1
|
Rodriguez S, Alizadeh M, Lamaison C, Saintamand A, Monvoisin C, Jean R, Deleurme L, Martin-Subero JI, Pangault C, Cogné M, Amé-Thomas P, Tarte K. Follicular lymphoma regulatory T-cell origin and function. Front Immunol 2024; 15:1391404. [PMID: 38799444 PMCID: PMC11116630 DOI: 10.3389/fimmu.2024.1391404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Follicular Lymphoma (FL) results from the malignant transformation of germinal center (GC) B cells. FL B cells display recurrent and diverse genetic alterations, some of them favoring their direct interaction with their cell microenvironment, including follicular helper T cells (Tfh). Although FL-Tfh key role is well-documented, the impact of their regulatory counterpart, the follicular regulatory T cell (Tfr) compartment, is still sparse. Methods The aim of this study was to characterize FL-Tfr phenotype by cytometry, gene expression profile, FL-Tfr origin by transcriptomic analysis, and functionality by in vitro assays. Results CD4+CXCR5+CD25hiICOS+ FL-Tfr displayed a regulatory program that is close to classical regulatory T cell (Treg) program, at the transcriptomic and methylome levels. Accordingly, Tfr imprinting stigmata were found on FL-Tfh and FL-B cells, compared to their physiological counterparts. In addition, FL-Tfr co-culture with autologous FL-Tfh or cytotoxic FL-CD8+ T cells inhibited their proliferation in vitro. Finally, although FL-Tfr shared many characteristics with Treg, TCR sequencing analyses demonstrated that part of them derived from precursors shared with FL-Tfh. Discussion Altogether, these findings uncover the role and origin of a Tfr subset in FL niche and may be useful for lymphomagenesis knowledge and therapeutic management.
Collapse
Affiliation(s)
- Stéphane Rodriguez
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Mehdi Alizadeh
- Service Recherche, Etablissement Français du Sang, Rennes, France
| | - Claire Lamaison
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Alexis Saintamand
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Céline Monvoisin
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Rachel Jean
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Laurent Deleurme
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Univ Rennes, CNRS, INSERM, BIOSIT (BIOlogie, Santé, Innovation Technologique de Rennes) – Unité Mixte de Service 34 80, Rennes, France
| | - Jose Ignacio Martin-Subero
- Departamento de Anatomía Patológica, Farmacología y Microbiología, Universitat de Barcelona, Barcelona, Spain
| | - Céline Pangault
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Michel Cogné
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Patricia Amé-Thomas
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Pôle Biologie, Centre Hospitalier Universitaire, Rennes, France
| | - Karin Tarte
- Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Suivi Immunologique des Thérapeutiques Innovantes (SITI) Laboratory, Centre Hospitalier Universitaire Rennes, Etablissement Français du Sang Bretagne, Rennes, France
| |
Collapse
|
2
|
Cao Y, Hou Y, Zhao L, Huang Y, Liu G. New insights into follicular regulatory T cells in the intestinal and tumor microenvironments. J Cell Physiol 2023. [PMID: 37210730 DOI: 10.1002/jcp.31039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Follicular regulatory T (Tfr) cells are a novel and unique subset of effector regulatory T (Treg) cells that are located in germinal centers (GCs). Tfr cells express transcription profiles that are characteristic of both follicular helper T (Tfh) cells and Treg cells and negatively regulate GC reactions, including Tfh cell activation and cytokine production, class switch recombination and B cell activation. Evidence also shows that Tfr cells have specific characteristics in different local immune microenvironments. This review focuses on the regulation of Tfr cell differentiation and function in unique local immune microenvironments, including the intestine and tumor.
Collapse
Affiliation(s)
- Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yijin Huang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Ng WL, Ansell SM, Mondello P. Insights into the tumor microenvironment of B cell lymphoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:362. [PMID: 36578079 PMCID: PMC9798587 DOI: 10.1186/s13046-022-02579-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
The standard therapies in lymphoma have predominantly focused on targeting tumor cells with less of a focus on the tumor microenvironment (TME), which plays a critical role in favoring tumor growth and survival. Such an approach may result in increasingly refractory disease with progressively reduced responses to subsequent treatments. To overcome this hurdle, targeting the TME has emerged as a new therapeutic strategy. The TME consists of T and B lymphocytes, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and other components. Understanding the TME can lead to a comprehensive approach to managing lymphoma, resulting in therapeutic strategies that target not only cancer cells, but also the supportive environment and thereby ultimately improve survival of lymphoma patients. Here, we review the normal function of different components of the TME, the impact of their aberrant behavior in B cell lymphoma and the current TME-direct therapeutic avenues.
