1
|
Serum Paraoxonase-1 Activity in Prostate Cancer Patients Treated with Brachytherapy as a Measure of Irradiation Efficacy. Antioxidants (Basel) 2023; 12:antiox12020212. [PMID: 36829771 PMCID: PMC9951881 DOI: 10.3390/antiox12020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
We investigated changes in the activity of antioxidant paraoxonase-1 (PON1) in patients with prostate cancer (PCa) undergoing radiotherapy (RT), as well as the relationship of the PON1 activity with the degree of PCa advancement. We included 84 men with PCa. Blood samples were obtained before irradiation and after the completion of RT. The control group was composed of 60 healthy men. There was no significant difference in the PON1 activity between the control group and patients pre-radiotherapy. Irradiation was associated with a significant decrease in the PON1 activity; thus, it could be a measure of the efficacy of RT. No significant correlations between the PON1 activity and Gleason score, prostate volume, BMI (body mass index), or adipose tissue thickness were found. However, there was a positive correlation between the PON1 activity and the PSA concentration in the group of PCa patients.
Collapse
|
2
|
Liu D, Che B, Chen P, He J, Mu Y, Chen K, Zhang W, Xu S, Tang K. GSTT1, an increased risk factor for prostate cancer in patients with metabolic syndrome. J Clin Lab Anal 2022; 36:e24352. [PMID: 35293017 PMCID: PMC8993662 DOI: 10.1002/jcla.24352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Glutathione S‐transferase (GSTs) gene polymorphism and metabolic syndrome (Mets) are generally considered to be risk factors for prostate cancer (PCa). However, this conclusion is still controversial. There is a close relationship between GSTs gene polymorphism and Mets. We suspect that the effect of GSTs gene polymorphism and Mets on PCa may be the result of their joint action. As a result, the purpose of this study was to investigate the potential effect of GSTs gene polymorphism on PCa in patients with Mets. Methods We collected blood samples from 128 patients with PCa and 200 controls. The GSTs gene polymorphism was detected by polymerase chain reaction‐restriction fragment length polymorphism (PCR–RFLP). Age, characteristics of Mets, frequencies of GSTs gene polymorphism, total prostate volume (TPV), Gleason score, and prostate‐specific antigen (PSA) were recorded and analyzed. Results There were significant differences in BMI, TG, LDL‐C, FBG, SBP, DBP, and HDL‐C among the control group, N‐PCa group, and Mets‐PCa group (p < 0.05). GSTT1 null genotype (OR = 2.844, 95% CI: 1.791–4.517), GSTM1 null genotype (OR = 2.192, 95% CI: 1.395–3.446), and GSTP1 (A/G + G/G) genotype (OR = 2.315, 95% CI: 1.465–3.657) were associated with PCa susceptibility and malignancy. Only the GSTT1 null genotype in Mets patients was positively correlated with PCa. Conclusions Our study suggests that GSTs gene polymorphism may be a risk factor for PCa and can predict the susceptibility and malignancy of PCa. Secondly, in Mets patients, GSTT1 null genotype significantly increased the risk of PCa. GSTM1 null genotype and the effect of GSTP1 (AG + GG) on PCa were not significantly related to Mets.
