1
|
Heimler B, Sofia M, Galor N, Ben-Gal O, Bahat Y, Zeilig G, Plotnik M. Synchronization of auditory-hand tapping coupling: the effect of aging. Exp Brain Res 2025; 243:43. [PMID: 39812817 DOI: 10.1007/s00221-024-06993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Hand(s)-tapping tasks have been extensively studied in order to characterize the features of sensorimotor synchronization (SMS). These tasks frequently require participants to synchronize their tapping pace to an external, metronome-like sound. The impact of ageing on SMS abilities remains mainly unexplored. Thus, we conducted a series of hand tapping tasks on 15 young adults (YA) and 15 older adults (OA). The tasks included tapping with the dominant hand only (D), with the non-dominant hand only (ND), with both hands simultaneously (SIM), and alternating between the hands (ALT). Participants in each task performed a synchronization-continuation task, in which they had to tap for one minute according to an external sound set at their spontaneous motor tempo (separately identified), and then, after the sound stopped, continue tapping at the same tempo for another minute. Results indicated a set of preserved and degraded tapping behaviors in OA compared to YA. The ALT task produced the most deteriorated tapping performance, followed by the ND task; the other two tasks revealed no difference between the groups. These findings shed more light on how SMS declines across the lifespan and provide some preliminary but important information that may guide rehabilitation and diagnostic procedures.
Collapse
Affiliation(s)
- Benedetta Heimler
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.
| | - Miriam Sofia
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Noam Galor
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Oran Ben-Gal
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Yotam Bahat
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Gabi Zeilig
- Department of Neurological Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
- Department of Physical and Rehabilitation Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- School of Health Professions, Ono Academic College, Kiryat Ono, Israel
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Abolghasemi S, Abolghasemi R, Ardalani H. The music effect on motor skills of healthy people, a systematic review. J Bodyw Mov Ther 2024; 40:1166-1176. [PMID: 39593429 DOI: 10.1016/j.jbmt.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/25/2024] [Accepted: 07/07/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVE Music has an undeniable effect on the quality and quantity of life. In some clinical trial studies, its effect on improving the motor skills of human subjects has been checked. Until now, there has been no systematic review of the effects of music on the motor skills of healthy non-musician, non-athlete people. METHODS We searched the full text of English clinical trial research articles in medical PubMed, Web of Science, and Science Direct databases from 1 January 2000 to 30 June 2023 with sensitive relevant keywords. We excluded studies that were conducted on artists and athletes. RESULTS Based on the PRISMA flow diagram and after multistep screening, finally 26 records were reviewed. The art music type was only in one article and the popular music type was in 8 articles. In terms of the type of motor skill that was evaluated as a consequence of the use of music, the fine motor skills were evaluated in 4 articles and the gross motor skills were evaluated in 21 articles. The review showed that the number of fetal movements in three articles was significantly higher than that of the control group. In 20 studies, the effect of music on improving motor skills was positive, but in 2 studies, no statistically significant differences between groups due to the effects of music stimuli were found in outcomes. A reciprocal effect was also observed in a study, i.e generating action enhances auditory temporal sensitivity. Twenty studies had an overall low and unknown risk of bias. The most common types of bias were due to measurement of outcomes and the selection of the reported result. CONCLUSION The systematic review of 26 clinical trial studies about the effects of music on the motor skills of healthy non-musician, non-athlete people showed that except for 2 articles, music led to the improvement of motor skills. It is necessary to conduct further research with similar methods in terms of music type and motor skill types to conclude more accurate results.
Collapse
Affiliation(s)
| | - Reyhaneh Abolghasemi
- New Hearing Technologies Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Hossein Ardalani
- Department of Philosophy of Art, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| |
Collapse
|
3
|
Minino R, Liparoti M, Romano A, Mazzeo F, Sorrentino P, Tafuri D, Troisi Lopez E. "The influence of auditory stimulation on whole body variability in healthy older adults during gait". J Biomech 2024; 172:112222. [PMID: 38968650 DOI: 10.1016/j.jbiomech.2024.112222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Acoustic stimulation appears to be a promising strategy in reducing the risk of falling in older adults, demonstrating effectiveness in improving stability. However, its impact on movement variability, another crucial indicator of fall risk, seems to be limited. This study aims to assess movement variability during walking in a cohort of healthy older adults exposed to three different frequencies of acoustic stimulation (90%, 100% and 110% of each subject's average cadence). Using a systemic approach based on network theory, which considers the intricate relationships between all body segments, we constructed connectivity matrices composed of nodes, represented by bony landmarks, and edges, consisting of the standardised covariance of accelerations between each pair of nodes. By introducing a new metric called Similarity Score (S-score), we quantified the ability of each individual to repeat the same motor pattern at each gait cycle under different experimental conditions. The study revealed that rhythmic auditory stimulation (RAS) at 100% and 90% of the mean cadence significantly increased the S-scores compared to the baseline. These results highlight the effects of RAS in increasing gait repeatability in healthy older adults, with a focus on global kinematics.
