1
|
Zamparo P, Monte A, Pavei G. Energetics (and Mechanical Determinants) of Sprint and Shuttle Running. Int J Sports Med 2024; 45:335-342. [PMID: 37956876 DOI: 10.1055/a-2184-9007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Unsteady locomotion (e. g., sprints and shuttle runs) requires additional metabolic (and mechanical) energy compared to running at constant speed. In addition, sprints or shuttle runs with relevant speed changes (e. g., with large accelerations and/or decelerations) are typically short in duration and, thus, anaerobic energy sources must be taken into account when computing energy expenditure. In sprint running there is an additional problem due to the objective difficulty in separating the acceleration phase from a (necessary and subsequent) deceleration phase.In this review the studies that report data of energy expenditure during sprints and shuttles (estimated or actually calculated) will be summarized and compared. Furthermore, the (mechanical) determinants of metabolic energy expenditure will be discussed, with a focus on the analogies with and differences from the energetics/mechanics of constant-speed linear running.
Collapse
Affiliation(s)
- Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gaspare Pavei
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
2
|
Grassadonia G, Alcaraz PE, Freitas TT. Comparison of Metabolic Power and Energy Cost of Submaximal and Sprint Running Efforts Using Different Methods in Elite Youth Soccer Players: A Novel Energetic Approach. SENSORS (BASEL, SWITZERLAND) 2024; 24:2577. [PMID: 38676194 PMCID: PMC11054392 DOI: 10.3390/s24082577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Sprinting is a decisive action in soccer that is considerably taxing from a neuromuscular and energetic perspective. This study compared different calculation methods for the metabolic power (MP) and energy cost (EC) of sprinting using global positioning system (GPS) metrics and electromyography (EMG), with the aim of identifying potential differences in performance markers. Sixteen elite U17 male soccer players (age: 16.4 ± 0.5 years; body mass: 64.6 ± 4.4 kg; and height: 177.4 ± 4.3 cm) participated in the study and completed four different submaximal constant running efforts followed by sprinting actions while using portable GPS-IMU units and surface EMG. GPS-derived MP was determined based on GPS velocity, and the EMG-MP and EC were calculated based on individual profiles plotting the MP of the GPS and all EMG signals acquired. The goodness of fit of the linear regressions was assessed by the coefficient of determination (R2), and a repeated measures ANOVA was used to detect changes. A linear trend was found in EMG activity during submaximal speed runs (R2 = 1), but when the sprint effort was considered, the trend became exponential (R2 = 0.89). The EMG/force ratio displayed two different trends: linear up to a 30 m sprint (R2 = 0.99) and polynomial up to a 50 m sprint (R2 = 0.96). Statistically significant differences between the GPS and EMG were observed for MP splits at 0-5 m, 5-10 m, 25-30 m, 30-35 m, and 35-40 m and for EC splits at 5-10 m, 25-30 m, 30-35 m, and 35-40 m (p ≤ 0.05). Therefore, the determination of the MP and EC based on GPS technology underestimated the neuromuscular and metabolic engagement during the sprinting efforts. Thus, the EMG-derived method seems to be more accurate for calculating the MP and EC in this type of action.
Collapse
Affiliation(s)
- Gabriele Grassadonia
- UCAM Research Center for High Performance Sport, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain; (G.G.); (P.E.A.)
- UPSS—International Department of Motor Arts, Popular University of Sport Sciences, 00122 Rome, Italy
- UPM—Department of Medical Sciences, Popular University of Milan, 20122 Milan, Italy
- MIU—Department of Sport Sciences, Miami International University, Miami, FL 33131, USA
| | - Pedro E. Alcaraz
- UCAM Research Center for High Performance Sport, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain; (G.G.); (P.E.A.)
- Faculty of Sport, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain
- Strength and Conditioning Society, 30008 Murcia, Spain
| | - Tomás T. Freitas
- UCAM Research Center for High Performance Sport, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain; (G.G.); (P.E.A.)