Collapse
Affiliation(s)
- Dongdong Liu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Pan Chen
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yi Mu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kehang Chen
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Jahan N, Chowdhury A, Li T, Xu K, Wei F, Wang S. Neferine improves oxidative stress and apoptosis in benign prostate hyperplasia via Nrf2-ARE pathway. Redox Rep 2021; 26:1-9. [PMID: 33416009 PMCID: PMC7808392 DOI: 10.1080/13510002.2021.1871814] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Progression of Benign Prostate hyperplasia (BPH) is vulnerable to oxidative stress (OS) and prostatic enlargement among the aging males through apoptosis deregulation. Our present study aimed to investigate the effect of neferine (NF) in the regulation of oxidative stress and apoptosis in human BPH-1 cells. METHODS BPH epithelial cell line BPH-1 was treated with NF for 24 and 48 h. To measure oxidative stress (OS) we investigated MDA, SOD, and GST expression along with Nrf2 and its downstream gene and protein expression. Cell proliferation and apoptosis regulation was assayed with respective methods. RESULTS Investigation revealed NF remarkably activate Nrf2 and its downstream proteins HO-1 and NQO1 at 48 h more substantially. Nrf2/Keap1 relative gene and protein expression indicated that NF might trigger Nrf2 upregulation by decreasing Keap1 expression. Both NF concentrations (3 µM and 9 µM) were able to deplete ROS and lipid peroxidation, concurrently, up-regulated SOD and GST. NF reduced cell proliferation significantly along with the regulation of apoptotic proteins Bax, Bcl2, Cyt-C, Caspase 9, and Caspase 3 at the same time (48 h). CONCLUSION This study is the first to manifest that NF may potentially regulate BPH by counterbalancing between OS and apoptosis through the activation of Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Nabila Jahan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Apu Chowdhury
- Faculty of materials and chemical engineering, Yibin University, Yibin, People's Republic of China
| | - Ting Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Ke Xu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Fen Wei
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Sicen Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
4
|
Gómez-Martín A, Martinez-Gonzalez LJ, Puche-Sanz I, Cozar JM, Lorente JA, Hernández AF, Alvarez-Cubero MJ. GSTM1 gene expression and copy number variation in prostate cancer patients-Effect of chemical exposures and physical activity. Urol Oncol 2018; 37:290.e9-290.e15. [PMID: 30595465 DOI: 10.1016/j.urolonc.2018.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Many etiological factors have been related to prostate cancer (CaP) development, progression, and survival, such as age, population origin, geographic area, occupational exposures, and nutrition and lifestyle factors. However, physical activity affords health benefits to cancer patients, including those with CaP. Glutathione S-Transferases enzymes have been linked to CaP because of their role in the detoxification of a wide variety of potential carcinogens, steroid hormones and xenobiotics. Among the different glutathione S-transferases isoforms, null genotype for GSTM1 has been associated with an increased risk of CaP, although data are controversial. As the relationship between copy number variation and gene expression of GSTM1 in CaP remains unexplored, this study analyzed GSTM1 gene expression and/or dosage effect on CaP risk and aggressiveness. The potential protective role of physical activity was also explored. METHODS Three hundred and seventeen patients (159 non-CaP and 158 CaP) were recruited from the Service of Urology (Hospital Virgen de las Nieves, Granada, Spain) over the period 2012 to 2014 and were followed-up until January 2018 to ensure a correct classification of control and patients. Individuals were classified in each group based on histological analysis of tissue biopsy, along with data on PSA level, Gleason score and T stage in patients with biopsies positive for CaP. Individuals with a negative biopsy were considered as controls. All controls underwent a systematic 20-core ultrasound guided biopsy in order to limit the false negative rate. Genomic DNA was extracted from peripheral blood to determine the exact copy numbers of GSTM1, and RNA was extracted from prostate tissue samples to determine GSTM1 gene expression. Both analyses were performed using the qPCR method. A questionnaire was administered to all patients to assess environmental exposures, lifestyle, and physical activity. The association of GSTM1 copy number variation and expression with the rest of variables was assessed by chi-square test and the Mann-Whitney test. Multiple logistic regression was used to assess which factors were associated with the risk of CaP. RESULTS The presence of 1 or 2 copies of the GSTM1 gene was not less prevalent in CaP compared to non-CaP patients; however, a significant decreased GSTM1 gene expression was observed in CaP tissue relative to non-CaP tissue (P = 0.003). CaP patients with environmental exposure to dust and smoke, and smoking habit had a significantly decreased GSTM1 gene expression (and near-significantly decreased for living in urban areas) as compared to non-CaP patients with the same exposures. In addition, physical activity was significantly associated with a lower risk of CaP (P = 0.006) and with increased GSTM1 gene expression (P = 0.002). CONCLUSIONS A reduced GSTM1 gene expression in prostate tissue was observed in CaP patients with some environmental chemical exposures. Intriguingly, physical activity might play a protective role against CaP development, possibly as a result of increasing GSTM1 gene expression in prostate tissue. However, this observation warrants further confirmation.
