1
|
Ohta R, Demachi-Okamura A, Akatsuka Y, Fujiwara H, Kuzushima K. Improving TCR affinity on 293T cells. J Immunol Methods 2018; 466:1-8. [PMID: 30468736 DOI: 10.1016/j.jim.2018.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
This study presents an efficient method to improve TCR affinity, comprising 1) CDR-directed saturation mutation of TCR cDNA, 2) transient TCR display on CD3-expressing HEK293T (CD3-293T) cells by simple plasmid transfection, 3) staining with HLA-tetramers, and 4) multi-round sorting of cells with CD8-independent tetramer binding on a flow cytometer. Using these procedures, we successfully identified mutant TCRs with enhanced binding from an HLA-A*24:02-restricted, human telomerase reverse transcriptase (hTERT)-specific TCR. Two such clones, 2A7A and 2D162, harboring mutations in CDR1 and CDR2 of TCRβ, respectively, were isolated with both showing sequential four amino acid substitutions. When expressed on CD3-293T cells along with wild-type TCRα, the TCR molecules of these mutants as well as their combinatory mutation, bound to HLA-A24/hTERT-tetramers more strongly than the wild-type TCRs, without binding to control tetramers. Besides, in order to facilitate a functional study of TCR, we established an artificial T cell line, designated as CD8I-J2, which expresses a human CD8 and IFN-γ producing cassette by modifying Jurkat-derived J.RT3-T3.5 cells. CD8I-J2 cells expressing wild-type or affinity-enhanced hTERT-specific TCRs were analyzed for their recognition of serially diluted cognate peptide on HLA-A*24:02-transduced T2 cells. CD8I-J2 cells expressing each mutant TCR recognized the hTERT peptide at lower concentrations than wild-type TCR. The hierarchy of peptide recognition is concordant with tetramer binding on CD3-293T cells and none of these mutant TCRs were cross-reactive with irrelevant peptides reported to be present on HLA-A*24:02 molecules as far as tested. These methods might thus be useful for obtaining high affinity mutants from other TCRs of interest.
Collapse
Affiliation(s)
- Rieko Ohta
- Division of Immune Response, Aichi, Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Ayako Demachi-Okamura
- Division of Immune Response, Aichi, Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Yoshiki Akatsuka
- Division of Immune Response, Aichi, Cancer Center Research Institute, Nagoya 464-8681, Japan; Department of Hematology, Fujita Health University, Aichi 470-1192, Japan
| | - Hiroshi Fujiwara
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Ehime, 791-0295, Japan
| | - Kiyotaka Kuzushima
- Division of Immune Response, Aichi, Cancer Center Research Institute, Nagoya 464-8681, Japan; Division of Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
2
|
de la Zerda A, Kratochvil MJ, Suhar NA, Heilshorn SC. Review: Bioengineering strategies to probe T cell mechanobiology. APL Bioeng 2018; 2:021501. [PMID: 31069295 PMCID: PMC6324202 DOI: 10.1063/1.5006599] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023] Open
Abstract
T cells play a major role in adaptive immune response, and T cell dysfunction can lead to the progression of several diseases that are often associated with changes in the mechanical properties of tissues. However, the concept that mechanical forces play a vital role in T cell activation and signaling is relatively new. The endogenous T cell microenvironment is highly complex and dynamic, involving multiple, simultaneous cell-cell and cell-matrix interactions. This native complexity has made it a challenge to isolate the effects of mechanical stimuli on T cell activation. In response, researchers have begun developing engineered platforms that recapitulate key aspects of the native microenvironment to dissect these complex interactions in order to gain a better understanding of T cell mechanotransduction. In this review, we first describe some of the unique characteristics of T cells and the mounting research that has shown they are mechanosensitive. We then detail the specific bioengineering strategies that have been used to date to measure and perturb the mechanical forces at play during T cell activation. In addition, we look at engineering strategies that have been used successfully in mechanotransduction studies for other cell types and describe adaptations that may make them suitable for use with T cells. These engineering strategies can be classified as 2D, so-called 2.5D, or 3D culture systems. In the future, findings from this emerging field will lead to an optimization of culture environments for T cell expansion and the development of new T cell immunotherapies for cancer and other immune diseases.
Collapse
Affiliation(s)
- Adi de la Zerda
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | | | - Nicholas A Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
3
|
Babkair H, Yamazaki M, Uddin MS, Maruyama S, Abé T, Essa A, Sumita Y, Ahsan MS, Swelam W, Cheng J, Saku T. Aberrant expression of the tight junction molecules claudin-1 and zonula occludens-1 mediates cell growth and invasion in oral squamous cell carcinoma. Hum Pathol 2016; 57:51-60. [PMID: 27436828 DOI: 10.1016/j.humpath.2016.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/10/2016] [Accepted: 07/02/2016] [Indexed: 01/12/2023]
Abstract
We reported that altered cell contact mediated by E-cadherin is an initial event in the pathogenesis of oral epithelial malignancies. To assess other effects of cell adhesion, we examined the expression levels of tight junction (TJ) molecules in oral carcinoma in situ (CIS) and squamous cell carcinoma (SCC). To identify changes in the expression of TJ molecules, we conducted an analysis of the immunohistochemical profiles of claudin-1 (CLDN-1) and zonula occludens-1 (ZO-1) in surgical specimens acquired from patients with oral SCC containing foci of epithelial dysplasia or from patients with CIS. We used immunofluorescence, Western blotting, reverse-transcription polymerase chain reaction, and RNA interference to evaluate the functions of CLDN-1 and ZO-1 in cultured oral SCC cells. TJ molecules were not detected in normal oral epithelial tissues but were expressed in SCC/CIS cells. ZO-1 was localized within the nucleus of proliferating cells. When CLDN-1 expression was inhibited by transfecting cells with specific small interference RNAs, SCC cells dissociated, and their ability to proliferate and invade Matrigel was inhibited. In contrast, although RNA interference-mediated inhibition of ZO-1 expression did not affect cell morphology, it inhibited cell proliferation and invasiveness. Our findings indicated that the detection of TJ molecules in the oral epithelia may serve as a marker for the malignant phenotype of cells in which CLDN-1 regulates proliferation and invasion.
