1
|
Genomic variants-driven drug repurposing for tuberculosis by utilizing the established bioinformatic-based approach. Biochem Biophys Rep 2022; 32:101334. [PMID: 36090591 PMCID: PMC9449755 DOI: 10.1016/j.bbrep.2022.101334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
A major challenge in translating genomic variants of Tuberculosis (TB) into clinical implementation is to integrate the disease-associated variants and facilitate drug discovery through the concept of genomic-driven drug repurposing. Here, we utilized two established genomic databases, namely a Genome-Wide Association Study (GWAS) and a Phenome-Wide Association Study (PheWAS) to identify the genomic variants associated with TB disease and further utilize them for drug-targeted genes. We evaluated 3.425 genomic variants associated with TB disease which overlapped with 200 TB-associated genes. To prioritize the biological TB risk genes, we devised an in-silico pipeline and leveraged an established bioinformatics method based on six functional annotations (missense mutation, cis-eQTL, biological process, cellular component, molecular function, and KEGG molecular pathway analysis). Interestingly, based on the six functional annotations that we applied, we discovered that 14 biological TB risk genes are strongly linked to the deregulation of the biological TB risk genes. Hence, we demonstrated that 12 drug target genes overlapped with 40 drugs for other indications and further suggested that the drugs may be repurposed for the treatment of TB. We highlighted that CD44, CCR5, CXCR4, and C3 are highly promising proposed TB targets since they are connected to SELP and HLA-B, which are biological TB risk genes with high systemic scores on functional annotations. In sum, the current study shed light on the genomic variants involved in TB pathogenesis as the biological TB risk genes and provided empirical evidence that the genomics of TB may contribute to drug discovery. The feasibility of utilizing genomic variants to facilitate drug repurposing for Tuberculosis. Genomic information can be effectively used for drug discovery and treatment through genomic-based therapies. Findings from our research support the possibility of drug repurposing for Tuberculosis based on genomic variations.
Collapse
|
2
|
Wang H, Liu M. Complement C4, Infections, and Autoimmune Diseases. Front Immunol 2021; 12:694928. [PMID: 34335607 PMCID: PMC8317844 DOI: 10.3389/fimmu.2021.694928] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
Complement C4, a key molecule in the complement system that is one of chief constituents of innate immunity for immediate recognition and elimination of invading microbes, plays an essential role for the functions of both classical (CP) and lectin (LP) complement pathways. Complement C4 is the most polymorphic protein in complement system. A plethora of research data demonstrated that individuals with C4 deficiency are prone to microbial infections and autoimmune disorders. In this review, we will discuss the diversity of complement C4 proteins and its genetic structures. In addition, the current development of the regulation of complement C4 activation and its activation derivatives will be reviewed. Moreover, the review will provide the updates on the molecule interactions of complement C4 under the circumstances of bacterial and viral infections, as well as autoimmune diseases. Lastly, more evidence will be presented to support the paradigm that links microbial infections and autoimmune disorders under the condition of the deficiency of complement C4. We provide such an updated overview that would shed light on current research of complement C4. The newly identified targets of molecular interaction will not only lead to novel hypotheses on the study of complement C4 but also assist to propose new strategies for targeting microbial infections, as well as autoimmune disorders.