Collapse
Affiliation(s)
- Antonio Gómez-Martín
- GENYO (Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research), Granada, Spain
| | - Luis J Martinez-Gonzalez
- GENYO (Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research), Granada, Spain.
| | - Ignacio Puche-Sanz
- Service of Urology, University Hospital Virgen de las Nieves, Granada, Spain
| | - Jose M Cozar
- Service of Urology, University Hospital Virgen de las Nieves, Granada, Spain
| | - Jose A Lorente
- GENYO (Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research), Granada, Spain; University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, PTS, Granada, Spain
| | - Antonio F Hernández
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, PTS, Granada, Spain
| | - Maria J Alvarez-Cubero
- GENYO (Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research), Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain
| |
Collapse
|
5
|
Eggener SE, Badani K, Barocas DA, Barrisford GW, Cheng JS, Chin AI, Corcoran A, Epstein JI, George AK, Gupta GN, Hayn MH, Kauffman EC, Lane B, Liss MA, Mirza M, Morgan TM, Moses K, Nepple KG, Preston MA, Rais-Bahrami S, Resnick MJ, Siddiqui MM, Silberstein J, Singer EA, Sonn GA, Sprenkle P, Stratton KL, Taylor J, Tomaszewski J, Tollefson M, Vickers A, White WM, Lowrance WT. Gleason 6 Prostate Cancer: Translating Biology into Population Health. J Urol 2015; 194:626-34. [PMID: 25849602 PMCID: PMC4551510 DOI: 10.1016/j.juro.2015.01.126] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Gleason 6 (3+3) is the most commonly diagnosed prostate cancer among men with prostate specific antigen screening, the most histologically well differentiated and is associated with the most favorable prognosis. Despite its prevalence, considerable debate exists regarding the genetic features, clinical significance, natural history, metastatic potential and optimal management. MATERIALS AND METHODS Members of the Young Urologic Oncologists in the Society of Urologic Oncology cooperated in a comprehensive search of the peer reviewed English medical literature on Gleason 6 prostate cancer, specifically focusing on the history of the Gleason scoring system, histological features, clinical characteristics, practice patterns and outcomes. RESULTS The Gleason scoring system was devised in the early 1960s, widely adopted by 1987 and revised in 2005 with a more restrictive definition of Gleason 6 disease. There is near consensus that Gleason 6 meets pathological definitions of cancer, but controversy about whether it meets commonly accepted molecular and genetic criteria of cancer. Multiple clinical series suggest that the metastatic potential of contemporary Gleason 6 disease is negligible but not zero. Population based studies in the U.S. suggest that more than 90% of men newly diagnosed with prostate cancer undergo treatment and are exposed to the risk of morbidity for a cancer unlikely to cause symptoms or decrease life expectancy. Efforts have been proposed to minimize the number of men diagnosed with or treated for Gleason 6 prostate cancer. These include modifications to prostate specific antigen based screening strategies such as targeting high risk populations, decreasing the frequency of screening, recommending screening cessation, incorporating remaining life expectancy estimates, using shared decision making and novel biomarkers, and eliminating prostate specific antigen screening entirely. Large nonrandomized and randomized studies have shown that active surveillance is an effective management strategy for men with Gleason 6 disease. Active surveillance dramatically reduces the number of men undergoing treatment without apparent compromise of cancer related outcomes. CONCLUSIONS The definition and clinical relevance of Gleason 6 prostate cancer have changed substantially since its introduction nearly 50 years ago. A high proportion of screen detected cancers are Gleason 6 and the metastatic potential is negligible. Dramatically reducing the diagnosis and treatment of Gleason 6 disease is likely to have a favorable impact on the net benefit of prostate cancer screening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - William T. Lowrance
- Correspondence: Department of Surgery, Division of Urology, Huntsman Cancer Institute, University of Utah, 1950 Circle of Hope, #6405, Salt Lake City, Utah 84112 (telephone: 801-587-4282; FAX: 801-585-3749; )
| |
Collapse
|
6
|
Abstract
Glutathione S-transferase P1 (GSTP1), an enzyme involved in detoxification process, is frequently inactivated in prostate cancer due to epigenetic modifications. Through in silico analysis we identified a subset of miRNAs that are putative targets in regulating GSTP1. miRNAs are small endogenous non-coding RNA that are critical regulators of various physiologic and pathologic processes and their level of expression may play a precise role in early diagnosis and prognosis of cancer. These small molecules have been detected in a wide variety of human biological specimens including blood, serum, urine, ejaculate and tissues, which could be utilized as clinically useful biomarker in early detection and prognosis of prostate cancer. The chapter summarizes the current knowledge about miRNA involved in GSTP1 regulation in prostate cancer and their potential as useful biomarkers of disease for early detection and prognosis, along with challenges and limitations in this development.
