarize (1) mutations associated with LOH on chromosomes which have been shown to be promising biomarkers of cancer risk or the prediction of clinical outcomes in certain types of tumors; (2) loci undergoing LOH that can be targeted for development of novel anticancer drugs as well as (3) LOH in tumors provides up-and-coming possibilities to understand the underlying mechanisms of cancer evolution and to discover novel cancer vulnerabilities which are worth a further investigation in the near future.
Collapse
|