Collapse
Affiliation(s)
- R Minino
- Department of Medical, Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy.
| | - M Liparoti
- Department Of Philosophical, Pedagogical and Quantitative-Economics Sciences, University of studies G.D.Annunzio, Chieti-Pescara, Italy
| | - A Romano
- Department of Medical, Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - F Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences (DiSEGIM), University of Naples "Parthenope", 80035 Nola, Italy
| | - P Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France; Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - D Tafuri
- Department of Medical, Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - E Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| |
Collapse
|
4
|
Kania D, Romaniszyn-Kania P, Tuszy A, Bugdol M, Ledwoń D, Czak M, Turner B, Bibrowicz K, Szurmik T, Pollak A, Mitas AW. Evaluation of physiological response and synchronisation errors during synchronous and pseudosynchronous stimulation trials. Sci Rep 2024; 14:8814. [PMID: 38627479 PMCID: PMC11021516 DOI: 10.1038/s41598-024-59477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
Rhythm perception and synchronisation is musical ability with neural basis defined as the ability to perceive rhythm in music and synchronise body movements with it. The study aimed to check the errors of synchronisation and physiological response as a reaction of the subjects to metrorhythmic stimuli of synchronous and pseudosynchronous stimulation (synchronisation with an externally controlled rhythm, but in reality controlled or produced tone by tapping) Nineteen subjects without diagnosed motor disorders participated in the study. Two tests were performed, where the electromyography signal and reaction time were recorded using the NORAXON system. In addition, physiological signals such as electrodermal activity and blood volume pulse were measured using the Empatica E4. Study 1 consisted of adapting the finger tapping test in pseudosynchrony with a given metrorhythmic stimulus with a selection of preferred, choices of decreasing and increasing tempo. Study 2 consisted of metrorhythmic synchronisation during the heel stomping test. Numerous correlations and statistically significant parameters were found between the response of the subjects with respect to their musical education, musical and sports activities. Most of the differentiating characteristics shown evidence of some group division in the undertaking of musical activities. The use of detailed analyses of synchronisation errors can contribute to the development of methods to improve the rehabilitation process of subjects with motor dysfunction, and this will contribute to the development of an expert system that considers personalised musical preferences.
Collapse
Affiliation(s)
- Damian Kania
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikołowska 72A, 40-065, Katowice, Poland
| | - Patrycja Romaniszyn-Kania
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland.
| | - Aleksandra Tuszy
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
| | - Monika Bugdol
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
| | - Daniel Ledwoń
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
| | - Miroslaw Czak
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
| | - Bruce Turner
- dBs Music, HE Music Faculty, 17 St Thomas St, Redcliffe, Bristol, BS1 6JS, UK
| | - Karol Bibrowicz
- Science and Research Center of Body Posture, College of Education and Therapy in Poznań, 61-473, Poznań, Poland
| | - Tomasz Szurmik
- Faculty of Arts and Educational Science, University of Silesia, ul. Bielska 62, 43-400, Cieszyn, Poland
| | - Anita Pollak
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
- Institute of Psychology, University of Silesia, ul. Grazynskiego 53, 40-126, Katowice, Poland
| | - Andrzej W Mitas
- Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800, Zabrze, Poland
| |
Collapse
|
5
|
Etani T, Miura A, Kawase S, Fujii S, Keller PE, Vuust P, Kudo K. A review of psychological and neuroscientific research on musical groove. Neurosci Biobehav Rev 2024; 158:105522. [PMID: 38141692 DOI: 10.1016/j.neubiorev.2023.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
When listening to music, we naturally move our bodies rhythmically to the beat, which can be pleasurable and difficult to resist. This pleasurable sensation of wanting to move the body to music has been called "groove." Following pioneering humanities research, psychological and neuroscientific studies have provided insights on associated musical features, behavioral responses, phenomenological aspects, and brain structural and functional correlates of the groove experience. Groove research has advanced the field of music science and more generally informed our understanding of bidirectional links between perception and action, and the role of the motor system in prediction. Activity in motor and reward-related brain networks during music listening is associated with the groove experience, and this neural activity is linked to temporal prediction and learning. This article reviews research on groove as a psychological phenomenon with neurophysiological correlates that link musical rhythm perception, sensorimotor prediction, and reward processing. Promising future research directions range from elucidating specific neural mechanisms to exploring clinical applications and socio-cultural implications of groove.