Collapse
|
7
|
Khor TO, Fuentes F, Shu L, Paredes-Gonzalez X, Yang AY, Liu Y, Smiraglia DJ, Yegnasubramanian S, Nelson WG, Kong ANT. Epigenetic DNA methylation of antioxidative stress regulator NRF2 in human prostate cancer. Cancer Prev Res (Phila) 2014; 7:1186-97. [PMID: 25266896 DOI: 10.1158/1940-6207.capr-14-0127] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epigenetic control of NRF2, a master regulator of many critical antioxidative stress defense genes in human prostate cancer (CaP), is unknown. Our previous animal study found decreased Nrf2 expression through promoter CpG methylation/histone modifications during prostate cancer progression in TRAMP mice. In this study, we evaluated CpG methylation of human NRF2 promoter in 27 clinical prostate cancer samples and in LNCaP cells using MAQMA analysis and bisulfite genomic DNA sequencing. Prostate cancer tissue microarray (TMA) containing normal and prostate cancer tissues was studied by immunohistochemistry. Luciferase reporter assay using specific human NRF2 DNA promoter segments and chromatin immunoprecipitation (ChIP) assay against histone modifying proteins were performed in LNCaP cells. Three specific CpG sites in the NRF2 promoter were found to be hypermethylated in clinical prostate cancer samples (BPH<ADT-RCaP<AS-CaP). NRF2 staining in human prostate cancer TMA showed a decreasing trend for both intensity and percentage of positive cells from normal tissues to advanced-stage prostate cancer (Gleason score from 3-9). Reporter assays in the LNCaP cells containing these three CpG sites showed methylation-inhibited transcriptional activity of the NRF2 promoter. LNCaP cells treated with 5-aza/TSA restored the expression of NRF2 and NRF2 downstream target genes, decreased expression levels of DNMT and HDAC proteins, and ChIP assays showed increased RNA Pol II and H3Ac with a concomitant decrease in H3K9me3, MBD2, and MeCP2 at CpG sites of human NRF2 promoter. Taken together, these findings suggest that epigenetic modification may contribute to the regulation of transcription activity of NRF2, which could be used as prevention and treatment target of human prostate cancer.
