1
|
Taneja V, Kalra P, Goel M, Khilnani GC, Saini V, Prasad GBKS, Gupta UD, Krishna Prasad H. Impact and prognosis of the expression of IFN-α among tuberculosis patients. PLoS One 2020; 15:e0235488. [PMID: 32667932 PMCID: PMC7363073 DOI: 10.1371/journal.pone.0235488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 06/16/2020] [Indexed: 12/03/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) infection stimulates the release of cytokines, including interferons (IFNs). IFNs are initiators, regulators, and effectors of innate and adaptive immunity. Accordingly, the expression levels of Type I (α, β) and II (γ) IFNs, among untreated tuberculosis (TB) patients and household contacts (HHC) clinically free of TB was assessed. A total of 264 individuals (TB patients-123; HHC-86; laboratory volunteers-55; Treated TB patients-36) were enrolled for this study. IFN-α mRNA expression levels predominated compared to IFN-γ and IFN-β among untreated TB patients. IFN-α transcripts were ~3.5 folds higher in TB patients compared to HHC, (p<0.0001). High expression of IFN-α was seen among 46% (56/ 123) of the TB patients and 26%, (22/86) of HHCs. The expression levels of IFN-α correlated with that of IFN transcriptional release factor 7 (IRF) (p<0.0001). In contrast, an inverse relationship exists between PGE2 and IFN-α expression levels; high IFN-α expressers were associated with low levels of PGE2 and vice-versa (Spearman’s rho = -0.563; p<0.0001). In-vitro, IFN-α failed to restrict the replication of intracellular M.tb. The anti-mycobacterial activity of IFN-γ was compromised in the presence of IFN-α, but not by IFN-β. The expression of IFN-α and β diminished or is absent, among successfully treated TB patients. These observations suggest the utility of assessment of Type I IFNs expression levels as a prognostic marker to monitor tuberculosis patient response to chemotherapy because changes in Type I IFNs expression are expected to precede the clearance and /reduction in bacterial load.
Collapse
Affiliation(s)
- Vibha Taneja
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
- Department of Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Priya Kalra
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Goel
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Gopi Chand Khilnani
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Vikram Saini
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - G. B. K. S. Prasad
- Department of Biochemistry, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Umesh Datta Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India
| | | |
Collapse
|
2
|
Rodrigues TS, Conti BJ, Fraga-Silva TFDC, Almeida F, Bonato VLD. Interplay between alveolar epithelial and dendritic cells and Mycobacterium tuberculosis. J Leukoc Biol 2020; 108:1139-1156. [PMID: 32620048 DOI: 10.1002/jlb.4mr0520-112r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The innate response plays a crucial role in the protection against tuberculosis development. Moreover, the initial steps that drive the host-pathogen interaction following Mycobacterium tuberculosis infection are critical for the development of adaptive immune response. As alveolar Mϕs, airway epithelial cells, and dendritic cells can sense the presence of M. tuberculosis and are the first infected cells. These cells secrete mediators, which generate inflammatory signals that drive the differentiation and activation of the T lymphocytes necessary to clear the infection. Throughout this review article, we addressed the interaction between epithelial cells and M. tuberculosis, as well as the interaction between dendritic cells and M. tuberculosis. The understanding of the mechanisms that modulate those interactions is critical to have a complete view of the onset of an infection and may be useful for the development of dendritic cell-based vaccine or immunotherapies.