Collapse
Affiliation(s)
- Hongbin Wang
- Master Program of Pharmaceutical Sciences College of Graduate Studies, California Northstate University, Elk Grove, CA, United States.,Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, Elk Grove, CA, United States.,Department of Basic Science College of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Mengyao Liu
- Master Program of Pharmaceutical Sciences College of Graduate Studies, California Northstate University, Elk Grove, CA, United States
| |
Collapse
|
3
|
Bansal R, Khan MM, Dasari S, Verma I, Goodlett DR, Manes NP, Nita-Lazar A, Sharma SP, Kumar A, Singh N, Chakraborti A, Gupta V, Dogra MR, Ram J, Gupta A. Proteomic profile of vitreous in patients with tubercular uveitis. Tuberculosis (Edinb) 2021; 126:102036. [PMID: 33359883 PMCID: PMC11005023 DOI: 10.1016/j.tube.2020.102036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/31/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To elucidate disease-specific host protein profile in vitreous fluid of patients with intraocular inflammation due to tubercular uveitis (TBU). METHODS Vitreous samples from 13 patients with TBU (group A), 7 with non-TBU (group B) and 9 with no uveitis (group C) were analysed by shotgun proteomics using Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). Differentially expressed proteins (DEPs) were subjected to pathway analysis using WEB-based Gene SeT Analysis Toolkit software. RESULTS Compared to control groups (B + C combined), group A (TBU) displayed 32 (11 upregulated, 21 downregulated) DEPs, which revealed an upregulation of coagulation cascades, complement and classic pathways, and downregulation of metabolism of carbohydrates, gluconeogenesis, glucose metabolism and glycolysis/gluconeogenesis pathways. When compared to group B (non-TBU) alone, TBU displayed 58 DEPs (21 upregulated, 37 downregulated), with an upregulation of apoptosis, KRAS signaling, diabetes pathways, classic pathways, and downregulation of MTORC1 signaling, glycolysis/gluconeogenesis, and glucose metabolism. CONCLUSION This differential protein profile provides novel insights into the molecular mechanisms of TBU and a baseline to explore vitreous biomarkers to differentiate TBU from non-TBU, warranting future studies to identify and validate them as a diagnostic tool in TBU. The enriched pathways generate interesting hypotheses and drive further research.
Collapse
Affiliation(s)
- Reema Bansal
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Mohd M Khan
- University of Maryland, School of Medicine, Baltimore, MD, USA; Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
| | - Indu Verma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | | | - Nathan P Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Surya P Sharma
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Aman Kumar
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Nirbhai Singh
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Anuradha Chakraborti
- Department of Experimental Medicine & Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Vishali Gupta
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - M R Dogra
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Jagat Ram
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| | - Amod Gupta
- Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
4
|
Liesmaa I, Paakkanen R, Järvinen A, Valtonen V, Lokki ML. Clinical features of patients with homozygous complement C4A or C4B deficiency. PLoS One 2018; 13:e0199305. [PMID: 29928053 PMCID: PMC6013154 DOI: 10.1371/journal.pone.0199305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/05/2018] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Homozygous deficiencies of complement C4A or C4B are detected in 1-10% of populations. In genome-wide association studies C4 deficiencies are missed because the genetic variation of C4 is complex. There are no studies where the clinical presentation of these patients is analyzed. This study was aimed to characterize the clinical features of patients with homozygous C4A or C4B deficiency. MATERIAL AND METHODS Thirty-two patients with no functional C4A, 87 patients with no C4B and 120 with normal amount of C4 genes were included. C4A and C4B numbers were assessed with genomic quantitative real-time PCR. Medical history was studied retrospectively from patients' files. RESULTS Novel associations between homozygous C4A deficiency and lymphoma, coeliac disease and sarcoidosis were detected. These conditions were present in 12.5%, (4/32 in patients vs. 0.8%, 1/120, in controls, OR = 17.00, 95%CI = 1.83-158.04, p = 0.007), 12.5% (4/32 in patients vs. 0%, 0/120 in controls, OR = 1.14, 95%CI = 1.00-1.30, p = 0.002) and 12.5%, respectively (4/32 in patients vs. 2.5%, 3/120 in controls, OR = 5.571, 95%CI = 1.79-2.32, p = 0.036). In addition, C4A and C4B deficiencies were both associated with adverse drug reactions leading to drug discontinuation (34.4%, 11/32 in C4A-deficient patients vs. 14.2%, 17/120 in controls, OR = 3.174, 95%CI = 1.30-7.74, p = 0.009 and 28.7%, 25/87 in C4B-deficient patients, OR = 2.44, 95%CI = 1.22-4.88, p = 0.010). CONCLUSION This reported cohort of homozygous deficiencies of C4A or C4B suggests that C4 deficiencies may have various unrecorded disease associations. C4 gene should be considered as a candidate gene in studying these selected disease associations.