- Faculty of Sport, Universidad Católica de Murcia (UCAM), 30107 Murcia, Spain
- Strength and Conditioning Society, 30008 Murcia, Spain
- NAR—Nucleus of High Performance in Sport, São Paulo 04753-060, Brazil
| |
Collapse
|
3
|
Mesquita RM, Willems PA, Dewolf AH, Catavitello G. Kinetics and mechanical work done to move the body centre of mass along a curve. PLoS One 2024; 19:e0298790. [PMID: 38346043 PMCID: PMC10861085 DOI: 10.1371/journal.pone.0298790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
When running on a curve, the lower limbs interact with the ground to redirect the trajectory of the centre of mass of the body (CoM). The goal of this paper is to understand how the trajectory of the CoM and the work done to maintain its movements relative to the surroundings (Wcom) are modified as a function of running speed and radius of curvature. Eleven participants ran at different speeds on a straight line and on circular curves with a 6 m and 18 m curvature. The trajectory of the CoM and Wcom were calculated using force-platforms measuring the ground reaction forces and infrared cameras recording the movements of the pelvis. To follow a circular path, runners overcompensate the rotation of their trajectory during contact phases. The deviation from the circular path increases when the radius of curvature decreases and speed increases. Interestingly, an asymmetry between the inner and outer lower limbs emerges as speed increases. The method to evaluate Wcom on a straight-line was adapted using a referential that rotates at heel strike and remains fixed during the whole step cycle. In an 18 m radius curve and at low speeds on a 6 m radius, Wcom changes little compared to a straight-line run. Whereas at 6 m s-1 on a 6 m radius, Wcom increases by ~25%, due to an augmentation in the work to move the CoM laterally. Understanding these adaptations provides valuable insight for sports sciences, aiding in optimizing training and performance in sports with multidirectional movements.
Collapse
Affiliation(s)
- Raphael M. Mesquita
- Laboratory of Biomechanics and Physiology of Locomotion, Institute of NeuroScience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Patrick A. Willems
- Laboratory of Biomechanics and Physiology of Locomotion, Institute of NeuroScience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Arthur H. Dewolf
- Laboratory of Biomechanics and Physiology of Locomotion, Institute of NeuroScience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Giovanna Catavitello
- Laboratory of Biomechanics and Physiology of Locomotion, Institute of NeuroScience, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
di Prampero PE, Osgnach C, Morin JB, Zamparo P, Pavei G. Mechanical and Metabolic Power in Accelerated Running-PART I: the 100-m dash. Eur J Appl Physiol 2023; 123:2473-2481. [PMID: 37300700 DOI: 10.1007/s00421-023-05236-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE Acceleration phases require additional mechanical and metabolic power, over and above that for running at constant velocity. The present study is devoted to a paradigmatic example: the 100-m dash, in which case the forward acceleration is very high initially and decreases progressively to become negligible during the central and final phases. METHODS The mechanical ([Formula: see text]) and metabolic ([Formula: see text]) power were analysed for both Bolt's extant world record and for medium level sprinters. RESULTS In the case of Bolt, [Formula: see text] and [Formula: see text] attain peaks of ≈ 35 and ≈ 140 W kg-1 after ≈ 1 s, when the velocity is ≈ 5.5 m s-1; they decrease substantially thereafter, to attain constant values equal to those required for running at constant speed (≈ 18 and ≈ 65 W kg-1) after ≈ 6 s, when the velocity has reached its maximum (≈ 12 m s-1) and the acceleration is nil. At variance with [Formula: see text], the power required to move the limbs in respect to the centre of mass (internal power, [Formula: see text]) increases gradually to reach, after ≈ 6 s a constant value of ≈ 33 W kg-1. As a consequence, [Formula: see text] ([Formula: see text]) increases throughout the run to a constant value of ≈ 50 W kg-1. In the case of the medium level sprinters, the general patterns of speed, mechanical and metabolic power, neglecting the corresponding absolute values, follow an essentially equal trend. CONCLUSION Hence, whereas in the last part of the run the velocity is about twice that observed after ≈ 1 s, [Formula: see text] and [Formula: see text] are reduced to 45-50% of the peak values.