Collapse
Affiliation(s)
- Tamara Silva Rodrigues
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno José Conti
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fausto Almeida
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Type 1 interferon-inducible gene expression in QuantiFERON Gold TB-positive uveitis: A tool to stratify a high versus low risk of active tuberculosis? PLoS One 2018; 13:e0206073. [PMID: 30336493 PMCID: PMC6193765 DOI: 10.1371/journal.pone.0206073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 10/06/2018] [Indexed: 01/10/2023] Open
Abstract
QuantiFERON-Gold TB (QFT)-positive patients with undetermined cause of uveitis are problematic in terms of whether to diagnose and treat them for tuberculosis (TB). Here, we investigated whether peripheral blood expression of type 1 interferon (IFN)-inducible genes may be of use to stratify QFT-positive patients with uveitis into groups of high versus low risk of having active TB-associated uveitis. We recruited all new uveitis patients in Cipto Mangunkusumo Hospital, Jakarta, Indonesia for one year. We included 12 patients with uveitis and clinically diagnosed active pulmonary TB, 58 QFT-positive patients with uveitis of unknown cause, 10 newly diagnosed sputum-positive active pulmonary TB patients without uveitis and 23 QFT-negative healthy controls. Expression of 35 type 1 IFN-inducible genes was measured in peripheral blood cells from active pulmonary TB patients without uveitis and healthy controls. Differentially expressed genes were identified and used for further clustering analyses of the uveitis groups. A type-1 IFN gene signature score was calculated and the optimal cut-off value for this score to differentiate active pulmonary TB from healthy controls was determined and applied to QFT-positive patients with uveitis of unknown cause. Ten type 1 IFN-inducible genes were differentially expressed between active pulmonary TB and healthy controls. Expression of these 10 genes in QFT-positive patients with uveitis of unknown cause revealed three groups: 1); patients resembling active pulmonary TB, 2); patients resembling healthy controls, and 3); patients displaying an in-between gene expression pattern. A type 1 IFN gene signature score ≥5.61 displayed high sensitivity (100%) and specificity (91%) for identification of active TB. Application of this score to QFT-positive patients with uveitis of unknown cause yielded two groups with expected different likelihood (high vs. low) of having active-TB uveitis, and therefore may be useful in clinical management decisions.
Collapse
|
4
|
Parlato S, Chiacchio T, Salerno D, Petrone L, Castiello L, Romagnoli G, Canini I, Goletti D, Gabriele L. Impaired IFN-α-mediated signal in dendritic cells differentiates active from latent tuberculosis. PLoS One 2018; 13:e0189477. [PMID: 29320502 PMCID: PMC5761858 DOI: 10.1371/journal.pone.0189477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
Individuals exposed to Mycobacterium tuberculosis (Mtb) may be infected and remain for the entire life in this condition defined as latent tuberculosis infection (LTBI) or develop active tuberculosis (TB). Among the multiple factors governing the outcome of the infection, dendritic cells (DCs) play a major role in dictating antibacterial immunity. However, current knowledge on the role of the diverse components of human DCs in shaping specific T-cell response during Mtb infection is limited. In this study, we performed a comparative evaluation of peripheral blood circulating DC subsets as well as of monocyte-derived Interferon-α DCs (IFN-DCs) from patients with active TB, subjects with LTBI and healthy donors (HD). The proportion of circulating myeloid BDCA3+ DCs (mDC2) and plasmacytoid CD123+ DCs (pDCs) declined significantly in active TB patients compared to HD, whereas the same subsets displayed a remarkable activation in LTBI subjects. Simultaneously, the differentiation of IFN-DCs from active TB patients resulted profoundly impaired compared to those from LTBI and HD individuals. Importantly, the altered developmental trait of IFN-DCs from active TB patients was associated with down-modulation of IFN-linked genes, marked changes in molecular signaling conveying antigen (Ag) presentation and full inability to induce Ag-specific T cell response. Thus, these data reveal an important role of IFN-α in determining the induction of Mtb-specific immunity.
