1
|
Fekrvand S, Abolhassani H, Rezaei N. An overview of early genetic predictors of IgA deficiency. Expert Rev Mol Diagn 2024; 24:715-727. [PMID: 39087770 DOI: 10.1080/14737159.2024.2385521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEIs) refer to a heterogeneous category of diseases with defects in the number and/or function of components of the immune system. Immunoglobulin A (IgA) deficiency is the most prevalent IEI characterized by low serum level of IgA and normal serum levels of IgG and/or IgM. Most of the individuals with IgA deficiency are asymptomatic and are only identified through routine laboratory tests. Others may experience a wide range of clinical features including mucosal infections, allergies, and malignancies as the most important features. IgA deficiency is a multi-complex disease, and the exact pathogenesis of it is still unknown. AREAS COVERED This review compiles recent research on genetic and epigenetic factors that may contribute to the development of IgA deficiency. These factors include defects in B-cell development, IgA class switch recombination, synthesis, secretion, and the long-term survival of IgA switched memory B cells and plasma cells. EXPERT OPINION A better and more comprehensive understanding of the cellular pathways involved in IgA deficiency could lead to personalized surveillance and potentially curative strategies for affected patients, especially those with severe symptoms.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Clark N, Wu X, Her C. MutS Homologues hMSH4 and hMSH5: Genetic Variations, Functions, and Implications in Human Diseases. Curr Genomics 2013; 14:81-90. [PMID: 24082819 PMCID: PMC3637681 DOI: 10.2174/1389202911314020002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 01/19/2013] [Accepted: 01/21/2013] [Indexed: 12/01/2022] Open
Abstract
The prominence of the human mismatch repair (MMR) pathway is clearly reflected by the causal link between MMR gene mutations and the occurrence of Lynch syndrome (or HNPCC). The MMR family of proteins also carries out a plethora of diverse cellular functions beyond its primary role in MMR and homologous recombination. In fact, members of the MMR family of proteins are being increasingly recognized as critical mediators between DNA damage repair and cell survival. Thus, a better functional understanding of MMR proteins will undoubtedly aid the development of strategies to effectively enhance apoptotic signaling in response to DNA damage induced by anti-cancer therapeutics. Among the five known human MutS homologs, hMSH4 and hMSH5 form a unique heterocomplex. However, the expression profiles of the two genes are not correlated in a number of cell types, suggesting that they may function independently as well. Consistent with this, these two proteins are promiscuous and thought to play distinct roles through interacting with different binding partners. Here, we describe the gene and protein structures of eukaryotic MSH4 and MSH5 with a particular emphasis on their human homologues, and we discuss recent findings of the roles of these two genes in DNA damage response and repair. Finally, we delineate the potential links of single nucleotide polymorphism (SNP) loci of these two genes with several human diseases.