Collapse
Affiliation(s)
- Pietro E di Prampero
- Department of Sport Science, Exelio srl, Udine, Italy
- Emeritus Professor of Physiology, University of Udine, Udine, Italy
| | | | - Jean-Benoit Morin
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gaspare Pavei
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Gray A, Andrews M, Waldron M, Jenkins D. A model for calculating the mechanical demands of overground running. Sports Biomech 2023; 22:1256-1277. [PMID: 32951525 DOI: 10.1080/14763141.2020.1795238] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/04/2020] [Indexed: 01/12/2023]
Abstract
An energy-based approach to quantifying the mechanical demands of overground, constant velocity and/or intermittent running patterns is presented. Total mechanical work done (Wtotal) is determined from the sum of the four sub components: work done to accelerate the centre of mass horizontally (Whor), vertically (Wvert), to overcome air resistance (Wair) and to swing the limbs (Wlimbs). These components are determined from established relationships between running velocity and running kinematics; and the application of work-energy theorem. The model was applied to constant velocity running (2-9 m/s), a hard acceleration event and a hard deceleration event. The estimated Wtotal and each sub component were presented as mechanical demand (work per unit distance) and power (work per unit time), for each running pattern. The analyses demonstrate the model is able to produce estimates that: 1) are principally determined by the absolute running velocity and/or acceleration; and 2) can be attributed to different mechanical demands given the nature of the running bout. Notably, the proposed model is responsive to varied running patterns, producing data that are consistent with established human locomotion theory; demonstrating sound construct validity. Notwithstanding several assumptions, the model may be applied to quantify overground running demands on flat surfaces.
Collapse
Affiliation(s)
- Adrian Gray
- School of Science and Technology, University of New England, Armidale, Australia
| | - Mark Andrews
- Queensland Government, Queensland Academy of Sport, Nathan, QLD, Australia
| | - Mark Waldron
- School of Science and Technology, University of New England, Armidale, Australia
- College of Engineering, Swansea University, Swansea, UK
| | - David Jenkins
- School of Human Movement and Nutrition Sciences, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
6
|
Zagatto AM, González JAM, de Poli RAB, Barbieri FA, Bloedow LDLS, Peyré‐Tartaruga L. Mechanical energy on anaerobic capacity during a supramaximal treadmill running in men: Is there influence between runners and active individuals? Physiol Rep 2023; 11:e15564. [PMID: 36898692 PMCID: PMC10005891 DOI: 10.14814/phy2.15564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 03/12/2023] Open
Abstract
This study verified whether mechanical variables influence the anaerobic capacity outcome on treadmill running and whether these likely influences were dependent of running experience. Seventeen physical active and 18 amateur runners, males, performed a graded exercise test and constant load exhaustive running efforts at 115% of intensity associated to maximal oxygen consumption. During the constant load were determined the metabolic responses (i.e., gas exchange and blood lactate) to estimate the energetic contribution and anaerobic capacity as well as kinematic responses. The runners showed higher anaerobic capacity (16.6%; p = 0.005), but lesser time to exercise failure (-18.8%; p = 0.03) than active subjects. In addition, the stride length (21.4%; p = 0.00001), contact phase duration (-11.3%; p = 0.005), and vertical work (-29.9%; p = 0.015). For actives, the anaerobic capacity did not correlate significantly with any physiologic, kinematic, and mechanical variables and no regression model was fitted using the stepwise multiple regression, while to runners the anaerobic capacity was significantly correlated with phosphagen energetic contribution (r = 0.47; p = 0.047), external power (r = -0.51; p = 0.031), total work (r = -0.54; p = 0.020), external work (r = -0.62; p = 0.006), vertical work (r = -0.63; p = 0.008), and horizontal work (r = -0.61; p = 0.008), and the vertical work and phosphagen energetic contribution presented a coefficient of determination of 62% (p = 0.001). Based on findings, it is possible to assume that for active subjects, the mechanical variables have no influence over the anaerobic capacity, however, for experienced runners, the vertical work and phosphagen energetic contribution have relevant effect over anaerobic capacity output.
