1
|
Shi W, Zhang Y, Sun Y, Lin Z. Function-Genes and Disease-Genes Prediction Based on Network Embedding and One-Class Classification. Interdiscip Sci 2024; 16:781-801. [PMID: 39230798 DOI: 10.1007/s12539-024-00638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 09/05/2024]
Abstract
Using genes which have been experimentally-validated for diseases (functions) can develop machine learning methods to predict new disease/function-genes. However, the prediction of both function-genes and disease-genes faces the same problem: there are only certain positive examples, but no negative examples. To solve this problem, we proposed a function/disease-genes prediction algorithm based on network embedding (Variational Graph Auto-Encoders, VGAE) and one-class classification (Fast Minimum Covariance Determinant, Fast-MCD): VGAEMCD. Firstly, we constructed a protein-protein interaction (PPI) network centered on experimentally-validated genes; then VGAE was used to get the embeddings of nodes (genes) in the network; finally, the embeddings were input into the improved deep learning one-class classifier based on Fast-MCD to predict function/disease-genes. VGAEMCD can predict function-gene and disease-gene in a unified way, and only the experimentally-verified genes are needed to provide (no need for expression profile). VGAEMCD outperforms classical one-class classification algorithms in Recall, Precision, F-measure, Specificity, and Accuracy. Further experiments show that seven metrics of VGAEMCD are higher than those of state-of-art function/disease-genes prediction algorithms. The above results indicate that VGAEMCD can well learn the distribution characteristics of positive examples and accurately identify function/disease-genes.
Collapse
Affiliation(s)
- Weiyu Shi
- College of Maritime Economics and Management, Dalian Maritime University, Dalian, 116026, China
| | - Yan Zhang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Zhengkui Lin
- College of Maritime Economics and Management, Dalian Maritime University, Dalian, 116026, China.
| |
Collapse
|
2
|
Huang S, Xu M, Deng X, Da Q, Li M, Huang H, Zhao L, Jing L, Wang H. Anti irradiation nanoparticles shelter immune organ from radio-damage via preventing the IKK/IκB/NF-κB activation. Mol Cancer 2024; 23:234. [PMID: 39425231 PMCID: PMC11490033 DOI: 10.1186/s12943-024-02142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Normal tissue and immune organ protection are critical parts of the tumor radiation therapy process. Radiation-induced immune organ damage (RIOD) causes several side reactions by increasing oxidative stress and inflammatory responses, resulting in unsatisfactory curability in tumor radiation therapy. The aim of this study was to develop a novel and efficient anti irradiation nanoparticle and explore its mechanism of protecting splenic tissue from radiation in mice. METHODS Nanoparticles of triphenylphosphine cation NIT radicals (NPs-TPP-NIT) were prepared and used to protect the spleens of mice irradiated with X-rays. Splenic tissue histopathology and hematological parameters were investigated to evaluate the protective effect of NPs-TPP-NIT against X-ray radiation. Proteomics was used to identify differentially expressed proteins related to inflammatory factor regulation. In addition, in vitro and in vivo experiments were performed to assess the impact of NPs-TPP-NIT on radiation therapy. RESULTS NPs-TPP-NIT increased superoxide dismutase, catalase, and glutathione peroxidase activity and decreased malondialdehyde levels and reactive oxygen species generation in the spleens of mice after exposure to 6.0 Gy X-ray radiation. Moreover, NPs-TPP-NIT inhibited cell apoptosis, blocked the activation of cleaved cysteine aspartic acid-specific protease/proteinase, upregulated the expression of Bcl-2, and downregulated that of Bax. We confirmed that NPs-TPP-NIT prevented the IKK/IκB/NF-κB activation induced by ionizing radiation, thereby alleviating radiation-induced splenic inflammatory damage. In addition, when used during radiotherapy for tumors in mice, NPs-TPP-NIT exhibited no significant toxicity and conferred no significant tumor protective effects. CONCLUSIONS NPs-TPP-NIT prevented activation of IKK/IκB/NF-κB signaling, reduced secretion of pro-inflammatory factors, and promoted production of anti-inflammatory factors in the spleen, which exhibited radiation-induced damage repair capability without diminishing the therapeutic effect of radiation therapy. It suggests that NPs-TPP-NIT serve as a potential radioprotective drug to shelter immune organs from radiation-induced damage.