Collapse
Affiliation(s)
- Stefania Parlato
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Teresa Chiacchio
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI) IRCCS, Rome, Italy
| | - Debora Salerno
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI) IRCCS, Rome, Italy
| | | | - Giulia Romagnoli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Irene Canini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, "L. Spallanzani" National Institute for Infectious Diseases (INMI) IRCCS, Rome, Italy
- * E-mail: (LG); (DG)
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- * E-mail: (LG); (DG)
| |
Collapse
|
5
|
Lu YB, Xiao DQ, Liang KD, Zhang JA, Wang WD, Yu SY, Zheng BY, Gao YC, Dai YC, Jia Y, Chen C, Zhuang ZG, Wang X, Fu XX, Zhou Y, Zhong J, Chen ZW, Xu JF. Profiling dendritic cell subsets in the patients with active pulmonary tuberculosis. Mol Immunol 2017; 91:86-96. [PMID: 28889065 DOI: 10.1016/j.molimm.2017.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/30/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Dendritic cell (DC) plays an important role in the immune response against pulmonary tuberculosis. However, the phenotypic profile of DC subsets in peripheral blood in individuals with active pulmonary tuberculosis (APT) is still inconclusive. Here, we demonstrated that the absolute numbers of total DC (tDC), myeloid DC (mDC) and plasmacytoid DC (pDC) in individuals with APT were decreased compared to healthy controls (HCs). The decreased number of DCs, especially of pDC, seems to be a useful diagnostic marker of APT. Meanwhile, the number of DCs was associated with the prolonged/complicated TB, ATD treatment effect and lymphocyte immune reactions, as manifested that relapsed APT patients with a higher number of tDC and lower number of pDC compared to newly diagnosed patients. Interestingly, mDC from APT patients displayed high expressions of CD83 and CCR7, but pDC displayed low expressions of CD83 and CCR7. Moreover, DCs from APT patients expressed lower levels of HLA-DR and CD80, but expressed a higher level of CD86 than those from HCs. However, the antigen uptake capacity of DC subsets was not different between APT and HCs, despite the antigen uptake capacity of pDC was much lower than that of mDC in both APT patients and HCs. Our data represent a systematic profile of DC subsets in the blood of APT patients, and would represent a useful biomarker for APT.
Collapse
Affiliation(s)
- Yuan-Bin Lu
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Department of Laboratory Medicine, Dongguan 5th Hospital, Dongguan 523000, China
| | - De-Qian Xiao
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China
| | - Kui-Di Liang
- Department of Respiration, Dongguan 6th Hospital, Dongguan 523000, China
| | - Jun-Ai Zhang
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - Wan-Dang Wang
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Shi-Yan Yu
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - Bi-Ying Zheng
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China
| | - Yu-Chi Gao
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - You-Chao Dai
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - Yan Jia
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - Chen Chen
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - Ze-Gang Zhuang
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - Xin Wang
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China
| | - Xiao-Xia Fu
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China
| | - Yong Zhou
- Department of Laboratory Medicine, Dongguan 5th Hospital, Dongguan 523000, China
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Zheng W Chen
- Department of Microbiology and Immunology, Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA
| | - Jun-Fa Xu
- Institute of Laboratory Medicine, Guangdong Medical University, No. 1 Xincheng Road, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, No. 1 Xincheng Road, Dongguan 523808, China.
| |
Collapse
|
6
|
Kim WS, Kim JS, Cha SB, Han SJ, Kim H, Kwon KW, Kim SJ, Eum SY, Cho SN, Shin SJ. Virulence-Dependent Alterations in the Kinetics of Immune Cells during Pulmonary Infection by Mycobacterium tuberculosis. PLoS One 2015; 10:e0145234. [PMID: 26675186 PMCID: PMC4682951 DOI: 10.1371/journal.pone.0145234] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 11/30/2015] [Indexed: 11/18/2022] Open
Abstract