Collapse
Affiliation(s)
- Alessandro Moura Zagatto
- Post‐Graduate Program in Movement Sciences, Department of Physical Education, School of SciencesSao Paulo State University (UNESP)BauruSPBrazil
| | - Joel Abraham Martínez González
- Post‐Graduate Program in Movement Sciences, Department of Physical Education, School of SciencesSao Paulo State University (UNESP)BauruSPBrazil
- Universidad Autónoma del Estado de MéxicoTolucaMexico
| | - Rodrigo Araujo Bonetti de Poli
- Post‐Graduate Program in Movement Sciences, Department of Physical Education, School of SciencesSao Paulo State University (UNESP)BauruSPBrazil
| | - Fabio Augusto Barbieri
- Post‐Graduate Program in Movement Sciences, Department of Physical Education, School of SciencesSao Paulo State University (UNESP)BauruSPBrazil
| | | | | |
Collapse
|
7
|
Harper DJ, McBurnie AJ, Santos TD, Eriksrud O, Evans M, Cohen DD, Rhodes D, Carling C, Kiely J. Biomechanical and Neuromuscular Performance Requirements of Horizontal Deceleration: A Review with Implications for Random Intermittent Multi-Directional Sports. Sports Med 2022; 52:2321-2354. [PMID: 35643876 PMCID: PMC9474351 DOI: 10.1007/s40279-022-01693-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
Rapid horizontal accelerations and decelerations are crucial events enabling the changes of velocity and direction integral to sports involving random intermittent multi-directional movements. However, relative to horizontal acceleration, there have been considerably fewer scientific investigations into the biomechanical and neuromuscular demands of horizontal deceleration and the qualities underpinning horizontal deceleration performance. Accordingly, the aims of this review article are to: (1) conduct an evidence-based review of the biomechanical demands of horizontal deceleration and (2) identify biomechanical and neuromuscular performance determinants of horizontal deceleration, with the aim of outlining relevant performance implications for random intermittent multi-directional sports. We highlight that horizontal decelerations have a unique ground reaction force profile, characterised by high-impact peak forces and loading rates. The highest magnitude of these forces occurs during the early stance phase (< 50 ms) and is shown to be up to 2.7 times greater than those seen during the first steps of a maximal horizontal acceleration. As such, inability for either limb to tolerate these forces may result in a diminished ability to brake, subsequently reducing deceleration capacity, and increasing vulnerability to excessive forces that could heighten injury risk and severity of muscle damage. Two factors are highlighted as especially important for enhancing horizontal deceleration ability: (1) braking force control and (2) braking force attenuation. Whilst various eccentric strength qualities have been reported to be important for achieving these purposes, the potential importance of concentric, isometric and reactive strength, in addition to an enhanced technical ability to apply braking force is also highlighted. Last, the review provides recommended research directions to enhance future understanding of horizontal deceleration ability.
Collapse
Affiliation(s)
- Damian J. Harper
- Institute of Coaching and Performance, School of Sport and Health Sciences, University of Central Lancashire, Fylde Road, Preston, PR1 2HE UK
| | - Alistair J. McBurnie
- Department of Football Medicine and Science, Manchester United Football Club, AON Training Complex, Manchester, UK
| | - Thomas Dos’ Santos
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Ola Eriksrud
- Biomechanics Laboratory, Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Martin Evans
- The FA Group, St George’s Park, Burton-Upon-Trent, Staffordshire, UK
| | - Daniel D. Cohen
- Faculty of Health Sciences, Masira Research Institute, University of Santander, Bucaramanga, Colombia
- Sports Science Centre (CCD), Colombian Ministry of Sport (Mindeporte), Bogotá, Distrito Capital Colombia
| | - David Rhodes
- Institute of Coaching and Performance, School of Sport and Health Sciences, University of Central Lancashire, Fylde Road, Preston, PR1 2HE UK
| | - Christopher Carling
- Present Address: FFF Research Centre, French Football Federation, Clairefontaine National Football Centre, Clairefontaine-en-Yvelines, France
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - John Kiely
- Physical Education and Sports Science Department, University of Limerick, Limerick, Ireland
| |
Collapse
|
8
|
Peyré-Tartaruga LA, Dewolf AH, di Prampero PE, Fábrica G, Malatesta D, Minetti AE, Monte A, Pavei G, Silva-Pereyra V, Willems PA, Zamparo P. Mechanical work as a (key) determinant of energy cost in human locomotion: recent findings and future directions. Exp Physiol 2021; 106:1897-1908. [PMID: 34197674 DOI: 10.1113/ep089313] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/29/2021] [Indexed: 01/09/2023]