Collapse
Affiliation(s)
- Shigao Huang
- Department of Radiation Oncology, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Min Xu
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China
- The Third Stationed Outpatient Department, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Xiaojun Deng
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China
| | - Qingyue Da
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Miaomiao Li
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, China
| | - Hao Huang
- Department of Radiation Oncology, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Lina Zhao
- Department of Radiation Oncology, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Linlin Jing
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Haibo Wang
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Moloudi K, Azariasl S, Abrahamse H, George BP, Yasuda H. Expected role of photodynamic therapy to relieve skin damage in nuclear or radiological emergency: Review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104517. [PMID: 39032581 DOI: 10.1016/j.etap.2024.104517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Nuclear and radiological accidents can occur due to poor management, in transportation, radiation therapy and nuclear wards in hospitals, leading to extreme radiation exposure and serious consequences for human health. Additionally, in many of previous radiological accidents, skin damage was observed in patients and survivors due to the high radiation exposure. However, as part of a medical countermeasures in a nuclear/radiological emergency, it is critical to plan for the treatment of radiation-induced skin damage. Hence, the new, non-invasive technology of photodynamic therapy (PDT) is projected to be more effectively used for treating skin damage caused by high-dose radiation. PDT plays an important role in treating, repairing skin damage and promoting wound healing as evidenced by research. This review, highlighted and recommended potential impacts of PDT to repair and decrease radiation-induced skin tissue damage. Moreover, we have suggested some photosensitizer (PS) agent as radio-mitigator drugs to decrease radiobiological effects.
Collapse
Affiliation(s)
- Kave Moloudi
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Samayeh Azariasl
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku 734-8553, Japan
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Science, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa.
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku 734-8553, Japan
| |
Collapse
|
4
|
Huang S, Xu M, Da Q, Jing L, Wang H. Mitochondria-Targeted Nitronyl Nitroxide Radical Nanoparticles for Protection against Radiation-Induced Damage with Antioxidant Effects. Cancers (Basel) 2024; 16:351. [PMID: 38254840 PMCID: PMC10814804 DOI: 10.3390/cancers16020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Radiotherapy is a non-invasive method that is widely applied to treat and alleviate cancers. However, radiation-induced effects in the immune system are associated with several side effects via an increase in oxidative stress and the inflammatory response. Therefore, it is imperative to develop effective clinical radiological protection strategies for the radiological protection of the normal organs and immune system in these patients. To explore more effective radioprotective agents with minimal toxicity, a mitochondria-targeted nitronyl nitroxide radical with a triphenylphosphine ion (TPP-NIT) was synthesized and its nanoparticles (NPs-TPP-NIT) were prepared and characterized. The TPP-NIT nanoparticles (NPs-TPP-NIT) were narrow in their size distribution and uniformly distributed; they showed good drug encapsulation efficiency and a low hemolysis rate (<3%). The protective effect of NPs-TPP-NIT against X-ray irradiation-induced oxidative damage was measured in vitro and in vivo. The results show that NPs-TPP-NIT were associated with no obvious cytotoxicity to L-02 cells when the concentration was below 1.5 × 10-2 mmol. NPs-TPP-NIT enhanced the survival rate of L-02 cells significantly under 2, 4, 6, and 8 Gy X-ray radiation exposure; the survival rate of mice was highest after 6 Gy X-ray irradiation. The results also show that NPs-TPP-NIT could increase superoxide dismutase (SOD) activity and decrease malondialdehyde (MDA) levels after the L-02 cells were exposed to 6.0 Gy of X-ray radiation. Moreover, NPs-TPP-NIT could significantly inhibit cell apoptosis. NPs-TPP-NIT significantly increased the mouse survival rate after irradiation. NPs-TPP-NIT displayed a marked ability to reduce the irradiation-induced depletion of red blood cells (RBCs), white blood cells (WBCs), and platelets (PLTs). These results demonstrate the feasibility of using NPs-TPP-NIT to provide protection from radiation-induced damage. In conclusion, this study revealed that NPs-TPP-NIT may be promising radioprotectors and could therefore be applied to protect healthy tissues and organs from radiation during the treatment of cancer with radiotherapy.