Collapse
Affiliation(s)
- Inka Liesmaa
- Division of Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- * E-mail:
| | - Riitta Paakkanen
- Transplantation Laboratory, Medicum, University of Helsinki, Helsinki, Finland
- Division of Cardiology, Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Asko Järvinen
- Division of Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ville Valtonen
- Division of Infectious Diseases, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marja-Liisa Lokki
- Transplantation Laboratory, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Abstract
ABSTRACT
Familial risk of tuberculosis (TB) has been recognized for centuries. Largely through studies of mono- and dizygotic twin concordance rates, studies of families with Mendelian susceptibility to mycobacterial disease, and candidate gene studies performed in the 20th century, it was recognized that susceptibility to TB disease has a substantial host genetic component. Limitations in candidate gene studies and early linkage studies made the robust identification of specific loci associated with disease challenging, and few loci have been convincingly associated across multiple populations. Genome-wide and transcriptome-wide association studies, based on microarray (commonly known as genechip) technologies, conducted in the past decade have helped shed some light on pathogenesis but only a handful of new pathways have been identified. This apparent paradox, of high heritability but few replicable associations, has spurred a new wave of collaborative global studies. This review aims to comprehensively review the heritability of TB, critically review the host genetic and transcriptomic correlates of disease, and highlight current studies and future prospects in the study of host genomics in TB. An implicit goal of elucidating host genetic correlates of susceptibility to
Mycobacterium tuberculosis
infection or TB disease is to identify pathophysiological features amenable to translation to new preventive, diagnostic, or therapeutic interventions. The translation of genomic insights into new clinical tools is therefore also discussed.
Collapse
|
6
|
Wang C, Wei LL, Shi LY, Pan ZF, Yu XM, Li TY, Liu CM, Ping ZP, Jiang TT, Chen ZL, Mao LG, Li ZJ, Li JC. Screening and identification of five serum proteins as novel potential biomarkers for cured pulmonary tuberculosis. Sci Rep 2015; 5:15615. [PMID: 26499913 PMCID: PMC4620482 DOI: 10.1038/srep15615] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/29/2015] [Indexed: 01/14/2023] Open
Abstract
Rapid and efficient methods for the determination of cured tuberculosis (TB) are lacking. A total of 85 differentially expressed serum proteins were identified by iTRAQ labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS) analysis (fold change >1.50 or <0.60, P < 0.05). We validated albumin (ALB), Rho GDP-dissociation inhibitor 2 (ARHGDIB), complement 3 (C3), ficolin-2 (FCN2), and apolipoprotein (a) (LPA) using the enzyme-linked immunosorbent assay (ELISA) method. Significantly increased ALB and LPA levels (P = 0.036 and P = 0.012, respectively) and significantly reduced ARHGDIB, C3, and FCN2 levels (P < 0.001, P = 0.035, and P = 0.018, respectively) were observed in cured TB patients compared with untreated TB patients. In addition, changes in ALB and FCN2 levels occurred after 2 months of treatment (P < 0.001 and P = 0.030, respectively). We established a cured TB model with 87.10% sensitivity, 79.49% specificity, and an area under the curve (AUC) of 0.876. The results indicated that ALB, ARHGDIB, C3, FCN2, and LPA levels might serve as potential biomarkers for cured TB. Our study provides experimental data for establishing objective indicators of cured TB and also proposes potential markers for evaluating the efficacy of anti-TB drugs.