Abstract
NEW FINDINGS What is the topic of this review? This narrative review explores past and recent findings on the mechanical determinants of energy cost during human locomotion, obtained by using a mechanical approach based on König's theorem (Fenn's approach). What advances does it highlight? Developments in analytical methods and their applications allow a better understanding of the mechanical-bioenergetic interaction. Recent advances include the determination of 'frictional' internal work; the association between tendon work and apparent efficiency; a better understanding of the role of energy recovery and internal work in pathological gait (amputees, stroke and obesity); and a comprehensive analysis of human locomotion in (simulated) low gravity conditions. ABSTRACT During locomotion, muscles use metabolic energy to produce mechanical work (in a more or less efficient way), and energetics and mechanics can be considered as two sides of the same coin, the latter being investigated to understand the former. A mechanical approach based on König's theorem (Fenn's approach) has proved to be a useful tool to elucidate the determinants of the energy cost of locomotion (e.g., the pendulum-like model of walking and the bouncing model of running) and has resulted in many advances in this field. During the past 60 years, this approach has been refined and applied to explore the determinants of energy cost and efficiency in a variety of conditions (e.g., low gravity, unsteady speed). This narrative review aims to summarize current knowledge of the role that mechanical work has played in our understanding of energy cost to date, and to underline how recent developments in analytical methods and their applications in specific locomotion modalities (on a gradient, at low gravity and in unsteady conditions) and in pathological gaits (asymmetric gait pathologies, obese subjects and in the elderly) could continue to push this understanding further. The recent in vivo quantification of new aspects that should be included in the assessment of mechanical work (e.g., frictional internal work and elastic contribution) deserves future research that would improve our knowledge of the mechanical-bioenergetic interaction during human locomotion, as well as in sport science and space exploration.
Collapse
Affiliation(s)
| | - Arthur H Dewolf
- Laboratory of Biomechanics and Physiology of Locomotion, Institute of NeuroScience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Gabriel Fábrica
- Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Davide Malatesta
- Institute of Sport Sciences of the University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| | - Alberto E Minetti
- Department of Pathophysiology and Transplantation, Physiology Division, Laboratory of Physiomechanics of Locomotion, University of Milan, Milan, Italy
| | - Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gaspare Pavei
- Department of Pathophysiology and Transplantation, Physiology Division, Laboratory of Physiomechanics of Locomotion, University of Milan, Milan, Italy
| | | | - Patrick A Willems
- Laboratory of Biomechanics and Physiology of Locomotion, Institute of NeuroScience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Abstract
PURPOSE Theoretical 100-m performance times (t100-m) of a top athlete at Mexico-City (2250 m a.s.l.), Alto-Irpavi (Bolivia) (3340 m a.s.l.) and in a science-fiction scenario "in vacuo" were estimated assuming that at the onset of the run: (i) the velocity (v) increases exponentially with time; hence (ii) the forward acceleration (af) decreases linearly with v, iii) its time constant (τ) being the ratio between vmax (for af = 0) and af max (for v = 0). METHODS The overall forward force per unit of mass (Ftot), sum of af and of the air resistance (Fa = k v2, where k = 0.0037 J·s2·kg-1·m-3), was estimated from the relationship between af and v during Usain Bolt's extant world record. Assuming that Ftot is unchanged since the decrease of k at altitude is known, the relationships between af and v were obtained subtracting the appropriate Fa values from Ftot, thus allowing us to estimate in the three conditions considered vmax, τ, and t100-m. These were also obtained from the relationship between mechanical power and speed, assuming an unchanged mechanical power at the end of the run (when af ≈ 0), regardless of altitude. RESULTS The resulting t100-m amounted to 9.515, 9.474, and 9.114 s, and to 9.474, 9.410, and 8.981 s, respectively, as compared to 9.612 s at sea level. CONCLUSIONS Neglecting science-fiction scenarios, t100-m of a world-class athlete can be expected to undergo a reduction of 1.01 to 1.44% at Mexico-City and of 1.44 to 2.10%, at Alto-Irpavi.