Collapse
Affiliation(s)
- Takahide Etani
- School of Medicine, College of Medical, Pharmaceutical, and Health, Kanazawa University, Kanazawa, Japan; Graduate School of Media and Governance, Keio University, Fujisawa, Japan; Advanced Research Center for Human Sciences, Waseda University, Tokorozawa, Japan.
| | - Akito Miura
- Faculty of Human Sciences, Waseda University, Tokorozawa, Japan
| | - Satoshi Kawase
- The Faculty of Psychology, Kobe Gakuin University, Kobe, Japan
| | - Shinya Fujii
- Faculty of Environment and Information Studies, Keio University, Fujisawa, Japan
| | - Peter E Keller
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark/The Royal Academy of Music Aarhus/Aalborg, Denmark; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | - Peter Vuust
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark/The Royal Academy of Music Aarhus/Aalborg, Denmark
| | - Kazutoshi Kudo
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Wang J, Li Y, Wang Y, Wang C, Qie S, Jin Z, Du W. Comparison of different rhythmic auditory stimuli on prefrontal cortex cortical activation during upper limb movement in patients with Parkinson's disease: a functional near-infrared spectroscopy study. Front Neurol 2024; 15:1336268. [PMID: 38476192 PMCID: PMC10927970 DOI: 10.3389/fneur.2024.1336268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Background A large number of literatures show that rhythmic auditory stimulation (RAS) can effectively improve Parkinson's disease (PD) patients' gait speed, frequency and speed. Its application and curative effect on upper limb motor function is relatively few. Objective By studying the immediate effect of RAS with different rhythms on the prefrontal cortex (PFC) blood oxygen response during upper limb movement in PD patients, this study discusses the potential neurophysiological mechanism of RAS on upper limb movement in PD patients, which is expected to provide guidance for patients with upper limb dysfunction such as Parkinson's disease. Methods In this study, 31 PD patients with upper limb static tremors were recruited to complete the nail board task on the healthy upper limb under the baseline rhythm, slow rhythm and fast rhythm provided by the therapist. At the same time, fNIRS was used to observe the blood oxygen response of PFC. Results There was no significant main effect onsidein all brain regions (p > 0.05), and there was no interaction between rhythm and side (p > 0.05); Except lPFC, the main effect of rhythm in other brain regions was significant (p < 0.05), and ΔHbO increased with the change of rhythm. Paired analysis showed that there were significant differences in ΔHbO between slow rhythm and baseline rhythm, between fast rhythm and baseline rhythm, and between slow rhythm and fast rhythm (p < 0.05); The ΔHbO of rPFC, lDLPFC and rDLPFC were significantly different between slow rhythm and fast rhythm (p < 0.05); there were significant differences in the ΔHbO of BA8 between slow rhythm and baseline rhythm, and between slow rhythm and fast rhythm (p < 0.05). Conclusion RAS may be a useful upper limb rehabilitation strategy for PD patients with upper limb dysfunction. At the same time, RAS with different rhythms also have different responses to PFC blood oxygen during upper limb movement in PD patients, so that we can design interventions for this kind of cortical mechanism. Identifying the neurophysiological mechanism of RAS on upper limb movement in PD patients may help clinicians customize rehabilitation methods for patients according to clues, so as to highly personalize upper limb training and optimize its effect.
Collapse
Affiliation(s)
- Jie Wang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yingqi Li
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yingpeng Wang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Congxiao Wang
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Shuyan Qie
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Jin
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Wenjun Du
- Parkinson Medical Center, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| |
Collapse
|