Collapse
Affiliation(s)
- Shigao Huang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, The Air Force Medical University, Xi’an 710032, China
- Department of Radiation Oncology, Xijing Hospital, The Air Force Medical University, Xi’an 710032, China
| | - Min Xu
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi’an 710032, China
| | - Qingyue Da
- Centre for Translational Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (Q.D.); (L.J.)
| | - Linlin Jing
- Centre for Translational Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, China; (Q.D.); (L.J.)
| | - Haibo Wang
- Department of Chemistry, School of Pharmacy, The Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
5
|
Xu R, Shen S, Wang D, Ye J, Song S, Wang Z, Yue Z. The role of HIF-1α-mediated autophagy in ionizing radiation-induced testicular injury. J Mol Histol 2023; 54:439-451. [PMID: 37728670 DOI: 10.1007/s10735-023-10153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Testis, as a key organ for maintaining male fertility, are extremely sensitive to ionizing radiation (IR). IR-induced testicular dysfunction and infertility are common adverse effects of radiation therapy in patients with pelvic cancer. To study the phenotype and mechanism of IR-induced testicular injury, the mice were irradiated with different radiation doses (0, 2 and 5 Gy) below the semi-lethal dose for one month. Our present results showed that testicular weight and the serum testosterone levels significantly decreased with the structural injury of the testis in an IR dose-dependent manner, indicating that IR caused not only the structural damage of the testis, but also the functional damage. Further analysis by TUNEL staining and Western blotting found that IR induced the apoptosis in a dose-dependent manner as indicated by increased expressions of cleaved caspase3, p53 and Bax on Day 15 after IR treatment. Combined with significantly increased oxidative stress, these results indicated that IR-induced testicular damage may be a long-term, progressively aggravated process, accompanied by apoptosis. Given the role of autophagy in apoptosis, the present study also detected and analyzed the localization and expressions of autophagy-related proteins LC-3I/II, beclin1, p62 and Atg12 in testicular cells, and found that LC-3II, beclin1 and Atg12 expressions significantly increased in the testicular cells of mice irradiated with 2 Gy and 5 Gy, while p62 expression significantly decreased with 5 Gy, implying autophagy was involved in the apoptosis of testicular cells induced by IR. Furthermore, the expressions of HIF-1α and BNIP3 were significantly enhanced in the testis cells of mice irradiated with 2 Gy and 5 Gy, suggesting the potential role of HIF-1α/BNIP3-mediated autophagy in the apoptosis of testicular cells induced by IR. Taken together, our findings demonstrated that HIF-1α/BNIP3-mediated autophagy not only plays a protective effect on the testicular cells of mice irradiated with 2 Gy, but also induces the apoptosis of the testicular cells of mice irradiated with 5 Gy, indicating the double effects on apoptosis, which will help us further understanding the molecular mechanisms of IR-induced testicular injury, and will facilitate us further studies on testicular radioprotection.
Collapse
Affiliation(s)
- Renfeng Xu
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
- Department of Cell Biology and Medical Genetics, Carson International Cancer Center, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Siting Shen
- Department of Cell Biology and Medical Genetics, Carson International Cancer Center, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jianqing Ye
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Shiting Song
- Department of Cell Biology and Medical Genetics, Carson International Cancer Center, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Zhengchao Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350007, China.
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics, Carson International Cancer Center, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Shenzhen, 518060, China.
| |
Collapse
|
6
|
Guo X, Du L, Ma N, Zhang P, Wang Y, Han Y, Huang X, Zhang Q, Tan X, Lei X, Qu B. Monophosphoryl lipid A ameliorates radiation-induced lung injury by promoting the polarization of macrophages to the M1 phenotype. J Transl Med 2022; 20:597. [DOI: 10.1186/s12967-022-03804-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Radiation-induced lung injury (RILI) often occurs during clinical chest radiotherapy and acute irradiation from accidental nuclear leakage. This study explored the role of monophosphoryl lipid A (MPLA) in RILI.