Collapse
|
10
|
Vassallo C, Kilduff LP, Cummins C, Murphy A, Gray A, Waldron M. A new energetics model for the assessment of the power-duration relationship during over-ground running. Eur J Sport Sci 2021; 22:1211-1221. [PMID: 33993836 DOI: 10.1080/17461391.2021.1931463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We evaluated the reliability of an over-ground running three-minute all-out test (3MT) and compared this to traditional multiple-visit testing to determine the critical speed (CS) and distance > CS (D´). Using a novel energetics model during the 3MT, critical power (CP) and work > CP (W´) were also evaluated for reliability and compared to the multiple-visit tests. Over-ground running speed was measured using Global Positioning Systems during fixed-speed trials on a 400 m track to exhaustion, at four intensities corresponding to: (i) maximal oxygen uptake (V˙O2max) (Vmax), (ii) 110% V˙O2max(110%Vmax), (iii) Δ70% (i.e. 70% of the difference between gas exchange threshold and Vmax) and (iv) Δ85%. The participants subsequently performed the 3MT across two days to determine its reliability. There were no differences between the multiple-visit testing and the 3MT for CS (P = 0.328) and D´ (P = 0.919); however, CP (P = 0.02) and W´ (P < 0.001) were higher in the 3MT. The reliability of the 3MT was stable (P > 0.05) between trials for all variables, with coefficient of variation ranging from 2.0-8.1%. The current over-ground energetics model can reliably estimate CP and W´ based on GPS speed data during the 3MT, which supports its use for most athletic training and monitoring purposes. The reliability of the over-ground running 3MT for power- and speed-related indices was sufficient to detect typical training adaptations; however, it may overestimate CP (∼ 25 W) and W´ (∼ 7 kJ) compared to multiple-visit tests.
Collapse
Affiliation(s)
| | - Liam P Kilduff
- A-STEM, College of Engineering, Swansea University, Swansea, UK.,Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - Cloe Cummins
- School of Science and Technology, University of New England, Australia.,Carnegie Applied Rugby Research (CARR) centre, Institute for Sport Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom.,National Rugby League, Australia
| | - Aron Murphy
- School of Science and Technology, University of New England, Australia
| | - Adrian Gray
- School of Science and Technology, University of New England, Australia
| | - Mark Waldron
- A-STEM, College of Engineering, Swansea University, Swansea, UK.,School of Science and Technology, University of New England, Australia.,Welsh Institute of Performance Science, Swansea University, Swansea, UK
| |
Collapse
|
11
|
Gunner RM, Wilson RP, Holton MD, Scott R, Arkwright A, Fahlman A, Ulrich M, Hopkins P, Duarte C, Eizaguirre C. Activity of loggerhead turtles during the U-shaped dive: insights using angular velocity metrics. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Understanding the behavioural ecology of endangered taxa can inform conservation strategies. The activity budgets of the loggerhead turtle Caretta caretta are still poorly understood because many tracking methods show only horizontal displacement and ignore dives and associated behaviours. However, time-depth recorders have enabled researchers to identify flat, U-shaped dives (or type 1a dives) and these are conventionally labelled as resting dives on the seabed because they involve no vertical displacement of the animal. Video- and acceleration-based studies have demonstrated this is not always true. Focusing on sea turtles nesting on the Cabo Verde archipelago, we describe a new metric derived from magnetometer data, absolute angular velocity, that integrates indices of angular rotation in the horizontal plane to infer activity. Using this metric, we evaluated the variation in putative resting behaviours during the bottom phase of type 1a dives for 5 individuals over 13 to 17 d at sea during a single inter-nesting interval (over 75 turtle d in total). We defined absolute resting within the bottom phase of type 1a dives as periods with no discernible acceleration or angular movement. Whilst absolute resting constituted a significant proportion of each turtle’s time budget for this 1a dive type, turtles allocated 16-38% of their bottom time to activity, with many dives being episodic, comprised of intermittent bouts of rest and rotational activity. This implies that previously considered resting behaviours are complex and need to be accounted for in energy budgets, particularly since energy budgets may impact conservation strategies.