A better understanding of the kinetics of accumulated immune cells that are involved in pathophysiology during Mycobacterium tuberculosis (Mtb) infection may help to facilitate the development of vaccines and immunological interventions. However, the kinetics of innate and adaptive cells that are associated with pathogenesis during Mtb infection and their relationship to Mtb virulence are not clearly understood. In this study, we used a mouse model to compare the bacterial burden, inflammation and kinetics of immune cells during aerogenic infection in the lung between laboratory-adapted strains (Mtb H37Rv and H37Ra) and Mtb K strain, a hyper-virulent W-Beijing lineage strain. The Mtb K strain multiplied more than 10- and 3.54-fold more rapidly than H37Ra and H37Rv, respectively, during the early stage of infection (at 28 days post-infection) and resulted in exacerbated lung pathology at 56 to 112 days post-infection. Similar numbers of innate immune cells had infiltrated, regardless of the strain, by 14 days post-infection. High, time-dependent frequencies of F4/80-CD11c+CD11b-Siglec-H+PDCA-1+ plasmacytoid DCs and CD11c-CD11b+Gr-1int cells were observed in the lungs of mice that were infected with the Mtb K strain. Regarding adaptive immunity, Th1 and Th17 T cells that express T-bet and RORγt, respectively, significantly increased in the lungs that were infected with the laboratory-adapted strains, and the population of CD4+CD25+Foxp3+ regulatory T cells was remarkably increased at 112 days post-infection in the lungs of mice that were infected with the K strain. Collectively, our findings indicate that the highly virulent Mtb K strain may trigger the accumulation of pDCs and Gr1intCD11b+ cells with the concomitant down-regulation of the Th1 response and the maintenance of an up-regulated Th2 response without inducing a Th17 response during chronic infection. These results will help to determine which immune system components must be considered for the development of tuberculosis (TB) vaccines and immunological interventions.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Bin Cha
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - Seung Jung Han
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | - HongMin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - So Jeong Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Yong Eum
- Division of Immunopathology and Cellular Immunology, International Tuberculosis Research Center, Changwon, South Korea
| | - Sang-Nae Cho
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
7
|
Schinnerling K, Geelhaar-Karsch A, Allers K, Friebel J, Conrad K, Loddenkemper C, Kühl AA, Erben U, Ignatius R, Moos V, Schneider T. Role of dendritic cells in the pathogenesis of Whipple's disease. Infect Immun 2015; 83:482-91. [PMID: 25385798 PMCID: PMC4294246 DOI: 10.1128/iai.02463-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/05/2014] [Indexed: 01/28/2023] Open
Abstract
Accumulation of Tropheryma whipplei-stuffed macrophages in the duodenum, impaired T. whipplei-specific Th1 responses, and weak secretion of interleukin-12 (IL-12) are hallmarks of classical Whipple's disease (CWD). This study addresses dendritic cell (DC) functionality during CWD. We documented composition, distribution, and functionality of DC ex vivo or after in vitro maturation by fluorescence-activated cell sorting (FACS) and by immunohistochemistry in situ. A decrease in peripheral DC of untreated CWD patients compared to healthy donors was due to reduced CD11c(high) myeloid DC (M-DC). Decreased maturation markers CD83, CD86, and CCR7, as well as low IL-12 production in response to stimulation, disclosed an immature M-DC phenotype. In vitro-generated monocyte-derived DC from CWD patients showed normal maturation and T cell-stimulatory capacity under proinflammatory conditions but produced less IL-12 and failed to activate T. whipplei-specific Th1 cells. In duodenal and lymphoid tissues, T. whipplei was found within immature DC-SIGN(+) DC. DC and proliferating lymphocytes were reduced in lymph nodes of CWD patients compared to levels in controls. Our results indicate that dysfunctional IL-12 production by DC provides suboptimal conditions for priming of T. whipplei-specific T cells during CWD and that immature DC carrying T. whipplei contribute to the dissemination of the bacterium.
Collapse
Affiliation(s)
- Katina Schinnerling
- Medizinische Klinik I, Charité-Universitätsmedizin Berlin, CBF, Berlin, Germany
| | | | - Kristina Allers
- Medizinische Klinik I, Charité-Universitätsmedizin Berlin, CBF, Berlin, Germany
| | - Julian Friebel
- Medizinische Klinik I, Charité-Universitätsmedizin Berlin, CBF, Berlin, Germany
| | - Kristina Conrad
- Medizinische Klinik I, Charité-Universitätsmedizin Berlin, CBF, Berlin, Germany
| | | | - Anja A Kühl
- Medizinische Klinik I, Charité-Universitätsmedizin Berlin, CBF, Berlin, Germany
| | - Ulrike Erben
- Medizinische Klinik I, Charité-Universitätsmedizin Berlin, CBF, Berlin, Germany
| | - Ralf Ignatius
- Institut für Tropenmedizin und Internationale Gesundheit, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Verena Moos
- Medizinische Klinik I, Charité-Universitätsmedizin Berlin, CBF, Berlin, Germany
| | - Thomas Schneider