Collapse
Affiliation(s)
- Tin Oo Khor
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Francisco Fuentes
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Limin Shu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ximena Paredes-Gonzalez
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Anne Yuqing Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Yue Liu
- Department of Chemical Biology, Susan Lehman Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Dominic J Smiraglia
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York
| | | | - William G Nelson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
8
|
Singh S. Cytoprotective and regulatory functions of glutathione S-transferases in cancer cell proliferation and cell death. Cancer Chemother Pharmacol 2014; 75:1-15. [PMID: 25143300 DOI: 10.1007/s00280-014-2566-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/04/2014] [Indexed: 01/05/2023]
Abstract
PURPOSE Glutathione S-transferases (GSTs) family of enzymes is best known for their cytoprotective role and their involvement in the development of anticancer drug resistance. Recently, emergence of non-detoxifying properties of GSTs has provided them with significant biological importance. Addressing the complex interactions of GSTs with regulatory kinases will help in understanding its precise role in tumor pathophysiology and in designing GST-centered anticancer strategies. METHODS We reviewed all published literature addressing the detoxification and regulatory roles of GSTs in the altered biology of cancer and evaluating novel agents targeting GSTs for cancer therapy. RESULTS The role of GSTs, especially glutathione S-transferase P1 isoform in tumoral drug resistance, has been the cause of intense debate. GSTs have been demonstrated to interact with different protein partners and modulate signaling pathways that control cell proliferation, differentiation and apoptosis. These specific functions of GSTs could lead to the development of new therapeutic approaches and to the identification of some interesting candidates for preclinical and clinical development. This review focuses on the crucial role played by GSTs in the development of resistance to anticancer agents and the major findings regarding the different modes of action of GSTs to regulate cell signaling.
Collapse
Affiliation(s)
- Simendra Singh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Gautam Buddha Nagar, Greater Noida, UP, India,
| |
Collapse
|
9
|
Miao L, Holley AK, Zhao Y, St Clair WH, St Clair DK. Redox-mediated and ionizing-radiation-induced inflammatory mediators in prostate cancer development and treatment. Antioxid Redox Signal 2014; 20:1481-500. [PMID: 24093432 PMCID: PMC3936609 DOI: 10.1089/ars.2013.5637] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
SIGNIFICANCE Radiation therapy is widely used for treatment of prostate cancer. Radiation can directly damage biologically important molecules; however, most effects of radiation-mediated cell killing are derived from the generated free radicals that alter cellular redox status. Multiple proinflammatory mediators can also influence redox status in irradiated cells and the surrounding microenvironment, thereby affecting prostate cancer progression and radiotherapy efficiency. RECENT ADVANCES Ionizing radiation (IR)-generated oxidative stress can regulate and be regulated by the production of proinflammatory mediators. Depending on the type and stage of the prostate cancer cells, these proinflammatory mediators may lead to different biological consequences ranging from cell death to development of radioresistance. CRITICAL ISSUES Tumors are heterogeneous and dynamic communication occurs between stromal and prostate cancer cells, and complicated redox-regulated mechanisms exist in the tumor microenvironment. Thus, antioxidant and anti-inflammatory strategies should be carefully evaluated for each patient at different stages of the disease to maximize therapeutic benefits while minimizing unintended side effects. FUTURE DIRECTIONS Compared with normal cells, tumor cells are usually under higher oxidative stress and secrete more proinflammatory mediators. Thus, redox status is often less adaptive in tumor cells than in their normal counterparts. This difference can be exploited in a search for new cancer therapeutics and treatment regimes that selectively activate cell death pathways in tumor cells with minimal unintended consequences in terms of chemo- and radio-resistance in tumor cells and toxicity in normal tissues.