Collapse
Affiliation(s)
- RM Gunner
- Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK
| | - RP Wilson
- Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK
| | - MD Holton
- Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK
| | - R Scott
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
- Natural Environmental Research Council, Polaris House, North Star Avenue, Swindon SN2 1FL, UK
| | - A Arkwright
- Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK
- L’Oceanogràfic, Ciutat de les Arts i de les Ciències, Carrer d’Eduardo Primo Yúfera, 1B, 46013 Valencia, Spain
| | - A Fahlman
- L’Oceanogràfic, Ciutat de les Arts i de les Ciències, Carrer d’Eduardo Primo Yúfera, 1B, 46013 Valencia, Spain
| | - M Ulrich
- Institutionen för fysik kemi och biologi (IFM), Linköping Universitet, Olaus Magnus väg, 583 30 Linköping, Sweden
| | - P Hopkins
- Swansea Lab for Animal Movement, Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK
| | - C Duarte
- Red Sea Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - C Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, London E35SA, UK
| |
Collapse
|
12
|
Monte A, Maganaris C, Baltzopoulos V, Zamparo P. The influence of Achilles tendon mechanical behaviour on "apparent" efficiency during running at different speeds. Eur J Appl Physiol 2020; 120:2495-2505. [PMID: 32840697 PMCID: PMC7557501 DOI: 10.1007/s00421-020-04472-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022]
Abstract
Purpose We investigated the role of elastic strain energy on the “apparent” efficiency of locomotion (AE), a parameter that is known to increase as a function of running speed (up to 0.5–0.7) well above the values of “pure” muscle efficiency (about 0.25–0.30). Methods In vivo ultrasound measurements of the gastrocnemius medialis (GM) muscle–tendon unit (MTU) were combined with kinematic, kinetic and metabolic measurements to investigate the possible influence of the Achilles tendon mechanical behaviour on the mechanics (total mechanical work, WTOT) and energetics (net energy cost, Cnet) of running at different speeds (10, 13 and 16 km h−1); AE was calculated as WTOT/Cnet. Results GM fascicles shortened during the entire stance phase, the more so the higher the speed, but the majority of the MTU displacement was accommodated by the Achilles tendon. Tendon strain and recoil increased as a function of running speed (P < 0.01 and P < 0.001, respectively). The contribution of elastic energy to the positive work generated by the MTU also increased with speed (from 0.09 to 0.16 J kg−1 m−1). Significant negative correlations (P < 0.01) were observed between tendon work and metabolic energy at each running speed (the higher the tendon work the lower the metabolic demand) and significant positive correlations were observed between tendon work and AE (P < 0.001) at each running speed (the higher the tendon work the higher the efficiency). Conclusion These results support the notion that the dynamic function of tendons is integral in reducing energy expenditure and increasing the “apparent” efficiency of running.
Collapse
Affiliation(s)
- Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, via Felice Casorati, 43, 37131, Verona, Italy
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Constantinos Maganaris
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Vasilios Baltzopoulos
- Research Institute for Sport and Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, UK
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, via Felice Casorati, 43, 37131, Verona, Italy.
| |
Collapse
|
13
|
Minetti AE, Moorhead AP, Pavei G. Frictional internal work of damped limbs oscillation in human locomotion. Proc Biol Sci 2020; 287:20201410. [PMID: 33043862 PMCID: PMC7423663 DOI: 10.1098/rspb.2020.1410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Joint friction has never previously been considered in the computation of mechanical and metabolic energy balance of human and animal (loco)motion, which heretofore included just muscle work to move the body centre of mass (external work) and body segments with respect to it. This happened mainly because, having been previously measured ex vivo, friction was considered to be almost negligible. Present evidences of in vivo damping of limb oscillations, motion captured and processed by a suited mathematical model, show that: (a) the time course is exponential, suggesting a viscous friction operated by the all biological tissues involved; (b) during the swing phase, upper limbs report a friction close to one-sixth of the lower limbs; (c) when lower limbs are loaded, in an upside-down body posture allowing to investigate the hip joint subjected to compressive forces as during the stance phase, friction is much higher and load dependent; and (d) the friction of the four limbs during locomotion leads to an additional internal work that is a remarkable fraction of the mechanical external work. These unprecedented results redefine the partitioning of the energy balance of locomotion, the internal work components, muscle and transmission efficiency, and potentially readjust the mechanical paradigm of the different gaits.