Materials and Methods
The entire thoracic cavity of C57BL/6N mice was irradiated at 20 Gy with or without pre-intragastric administration of MPLA. HE staining, Masson trichrome staining, and TUNEL assay were used to assess lung tissue injury after treatment. The effect of irradiation on the proliferation of MLE-12 cells was analyzed using the Clonogenic assay. The effect of MPLA on the apoptosis of MLE-12 cells was analyzed using flow cytometry. Expression of γ-H2AX and epithelial-mesenchymal transition (EMT) markers in MLE-12 cells was detected by immunofluorescence and Western blot, respectively.
Results
MPLA attenuated early pneumonitis and late pulmonary fibrosis after thoracic irradiation and reversed radiation-induced EMT in C57 mice. MPLA further promoted proliferation and inhibited apoptosis of irradiated MLE-12 cells in vitro. Mechanistically, the radioprotective effect of MPLA was mediated by exosomes secreted by stimulated macrophages. Macrophage-derived exosomes modulated DNA damage in MLE-12 cells after irradiation. MPLA promoted the polarization of RAW 264.7 cells to the M1 phenotype. The exosomes secreted by M1 macrophages suppressed EMT in MLE-12 cells after irradiation.
Conclusion
MPLA is a novel treatment strategy for RILI. Exosomes derived from macrophages are key to the radioprotective role of MPLA in RILI.
Collapse
|
7
|
Hu W, Liang JW, Liao S, Zhao ZD, Wang YX, Mao XF, Hao SW, Wang YF, Zhu H, Guo B. Melatonin attenuates radiation-induced cortical bone-derived stem cells injury and enhances bone repair in postradiation femoral defect model. Mil Med Res 2021; 8:61. [PMID: 34895335 PMCID: PMC8666036 DOI: 10.1186/s40779-021-00355-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The healing of bone defects can be challenging for clinicians to manage, especially after exposure to ionizing radiation. In this regard, radiation therapy and accidental exposure to gamma (γ)-ray radiation have been shown to inhibit bone formation and increase the risk of fractures. Cortical bone-derived stem cells (CBSCs) are reportedly essential for osteogenic lineages, bone maintenance and repair. This study aimed to investigate the effects of melatonin on postradiation CBSCs and bone defect healing. METHODS CBSCs were extracted from C57BL/6 mice and were identified by flow cytometry. Then CBSCs were subjected to 6 Gy γ-ray radiation followed by treatment with various concentrations of melatonin. The effects of exogenous melatonin on the self-renewal and osteogenic capacity of postradiation CBSCs in vitro were analyzed. The underlying mechanisms involved in genomic stability, apoptosis and oxidative stress-related signaling were further analyzed by Western blotting, flow cytometry and immunofluorescence assays. Moreover, postradiation femoral defect models were established and treated with Matrigel and melatonin. The effects of melatonin on postradiation bone healing in vivo were evaluated by micro-CT and pathological analysis. RESULTS The decrease in radiation-induced self-renewal and osteogenic capacity were partially reversed in postradiation CBSCs treated with melatonin (P < 0.05). Melatonin maintained genomic stability, reduced postradiation CBSC apoptosis and intracellular oxidative stress, and enhanced expression of antioxidant-related enzymes (P < 0.05). Western blotting validated the anti-inflammatory effects of melatonin by downregulating interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels via the extracellular regulated kinase (ERK)/nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway. Melatonin was also found to exhibit antioxidant effects via NRF2 signaling. In vivo experiments demonstrated that the newly formed bone in the melatonin plus Matrigel group had higher trabecular bone volume per tissue volume (BV/TV) and bone mineral density values with lower IL-6 and TNF-α levels than in the irradiation and the Matrigel groups (P < 0.05). CONCLUSION This study suggested that melatonin could protect CBSCs against γ-ray radiation and assist in the healing of postradiation bone defects.
Collapse
Affiliation(s)
- Wei Hu
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.,Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jia-Wu Liang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.,Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Song Liao
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Zhi-Dong Zhao
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Yu-Xing Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China
| | - Xiao-Fei Mao
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.,Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Si-Wei Hao
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.,Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yi-Fan Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, 100853, China.,Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China
| | - Heng Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100840, China.
| | - Bin Guo
- Department of Stomatology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|