- Medizinische Klinik I, Charité-Universitätsmedizin Berlin, CBF, Berlin, Germany
| |
Collapse
|
8
|
Characterization of dendritic cell and regulatory T cell functions against Mycobacterium tuberculosis infection. BIOMED RESEARCH INTERNATIONAL 2013; 2013:402827. [PMID: 23762843 PMCID: PMC3676983 DOI: 10.1155/2013/402827] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/28/2013] [Accepted: 05/08/2013] [Indexed: 11/17/2022]
Abstract
Glutathione (GSH) is a tripeptide that regulates intracellular redox and other vital aspects of cellular functions. GSH plays a major role in enhancing the immune system. Dendritic cells (DCs) are potent antigen presenting cells that participate in both innate and acquired immune responses against microbial infections. Regulatory T cells (Tregs) play a significant role in immune homeostasis. In this study, we investigated the effects of GSH in enhancing the innate and adaptive immune functions of DCs against Mycobacterium tuberculosis (M. tb) infection. We also characterized the functions of the sub-populations of CD4+T cells such as Tregs and non-Tregs in modulating the ability of monocytes to control the intracellular M. tb infection. Our results indicate that GSH by its direct antimycobacterial activity inhibits the growth of intracellular M. tb inside DCs. GSH also increases the expressions of costimulatory molecules such as HLA-DR, CD80 and CD86 on the cell surface of DCs. Furthermore, GSH-enhanced DCs induced a higher level of T-cell proliferation. We also observed that enhancing the levels of GSH in Tregs resulted in downregulation in the levels of IL-10 and TGF- β and reduction in the fold growth of M. tb inside monocytes. Our studies demonstrate novel regulatory mechanisms that favor both innate and adaptive control of M. tb infection.
Collapse
|
9
|
Verma VK, Taneja V, Jaiswal A, Sharma S, Behera D, Sreenivas V, Chauhan SS, Prasad HK. Prevalence, distribution and functional significance of the -237C to T polymorphism in the IL-12Rβ2 promoter in Indian tuberculosis patients. PLoS One 2012; 7:e34355. [PMID: 22509293 PMCID: PMC3317943 DOI: 10.1371/journal.pone.0034355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 02/27/2012] [Indexed: 01/03/2023] Open
Abstract
Cytokine/cytokine receptor gene polymorphisms related to structure/expression could impact immune response. Hence, the −237 polymorphic site in the 5′ promoter region of the IL-12Rβ2 (SNP ID: rs11810249) gene associated with the AP-4 transcription motif GAGCTG, was examined. Amplicons encompassing the polymorphism were generated from 46 pulmonary tuberculosis patients, 35 family contacts and 28 miscellaneous volunteers and sequenced. The C allele predominated among patients, (93.4%, 43/46), and in all volunteers and contacts screened, but the T allele was exclusively limited to patients, (6.5%, 3/46). The functional impact of this polymorphism on transcriptional activity was assessed by Luciferase-reporter and electrophoretic mobility shift assays (EMSA). Luciferase-reporter assays showed a significant reduction in transcriptional efficiency with T compared to C allele. The reduction in transcriptional efficiency with the T allele construct (pGIL-12Rb2-T), in U-87MG, THP-1 and Jurkat cell lines, were 53, 37.6, and 49.8% respectively, compared to the C allele construct (pGIL-12Rb2-C). Similarly, densitometric analysis of the EMSA assay showed reduced binding of the AP-4 transcription factor, to T compared to the C nucleotide probe. Reduced mRNA expression in all patients (3/3) harboring the T allele was seen, whereas individuals with the C allele exhibited high mRNA expression (17/25; 68%, p = 0.05). These observations were in agreement with the in vitro assessment of the promoter activity by Luciferase-reporter and EMSA assays. The reduced expression of IL-12Rβ2 transcripts in 8 patients despite having the C allele was attributed to the predominant over expression of the suppressors (IL-4 and GATA-3) and reduced expression of enhancers (IFN-α) of IL-12Rβ2 transcripts. The 17 high IL-12Rβ2 mRNA expressers had significantly elevated IFN-α mRNA levels compared to low expressers and volunteers. Notwithstanding the presence of high levels of IL-12Rβ2 mRNA in these patients elevated IFN-α expression could modulate their immune responses to Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Vikas Kumar Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Vibha Taneja
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Anand Jaiswal
- LRS Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Sangeeta Sharma
- LRS Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Digamber Behera
- LRS Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Vishnubhatla Sreenivas
- Department of Biostatistics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Shyam Singh Chauhan
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | |
Collapse
|