Collapse
Affiliation(s)
- Nicole Clark
- STARS Program, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7520, USA ; School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7520, USA
| | | | | |
Collapse
|
4
|
Ferreira RC, Pan-Hammarström Q, Graham RR, Fontán G, Lee AT, Ortmann W, Wang N, Urcelay E, Fernández-Arquero M, Núñez C, Jorgensen G, Ludviksson BR, Koskinen S, Haimila K, Padyukov L, Gregersen PK, Hammarström L, Behrens TW. High-density SNP mapping of the HLA region identifies multiple independent susceptibility loci associated with selective IgA deficiency. PLoS Genet 2012; 8:e1002476. [PMID: 22291608 PMCID: PMC3266887 DOI: 10.1371/journal.pgen.1002476] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/29/2011] [Indexed: 01/24/2023] Open
Abstract
Selective IgA deficiency (IgAD; serum IgA<0.07 g/l) is the most common form of human primary immune deficiency, affecting approximately 1∶600 individuals in populations of Northern European ancestry. The polygenic nature of IgAD is underscored by the recent identification of several new risk genes in a genome-wide association study. Among the characterized susceptibility loci, the association with specific HLA haplotypes represents the major genetic risk factor for IgAD. Despite the robust association, the nature and location of the causal variants in the HLA region remains unknown. To better characterize the association signal in this region, we performed a high-density SNP mapping of the HLA locus and imputed the genotypes of common HLA-B, -DRB1, and -DQB1 alleles in a combined sample of 772 IgAD patients and 1,976 matched controls from 3 independent European populations. We confirmed the complex nature of the association with the HLA locus, which is the result of multiple effects spanning the entire HLA region. The primary association signal mapped to the HLA-DQB1*02 allele in the HLA Class II region (combined P = 7.69×10(-57); OR = 2.80) resulting from the combined independent effects of the HLA-B*0801-DRB1*0301-DQB1*02 and -DRB1*0701-DQB1*02 haplotypes, while additional secondary signals were associated with the DRB1*0102 (combined P = 5.86×10(-17); OR = 4.28) and the DRB1*1501 (combined P = 2.24×10(-35); OR = 0.13) alleles. Despite the strong population-specific frequencies of HLA alleles, we found a remarkable conservation of these effects regardless of the ethnic background, which supports the use of large multi-ethnic populations to characterize shared genetic association signals in the HLA region. We also provide evidence for the location of association signals within the specific extended haplotypes, which will guide future sequencing studies aimed at characterizing the precise functional variants contributing to disease pathogenesis.
Collapse
Affiliation(s)
- Ricardo C. Ferreira
- Genentech, South San Francisco, California, United States of America
- * E-mail: (RCF); (LH); (TWB)
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Robert R. Graham
- Genentech, South San Francisco, California, United States of America
| | - Gumersindo Fontán
- Department of Immunology, Hospital Universitario La Paz, Madrid, Spain
| | - Annette T. Lee
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Ward Ortmann
- Genentech, South San Francisco, California, United States of America
| | - Ning Wang
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Elena Urcelay
- Department of Clinical Immunology, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Concepción Núñez
- Department of Clinical Immunology, Hospital Clínico San Carlos, Madrid, Spain
| | - Gudmundur Jorgensen
- Landspitali–University Hospital and the Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Björn R. Ludviksson
- Landspitali–University Hospital and the Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sinikka Koskinen
- Finnish Red Cross Blood Service, Clinical Laboratory, Helsinki, Finland
| | - Katri Haimila
- Finnish Red Cross Blood Service, Clinical Laboratory, Helsinki, Finland
| | - Leonid Padyukov
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter K. Gregersen
- The Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, United States of America
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
- * E-mail: (RCF); (LH); (TWB)
| | - Timothy W. Behrens
- Genentech, South San Francisco, California, United States of America
- * E-mail: (RCF); (LH); (TWB)
| |
Collapse
|
5
|
The influence of MHC and immunoglobulins a and e on host resistance to gastrointestinal nematodes in sheep. J Parasitol Res 2011; 2011:101848. [PMID: 21584228 PMCID: PMC3092517 DOI: 10.1155/2011/101848] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 11/18/2022] Open
Abstract
Gastrointestinal nematode parasites in farmed animals are of particular importance due to their effects on production. In Australia, it is estimated that the direct and indirect effects of parasite infestation cost the animal production industries hundreds of millions of dollars each year. The main factors considered by immunologists when studying gastrointestinal nematode infections are the effects the host's response has on the parasite, which immunological components are responsible for these effects, genetic factors involved in controlling immunological responses, and the interactions between these forming an interconnecting multilevel relationship. In this paper, we describe the roles of immunoglobulins, in particular IgA and IgE, and the major histocompatibility complex in resistance to gastrointestinal parasites in sheep. We also draw evidence from other animal models to support the involvement of these immune components. Finally, we examine how IgA and IgE exert their influence and how methods may be developed to manage susceptible animals.
Collapse
|