1
|
Zhang J, Liu Z, Wang G, Yang X, Sui W, Guo H, Hou X. The dynamic TRβ/IGH CDR3 repertoire features in patients with liver transplantation. Transpl Immunol 2023; 81:101929. [PMID: 37683736 DOI: 10.1016/j.trim.2023.101929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
OBJECTIVE At present, little is known about the immune mechanism of liver transplantation caused by decompensated cirrhosis. Lymphocytes play an essential important role in the immune rejection of liver transplantation. In this study, we aimed to comprehensively analyze changes in complementary determinant 3 (CDR3) repertoire of T cell receptor β chain (TRβ) and immunoglobulin heavy chain (IGH) in liver transplantation patients and healthy controls (HC). METHODS High-throughput sequencing technology was used to study the characteristics of TRβ/IGH CDR3 repertoire, and identify the amino acid sequences of TRβ and IGH associated with liver transplantation patients and HC. RESULTS We found that some TRβ and IGH CDR3 repertoire characteristics differed between liver transplant patients and HC. The diversity of TRβ CDR3 increased in the liver transplantation group. First and seven days after live transplantation patients showed a lower degree of T cell clone amplification compared to the HC group. The CDR3 repertoire of the TRβ/IGH chain was certainly biased in the use of some V, D, and J gene segments, TRβ/IGH V-J combined frequency was also skewed and TRβ CDR3 clonotypes were shared at a higher degree in the liver transplantation patients. Importantly, one amino acid sequence in the decompensated cirrhosis group was significantly higher than that in the healthy group. It should be noted that the frequency of some CDR3 sequences is closely correlated with the different stages of liver transplantation, and these sequences may play a key role in liver transplantation. CONCLUSION Based on the above results, we can better understand the dynamic changes of TCβ/IGH CDR3 repertoire in patients during liver transplantation.
Collapse
Affiliation(s)
- Junning Zhang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Zhenyu Liu
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Guangyu Wang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Xueli Yang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China
| | - Weiguo Sui
- Guangxi Key Laboratory of Metabolic Diseases Research, Guilin No.924 Hospital, Guilin, Guangxi 541002, PR China
| | - Haonan Guo
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, China.
| | - Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
2
|
Chasman DA, Welch Schwartz R, Vazquez J, Chavarria M, Jenkins ET, Lopez GE, Tyler CT, Stanic AK, Ong IM. Proteogenomic and V(D)J Analysis of Human Decidual T Cells Highlights Unique Transcriptional Programming and Clonal Distribution. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:154-162. [PMID: 37195197 PMCID: PMC10330249 DOI: 10.4049/jimmunol.2200061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/25/2023] [Indexed: 05/18/2023]
Abstract
Immunological tolerance toward the semiallogeneic fetus is one of many maternal adaptations required for a successful pregnancy. T cells are major players of the adaptive immune system and balance tolerance and protection at the maternal-fetal interface; however, their repertoire and subset programming are still poorly understood. Using emerging single-cell RNA sequencing technologies, we simultaneously obtained transcript, limited protein, and receptor repertoire at the single-cell level, from decidual and matched maternal peripheral human T cells. The decidua maintains a tissue-specific distribution of T cell subsets compared with the periphery. We find that decidual T cells maintain a unique transcriptome programming, characterized by restraint of inflammatory pathways by overexpression of negative regulators (DUSP, TNFAIP3, ZFP36) and expression of PD-1, CTLA-4, TIGIT, and LAG3 in some CD8 clusters. Finally, analyzing TCR clonotypes demonstrated decreased diversity in specific decidual T cell populations. Overall, our data demonstrate the power of multiomics analysis in revealing regulation of fetal-maternal immune coexistence.
Collapse
Affiliation(s)
- Deborah A. Chasman
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Rene Welch Schwartz
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
| | - Jessica Vazquez
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Melina Chavarria
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Eryne T. Jenkins
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Gladys E. Lopez
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Chanel T. Tyler
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Aleksandar K. Stanic
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
| | - Irene M. Ong
- Departments of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI
- Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
3
|
Wu G, Li R, Tong C, He M, Qi Z, Chen H, Deng T, Liu H, Qi H. Non-invasive prenatal testing reveals copy number variations related to pregnancy complications. Mol Cytogenet 2019; 12:38. [PMID: 31485271 PMCID: PMC6716937 DOI: 10.1186/s13039-019-0451-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
Background Pregnancy complications could lead to maternal and fetal morbidity and mortality. Early diagnosing and managing complications have been associated with good outcomes. The placenta was an important organ for development of pregnancy complications. Thus, non-invasive prenatal testing technologies could detect genetic variations, such as aneuploidies and sub-chromosomal copy number variations, reflecting defective placenta by maternal plasma cffDNAs. Maternal cffDNAs had been proved to derive from trophoblast cells of placenta. Results In order to find out the relationship between genetic variations and pregnancy complications, we reviewed NIPT results for subchromosomal copy number variations in a cohort of 3890 pregnancies without complications and 441 pregnancies with pregnancy complications including gestational diabetes mellitus (GDM), pregnancy-induced hypertension (PIH), preterm prelabor rupture of membranes (PPROM) and placenta implantation abnormalities (PIA). For GDMs, we identified three CNV regions containing some members of alpha- and beta-defensins, such as DEFA1, DEFA3, DEFB1. For PIHs, we found three duplication and one deletion region including Pcdhα, Pcdhβ, and Pcdhγ, known as protocadherins, which were complicated by hypertensive disorders. For PPROMs and PIAs, we identified one and two CNV regions, respectively. SFTPA2, SFTPD and SFTPA1, belonging to surfactant protein, was considered to moderated the inflammatory activation within the fetal extra-embryonic compartment, associated to duration of preterm prelabor rupture of fetal membranes, while MEF2C and TM6SF1 could be involved in trophoblast invasion and differentiation. Conclusions Our findings gave a clue to correlation between genetic variations of maternal cell-free DNAs and pregnancy complications. Electronic supplementary material The online version of this article (10.1186/s13039-019-0451-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangping Wu
- 1Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People's Republic of China.,2State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,3International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016 People's Republic of China
| | - Rong Li
- 1Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People's Republic of China.,2State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,3International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016 People's Republic of China
| | - Chao Tong
- 1Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People's Republic of China.,2State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,3International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016 People's Republic of China
| | - Miaonan He
- Beijing CapitalBio Medical Laboratory, Beijing, 101111 China
| | - Zhiwei Qi
- Beijing CapitalBio Medical Laboratory, Beijing, 101111 China
| | - Huijuan Chen
- Beijing CapitalBio Medical Laboratory, Beijing, 101111 China
| | - Tao Deng
- Beijing CapitalBio Medical Laboratory, Beijing, 101111 China
| | - Hailiang Liu
- CapitalBio Technology Inc., Beijing, 101111 China.,6Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Hongbo Qi
- 1Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People's Republic of China.,2State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,3International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016 People's Republic of China
| |
Collapse
|