Collapse
Affiliation(s)
- Wern Lynn Ng
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Stephen M. Ansell
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Patrizia Mondello
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| |
Collapse
|
4
|
Maharaj K, Uriepero A, Sahakian E, Pinilla-Ibarz J. Regulatory T cells (Tregs) in lymphoid malignancies and the impact of novel therapies. Front Immunol 2022; 13:943354. [PMID: 35979372 PMCID: PMC9376239 DOI: 10.3389/fimmu.2022.943354] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Regulatory T cells (Tregs) are responsible for maintaining immune homeostasis by controlling immune responses. They can be characterized by concomitant expression of FoxP3, CD25 and inhibitory receptors such as PD-1 and CTLA-4. Tregs are key players in preventing autoimmunity and are dysregulated in cancer, where they facilitate tumor immune escape. B-cell lymphoid malignancies are a group of diseases with heterogenous molecular characteristics and clinical course. Treg levels are increased in patients with B-cell lymphoid malignancies and correlate with clinical outcomes. In this review, we discuss studies investigating Treg immunobiology in B-cell lymphoid malignancies, focusing on clinical correlations, mechanisms of accumulation, phenotype, and function. Overarching trends suggest that Tregs can be induced directly by tumor cells and recruited to the tumor microenvironment where they suppress antitumor immunity to facilitate disease progression. Further, we highlight studies showing that Tregs can be modulated by novel therapeutic agents such as immune checkpoint blockade and targeted therapies. Treg disruption by novel therapeutics may beneficially restore immune competence but has been associated with occurrence of adverse events. Strategies to achieve balance between these two outcomes will be paramount in the future to improve therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Kamira Maharaj
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Angimar Uriepero
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- *Correspondence: Javier Pinilla-Ibarz,
| |
Collapse
|
5
|
Tian GX, Peng KP, Liu MH, Tian DF, Xie HQ, Wang LW, Guo YY, Zhou S, Mo LH, Yang PC. CD38+ B cells affect immunotherapy for allergic rhinitis. J Allergy Clin Immunol 2022; 149:1691-1701.e9. [DOI: 10.1016/j.jaci.2022.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
|
6
|
Garcia-Lacarte M, Grijalba SC, Melchor J, Arnaiz-Leché A, Roa S. The PD-1/PD-L1 Checkpoint in Normal Germinal Centers and Diffuse Large B-Cell Lymphomas. Cancers (Basel) 2021; 13:4683. [PMID: 34572910 PMCID: PMC8471895 DOI: 10.3390/cancers13184683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Besides a recognized role of PD-1/PD-L1 checkpoint in anti-tumour immune evasion, there is accumulating evidence that PD-1/PD-L1 interactions between B and T cells also play an important role in normal germinal center (GC) reactions. Even when smaller in number, T follicular helper cells (TFH) and regulatory T (TFR) or B (Breg) cells are involved in positive selection of GC B cells and may result critical in the lymphoma microenvironment. Here, we discuss a role of PD-1/PD-L1 during tumour evolution in diffuse large B cell lymphoma (DLBCL), a paradigm of GC-derived lymphomagenesis. We depict a progression model, in two phases, where malignant B cells take advantage of positive selection signals derived from correct antigen-presentation and PD-1/PD-L1 inter-cellular crosstalks to survive and initiate tumour expansion. Later, a constant pressure for the accumulation of genetic/epigenetic alterations facilitates that DLBCL cells exhibit higher PD-L1 levels and capacity to secrete IL-10, resembling Breg-like features. As a result, a complex immunosuppressive microenvironment is established where DLBCL cells sustain proliferation and survival by impairing regulatory control of TFR cells and limiting IL-21-mediated anti-tumour functions of TFH cells and maximize the use of PD-1/PD-L1 signaling to escape from CD8+ cytotoxic activity. Integration of these molecular and cellular addictions into a framework may contribute to the better understanding of the lymphoma microenvironment and contribute to the rationale for novel PD-1/PD-L1-based combinational immunotherapies in DLBCL.
Collapse
Affiliation(s)
- Marcos Garcia-Lacarte
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
- Hemato-Oncology Program, Cima University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Sara C. Grijalba
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
| | - Javier Melchor
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
- Hemato-Oncology Program, Cima University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Adrián Arnaiz-Leché
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
| | - Sergio Roa
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
- Hemato-Oncology Program, Cima University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Network Center for Biomedical Research in Cancer—Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
7
|
Lamb MG, Rangarajan HG, Tullius BP, Lee DA. Natural killer cell therapy for hematologic malignancies: successes, challenges, and the future. Stem Cell Res Ther 2021; 12:211. [PMID: 33766099 PMCID: PMC7992329 DOI: 10.1186/s13287-021-02277-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
The adoptive transfer of natural killer (NK) cells is an emerging therapy in the field of immuno-oncology. In the last 3 decades, NK cells have been utilized to harness the anti-tumor immune response in a wide range of malignancies, most notably with early evidence of efficacy in hematologic malignancies. NK cells are dysfunctional in patients with hematologic malignancies, and their number and function are further impaired by chemotherapy, radiation, and immunosuppressants used in initial therapy and hematopoietic stem cell transplantation. Restoring this innate immune deficit may lead to improved therapeutic outcomes. NK cell adoptive transfer has proven to be a safe in these settings, even in the setting of HLA mismatch, and a deeper understanding of NK cell biology and optimized expansion techniques have improved scalability and therapeutic efficacy. Here, we review the use of NK cell therapy in hematologic malignancies and discuss strategies to further improve the efficacy of NK cells against these diseases.
Collapse
Affiliation(s)
- Margaret G Lamb
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA. .,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA.
| | - Hemalatha G Rangarajan
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA.,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Brian P Tullius
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA.,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| | - Dean A Lee
- Division of Hematology, Oncology, and Bone Marrow Transplant, Nationwide Children's Hospital, 700 Children's Drive, Suite 5A.1, Columbus, OH, 43205-2664, USA.,Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH, USA
| |
Collapse
|