Collapse
Affiliation(s)
- Alberto E Minetti
- Physiology Division, Department of Pathophysiology and Transplants, University of Milan, Via Mangiagalli 32, 20133 Milan, Italy
| | - Alex P Moorhead
- Physiology Division, Department of Pathophysiology and Transplants, University of Milan, Via Mangiagalli 32, 20133 Milan, Italy
| | - Gaspare Pavei
- Physiology Division, Department of Pathophysiology and Transplants, University of Milan, Via Mangiagalli 32, 20133 Milan, Italy
| |
Collapse
|
14
|
Vassallo C, Gray A, Cummins C, Murphy A, Waldron M. Exercise tolerance during flat over-ground intermittent running: modelling the expenditure and reconstitution kinetics of work done above critical power. Eur J Appl Physiol 2019; 120:219-230. [PMID: 31776696 PMCID: PMC6969867 DOI: 10.1007/s00421-019-04266-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/12/2019] [Indexed: 11/30/2022]
Abstract
Purpose We compared a new locomotor-specific model to track the expenditure and reconstitution of work done above critical power (W´) and balance of W´ (W´BAL) by modelling flat over-ground power during exhaustive intermittent running. Method Nine male participants completed a ramp test, 3-min all-out test and the 30–15 intermittent fitness test (30–15 IFT), and performed a severe-intensity constant work-rate trial (SCWR) at the maximum oxygen uptake velocity (vV̇O2max). Four intermittent trials followed: 60-s at vV̇O2max + 50% Δ1 (Δ1 = vV̇O2max − critical velocity [VCrit]) interspersed by 30-s in light (SL; 40% vV̇O2max), moderate (SM; 90% gas-exchange threshold velocity [VGET]), heavy (SH; VGET + 50% Δ2 [Δ2 = VCrit − VGET]), or severe (SS; vV̇O2max − 50% Δ1) domains. Data from Global Positioning Systems were derived to model over-ground power. The difference between critical and recovery power (DCP), time constant for reconstitution of W´ (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau_{{W^{\prime}}}$$\end{document}τW′), time to limit of tolerance (TLIM), and W´BAL from the integral (W´BALint), differential (W´BALdiff), and locomotor-specific (OG-W´BAL) methods were compared. Results The relationship between \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau_{{W^{\prime}}}$$\end{document}τW′ and DCP was exponential (r2 = 0.52). The \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau_{{W^{{\prime}}}}$$\end{document}τW′ for SL, SM, and SH trials were 119 ± 32-s, 190 ± 45-s, and 336 ± 77-s, respectively. Actual TLIM in the 30–15 IFT (968 ± 117-s) compared closely to TLIM predicted by OG-W´BAL (929 ± 94-s, P > 0.100) and W´BALdiff (938 ± 84-s, P > 0.100) but not to W´BALint (848 ± 91-s, P = 0.001). Conclusion The OG-W´BAL accurately tracked W´ kinetics during intermittent running to exhaustion on flat surfaces.
Collapse
Affiliation(s)
- Christian Vassallo
- School of Sport, Health and Applied Science, St Mary's University, London, UK
| | - Adrian Gray
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Cloe Cummins
- School of Science and Technology, University of New England, Armidale, NSW, Australia.,Carnegie Applied Rugby Research (CARR) Centre, Institute for Sport Physical Activity and Leisure, Leeds Beckett University, Leeds, UK.,National Rugby League, Sydney, Australia
| | - Aron Murphy
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Mark Waldron
- School of Science and Technology, University of New England, Armidale, NSW, Australia. .,College of Engineering, Swansea University, Swansea, UK.
| |
Collapse
|
15
|
Pavei G, Zamparo P, Fujii N, Otsu T, Numazu N, Minetti AE, Monte A. Comprehensive mechanical power analysis in sprint running acceleration. Scand J Med Sci Sports 2019; 29:1892-1900. [DOI: 10.1111/sms.13520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Gaspare Pavei
- Department of Pathophysiology and Transplantation University of Milan Milano Italy
| | - Paola Zamparo
- Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
| | - Norihisa Fujii
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba Japan
| | - Takuya Otsu
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba Japan
| | - Naoki Numazu
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba Japan
| | - Alberto E. Minetti
- Department of Pathophysiology and Transplantation University of Milan Milano Italy
| | - Andrea Monte
- Department of Neurosciences, Biomedicine and Movement Sciences University of Verona Verona Italy
| |
Collapse
|