Collapse
Affiliation(s)
- Lu Miao
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Jin P, Xie J, Zhu X, Zhou C, Ding X, Yang L. shRNA-mediated GSTP1 gene silencing enhances androgen-independent cell line DU145 chemosensitivity. Int Urol Nephrol 2013; 46:1115-21. [PMID: 24326871 DOI: 10.1007/s11255-013-0616-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/22/2013] [Indexed: 01/10/2023]
Abstract
PURPOSE Design short hairpin RNA (shRNA) interference sequence to silence glutathione S-transferase P1 (GSTP1) gene of androgen-independent prostate cancer cell line DU145, and then to explore its effect on sensitivity to chemotherapeutics. METHODS Target sequence was picked up to form the shRNA. DU145 cell was divided into five groups according to the shRNA added for transfection: shRNA255, shRNA554, shRNA593, negative-shRNA and blank group. Fluorescence microscope was used to pick up the shRNA with the highest transfection ratio. Western blotting and RT-PCR were taken to pick up the shRNA with the best gene silencing result. 3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay and terminal de-oxynucleotidyl transferase-mediated dUTP nick end-labeling assay were used to detect survival ratio and apoptosis ratio of DU145 administered of fluorouracil (5-FU) or paclitaxel (PA) at different concentrations before and after shRNA transfection. RESULTS Three different shRNA oligonucleotides (shRNA255; shRNA554; shRNA593) targeting the coding sequence of GSTP1 mRNA and one negative control shRNA were constructed. The transfection ratio of shRNA554 (76.2 ± 0.68 %) was higher than that of shRNA255 (63.3 ± 1.04 %) (P < 0.01) or shRNA593 (72.7 ± 0.33 %) (P < 0.01). After transfection of shRNA554, the mRNA and protein of level were the lowest, P < 0.01. The survival ratio of DU145 administered with 5-FU of different concentrations (30, 60, 120, 240 μg/ml) declined after transfection (P < 0.01). Besides, the apoptosis ratio increased after transfection (P < 0.01). Similarly the survival ratio of DU145 administered with PA of different concentrations (0.2, 2, 10, 20 μg/ml) declined (P < 0.01) and the apoptosis ratio increased (P < 0.01) after transfection. CONCLUSIONS The gene GSTP1 silence via shRNA transfection to androgen-independent prostate cancer cell line DU145 enhances the sensitivity to chemotherapeutics.
Collapse
Affiliation(s)
- Peng Jin
- Centre of Organ Transplantation, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu Area, Changsha, 410008, China,
| | | | | | | | | | | |
Collapse
|
12
|
Masood N, Kayani MA. Expression patterns of carcinogen detoxifying genes (CYP1A1, GSTP1 & GSTT1) in HNC patients. Pathol Oncol Res 2012; 19:89-94. [PMID: 22918668 DOI: 10.1007/s12253-012-9563-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/09/2012] [Indexed: 11/27/2022]
Abstract
Carcinogen detoxifying genes may be involved in pathogenesis of head and neck cancer (HNC). CYP1A1 is phase I enzyme that converts carcinogens into water soluble compounds which are easily excreted from body. GSTs constitute phase II detoxification enzymes that recognize these highly electrophilic compounds and detoxify them. Abnormal expression of these genes can potentially lead to cancer initiation. In present study, we analyzed protein expression of these genes in a total of 192 HNC patients and noncancerous healthy control serum samples screened for GSTs specific activity by ELISA. Furthermore, expression of these molecules was also determined in 49 HNC tissues/ adjacent control tissue by immunohistochemistry with specific antibodies. Mean serum GSTs specific activity was found to be 7.7 (+11.5)U/L in HNC patients and 11.4 (+7.5)U/L in controls. Significant decrease (P < 0.05) in GSTs specific activity was observed in HNC patients compared with controls (P < 0.001). Data for immunohistochemistry showed that CYP1A1 and GSTT1 was down expressed whereas GSTP1 was over expressed in HNC tissues compared with adjacent normal control tissues. Results of immunohistochemistry revealed 63 % HNC tissues had weak, 27 % moderate and 10 % strong staining for CYP1A1. For GSTT1, 27 % HNC tissues had no staining, 49 % weak staining, 16 % moderate and 8 % strong staining. Similarly for GSTP1, percentages for weak, moderate and strong staining were 6 %, 12 % and 82 % respectively. These reduced proteins observed in cancer patients highlight a potential breach on DNA repair mechanism when compared with control. Thus altered expression of these detoxifying molecules may collectively contribute to HNC development in Pakistani population.