Collapse
Affiliation(s)
- Chong Wang
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Li-Liang Wei
- Department of Respiratory Medicine, The Sixth Hospital of Shaoxing, Shaoxing 312000, P.R. China
| | - Li-Ying Shi
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, P.R. China
| | - Zhi-Fen Pan
- Department of Tuberculosis, The First Hospital of Jiaxing, Jiaxing 314001, P.R. China
| | - Xiao-Mei Yu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou 310013, P.R. China
| | - Tian-Yu Li
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Chang-Ming Liu
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ze-Peng Ping
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ting-Ting Jiang
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhong-Liang Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Lian-Gen Mao
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Zhong-Jie Li
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ji-Cheng Li
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
7
|
Kotilainen H, Lokki ML, Paakkanen R, Seppänen M, Tukiainen P, Meri S, Poussa T, Eskola J, Valtonen V, Järvinen A. Complement C4 deficiency--a plausible risk factor for non-tuberculous mycobacteria (NTM) infection in apparently immunocompetent patients. PLoS One 2014; 9:e91450. [PMID: 24638111 PMCID: PMC3956671 DOI: 10.1371/journal.pone.0091450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 02/12/2014] [Indexed: 01/08/2023] Open
Abstract
Background Non-tuberculous mycobacteria (NTM) are ubiquitous in the environment and they infect mainly persons with underlying pulmonary diseases but also previously healthy elderly women. Defects in host resistance that lead to pulmonary infections by NTM are relatively unknown. A few genetic defects have been associated with both pulmonary and disseminated mycobacterial infections. Rare disseminated NTM infections have been associated with genetic defects in T-cell mediated immunity and in cytokine signaling in families. We investigated whether there was an association between NTM infections and deficiencies of complement components C4A or C4B that are encoded by major histocompatibility complex (MHC). Methods 50 adult patients with a positive NTM culture with symptoms and findings of a NTM disease were recruited. Patients' clinical history was collected and symptoms and clinical findings were categorized according to 2007 diagnostic criteria of The American Thoracic Society (ATS). To investigate the deficiencies of complement, C4A and C4B gene copy numbers and phenotype frequencies of the C4 allotypes were analyzed. Unselected, healthy, 149 Finnish adults were used as controls. Results NTM patients had more often C4 deficiencies (C4A or C4B) than controls (36/50 [72%] vs 83/149 [56%], OR = 2.05, 95%CI = 1.019–4.105, p = 0.042). C4 deficiencies for female NTM patients were more common than for controls (29/36 [81%] vs 55/100 [55%], OR = 3.39, 95% CI = 1.358–8.460, p = 0.007). C4 deficiences seemed not to be related to any specific underlying disease or C4 phenotype. Conclusions C4 deficiency may be a risk factor for NTM infection in especially elderly female patients.
Collapse
Affiliation(s)
- Hannele Kotilainen
- Division of Infectious Diseases, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
- * E-mail:
| | - Marja-Liisa Lokki
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Riitta Paakkanen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- Division of Cardiology, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Mikko Seppänen
- Division of Infectious Diseases, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Pentti Tukiainen
- Division of Lung Diseases, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Seppo Meri
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | - Jussi Eskola
- Mycobacteriology Unit, Helsinki University Central Hospital Laboratory, Helsinki, Finland
| | - Ville Valtonen
- Division of Infectious Diseases, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Asko Järvinen
- Division of Infectious Diseases, Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
8
|
|
9
|
A missense mutation (c.1963A<G) of the complementary component 2 (C2) gene is associated with serum Ca⁺⁺ concentrations in pigs. Mol Biol Rep 2012; 39:9291-7. [PMID: 22763733 DOI: 10.1007/s11033-012-1679-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
Abstract
Serum Ca(++) levels play important roles in the humoral immunity. The aim of this study was to detect quantitative trait loci and the associated positional candidate genes affecting baseline serum Ca(++) concentrations. A genome-wide association study was conducted in an F(2) intercross population between Landrace and Korean native pigs using the porcine single nucleotide polymorphism (SNP) 60 K beadchip and the PLINK program based on linear regression. Data used in the study included 410 F(2) pigs. All experimental animals were genotyped with 36,613 SNP markers located throughout the pig autosomes. We identified a strong association between a SNP marker on chromosome 7 and serum Ca(++) levels (DIAS0002191, genomic control-corrected P = 7.7 × 10(-5)). The position of DIAS0002191 was closely located to SLA class III region containing the C2 gene encoding the complementary component 2 protein, a protein which is important in the humoral immune responses. De novo sequencing of the porcine C2 gene revealed a missense mutation [c.1963A<G (N655D)] and this missense mutation was also strongly associated with serum Ca(++) concentrations (genomic control-corrected P = 5.9 × 10(-5)). Further studies are necessary to investigate the effect of this missense mutation at a functional-molecular level. In conclusion, the missense mutation of the C2 gene identified in this study may help in elucidating the genetic factors underlying humoral immune reactions.