Collapse
Affiliation(s)
- Hamzah Babkair
- Division of Oral Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan; Division of Oral Pathology, Department of Oral Basic and Clinical Sciences, College of Dentistry, Taibah University, Medina 41311, Saudi Arabia
| | - Manabu Yamazaki
- Division of Oral Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan.
| | - Md Shihab Uddin
- Division of Oral Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Satoshi Maruyama
- Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata 951-8520, Japan
| | - Tatsuya Abé
- Division of Oral Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan; Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata 951-8520, Japan
| | - Ahmed Essa
- Division of Oral Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yoshimasa Sumita
- Division of Oral Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Md Shahidul Ahsan
- Division of Oral Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Wael Swelam
- Division of Oral Pathology, Department of Oral Basic and Clinical Sciences, College of Dentistry, Taibah University, Medina 41311, Saudi Arabia
| | - Jun Cheng
- Division of Oral Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Takashi Saku
- Division of Oral Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan; Oral Pathology Section, Department of Surgical Pathology, Niigata University Hospital, Niigata 951-8520, Japan
| |
Collapse
|
4
|
Yamada E, Demachi-Okamura A, Kondo S, Akatsuka Y, Suzuki S, Shibata K, Kikkawa F, Kuzushima K. Identification of a naturally processed HLA-Cw7-binding peptide that cross-reacts with HLA-A24-restricted ovarian cancer-specific CTLs. ACTA ACUST UNITED AC 2015. [PMID: 26216489 DOI: 10.1111/tan.12607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Here, we describe an human leukocyte antigen (HLA)-A*24:02-restricted cytotoxic T-lymphocyte (CTL) clone, 1G3, established from naïve CD8(+) T-lymphocytes obtained from a healthy donor stimulated with HLA-modified TOV21G, an ovarian cancer cell line. The 1G3 clone responds not only to ovarian cancer cells in the context of HLA-A*24:02 but also to allogeneic HLA-Cw*07:02 molecules through cross-reactive T-cell receptor recognition. Expression screening using a complementary DNA library constructed from TOV21G messenger RNA revealed that this alloreactivity was mediated through the nine-mer peptide VRTPYTMSY, derived from RNA-binding motif protein 4. To our knowledge, this study presents the first example of the allorecognition of an HLA-Cw molecule by HLA-A-restricted T-cells, thereby revealing a naturally processed epitope peptide. These findings provide the structural bases for the allorecognition of human T-cells. In addition, this study suggests that unexpected alloresponses occur in certain HLA combinations, and further study is needed to understand the mechanisms of alloreactivity for better prediction of alloresponses in clinical settings.
Collapse
Affiliation(s)
- E Yamada
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Gynecology, Graduate School of Medicine, Nagoya, Japan
| | - A Demachi-Okamura
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - S Kondo
- Department of Gynecologic Oncology, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Y Akatsuka
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Hematology & Oncology, Fujita Health University, Toyoake, Japan
| | - S Suzuki
- Department of Gynecology, Graduate School of Medicine, Nagoya, Japan
| | - K Shibata
- Department of Gynecology, Graduate School of Medicine, Nagoya, Japan
| | - F Kikkawa
- Department of Gynecology, Graduate School of Medicine, Nagoya, Japan
| | - K Kuzushima
- Division of Immunology, Aichi Cancer Center Research Institute, Nagoya, Japan.,Department of Cellular Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Perica K, Kosmides AK, Schneck JP. Linking form to function: Biophysical aspects of artificial antigen presenting cell design. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:781-90. [PMID: 25200637 PMCID: PMC4344884 DOI: 10.1016/j.bbamcr.2014.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/15/2014] [Accepted: 09/01/2014] [Indexed: 12/22/2022]
Abstract
Artificial antigen presenting cells (aAPCs) are engineered platforms for T cell activation and expansion, synthesized by coupling T cell activating proteins to the surface of cell lines or biocompatible particles. They can serve both as model systems to study the basic aspects of T cell signaling and translationally as novel approaches for either active or adoptive immunotherapy. Historically, these reductionist systems have not been designed to mimic the temporally and spatially complex interactions observed during endogenous T cell-APC contact, which include receptor organization at both micro- and nanoscales and dynamic changes in cell and membrane morphologies. Here, we review how particle size and shape, as well as heterogenous distribution of T cell activating proteins on the particle surface, are critical aspects of aAPC design. In doing so, we demonstrate how insights derived from endogenous T cell activation can be applied to optimize aAPC, and in turn how aAPC platforms can be used to better understand endogenous T cell stimulation. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Karlo Perica
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan P Schneck
- Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|