Collapse
|
10
|
Paakkanen R, Vauhkonen H, Eronen KT, Järvinen A, Seppänen M, Lokki ML. Copy number analysis of complement C4A, C4B and C4A silencing mutation by real-time quantitative polymerase chain reaction. PLoS One 2012; 7:e38813. [PMID: 22737222 PMCID: PMC3380926 DOI: 10.1371/journal.pone.0038813] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 05/10/2012] [Indexed: 01/30/2023] Open
Abstract
Low protein levels and copy number variation (CNV) of the fourth component of human complement (C4A and C4B) have been associated with various diseases. High-throughput methods for analysing C4 CNV are available, but they commonly do not detect the most common C4A mutation, a silencing CT insertion (CTins) leading to low protein levels. We developed a SYBR® Green labelled real-time quantitative polymerase chain reaction (qPCR) with a novel concentration range approach to address C4 CNV and deficiencies due to CTins. This method was validated in three sample sets and applied to over 1600 patient samples. CTins caused C4A deficiency in more than 70% (76/105) of the carriers. Twenty per cent (76/381) of patients with a C4A deficiency would have been erroneously recorded as having none, if the CTins had not been assessed. C4A deficiency was more common in patients than a healthy reference population, (OR = 1.60, 95%CI = 1.02-2.52, p = 0.039). The number of functional C4 genes can be straightforwardly analyzed by real-time qPCR, also with SYBR® Green labelling. Determination of CTins increases the frequency of C4A deficiency and thus helps to elucidate the genotypic versus phenotypic disease associations.
Collapse
Affiliation(s)
- Riitta Paakkanen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
11
|
Ben-Selma W, Harizi H, Letaief M, Boukadida J. Age- and gender-specific effects on NRAMP1 gene polymorphisms and risk of the development of active tuberculosis in Tunisian populations. Int J Infect Dis 2012; 16:e543-50. [PMID: 22609013 DOI: 10.1016/j.ijid.2011.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 09/28/2011] [Accepted: 11/16/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Studies that have assessed NRAMP1 polymorphisms and their association with susceptibility to tuberculosis (TB) in humans have yielded conflicting results. In this study, we evaluated the association between NRAMP1 gene polymorphisms and the risk of the development of active TB in Tunisian populations. METHODS The distribution of 3'-UTR and D543N polymorphisms in 223 TB patients (168 patients with pulmonary TB (PTB) and 55 patients with extrapulmonary TB (EPTB)) and 150 healthy donors was determined by PCR-restriction fragment length polymorphism (RFLP) method. RESULTS We found that AA and AG genotypes appeared to be associated with susceptibility to PTB (odds ratio (OR) 10.8, 95% confidence interval (CI) 1.37-230.8; p corrected for the number of genotypes (pc)=0.018) and EPTB (OR 4.37, 95% CI 1.64-11.82; pc=0.0024), respectively, in patients aged less than 30 years. However, wild-type GG genotype appeared to be associated with resistance against PTB in females (OR 0.1, 95% CI 0.01-0.74; pc=0.03). The 3'-UTR del/del genotype appeared to be associated with susceptibility to PTB in patients aged less than 30 years (OR 3.75, 95% CI 1.5-9.52; pc=0.003). In contrast, TGTG+/del might be associated with resistance against the development of active PTB (OR 0.23, 95% CI 0.08-0.65; pc=0.003). A-del haplotype appeared to be associated with susceptibility to PTB (OR 1.79, 95% CI 1.11-2.9; pc=0.04). CONCLUSIONS Collectively, our results suggest an association of NRAMP1 3'-UTR and D543N polymorphisms with susceptibility to mycobacterial infection in Tunisian populations in relation to age and sex.
Collapse
Affiliation(s)
- Walid Ben-Selma
- Laboratory of Microbiology and Immunology, UR02SP13, Farhat Hached University Hospital, Av. Ibn el Jazzar, 4000 Sousse, Tunisia.
| | | | | | | |
Collapse
|