Collapse
Affiliation(s)
- Nosheen Masood
- Cancer Genetics Lab, Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan.
| | | |
Collapse
|
13
|
Kanwal R, Pandey M, Bhaskaran N, Maclennan GT, Fu P, Ponsky LE, Gupta S. Protection against oxidative DNA damage and stress in human prostate by glutathione S-transferase P1. Mol Carcinog 2012; 53:8-18. [PMID: 22833520 DOI: 10.1002/mc.21939] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/18/2012] [Accepted: 06/04/2012] [Indexed: 01/10/2023]
Abstract
The pi-class glutathione S-transferase (GSTP1) actively protect cells from carcinogens and electrophilic compounds. Loss of GSTP1 expression via promoter hypermethylation is the most common epigenetic alteration observed in human prostate cancer. Silencing of GSTP1 can increase generation of reactive oxygen species (ROS) and DNA damage in cells. In this study we investigated whether loss of GSTP1 contributes to increased DNA damage that may predispose men to a higher risk of prostate cancer. We found significantly elevated (103%; P < 0.0001) levels of 8-oxo-2'-deoxogunosine (8-OHdG), an oxidative DNA damage marker, in adenocarcinomas, compared to benign counterparts, which positively correlated (r = 0.2) with loss of GSTP1 activity (34%; P < 0.0001). Silencing of GSTP1 using siRNA approach in normal human prostate epithelial RWPE1 cells caused increased intracellular production of ROS and higher susceptibility of cells to H2 O2 -mediated oxidative stress. Additionally, human prostate carcinoma LNCaP cells, which contain a silenced GSTP1 gene, were genetically modified to constitutively express high levels of GSTP1. Induction of GSTP1 activity lowered endogenous ROS levels in LNCaP-pLPCX-GSTP1 cells, and when exposed to H2 O2 , these cells exhibited significantly reduced production of ROS and 8-OHdG levels, compared to vector control LNCaP-pLPCX cells. Furthermore, exposure of LNCaP cells to green tea polyphenols caused reexpression of GSTP1, which protected the cells from H2 O2 -mediated DNA damage through decreased ROS production compared to nonexposed cells. These results suggest that loss of GSTP1 expression in human prostate cells, a process that increases their susceptibility to oxidative stress-induced DNA damage, may be an important target for primary prevention of prostate cancer.
Collapse
Affiliation(s)
- Rajnee Kanwal
- Department of Urology, Case Western Reserve University, Cleveland, Ohio
| | | | | | | | | | | | | |
Collapse
|
14
|
Specially processed cereals diet increases plasma levels of active antisecretory factor and up-regulates rat hepatic glutathione S-transferase mu. Nutrition 2011; 27:949-54. [DOI: 10.1016/j.nut.2010.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/19/2010] [Accepted: 09/03/2010] [Indexed: 11/19/2022]
|
15
|
Cortesi L, Rossi E, Casa LD, Barchetti A, Nicoli A, Piana S, Abrate M, Sala GBL, Federico M, Iannone A. Protein expression patterns associated with advanced stage ovarian cancer. Electrophoresis 2011; 32:1992-2003. [DOI: 10.1002/elps.201000654] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/22/2011] [Accepted: 04/24/2011] [Indexed: 01/19/2023]
|
16
|
Expression of maspin and glutathionine-S-transferase-pi in normal human prostate and prostatic carcinomas. Appl Immunohistochem Mol Morphol 2011; 18:429-32. [PMID: 20453817 DOI: 10.1097/pai.0b013e3181dbc77e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Maspin and glutathionine-S-transferase-pi (GST-pi) are both involved in tumor suppression activity. Maspin expression functions as an inhibitor of tumor progression preventing the local invasion and etastatic spread of prostate cancer cells. GST-pi has an essential role in the inactivation of xenobiotic agents and protection from oxidative stress and in resistance to chemotherapy. Furthermore, a recent experimental evidence indicated that maspin and GST-pi may directly interact in the protection of the prostatic cells from oxydative damage. DESIGN Maspin and GST-pi expression were assessed in needle core and transurethral resection prostatic biopsies from 42 patients (34 with carcinoma, and 8 with normal prostate gland) using immunohistochemical methods. RESULTS Maspin and GST-pi were strongly and consistently coexpressed in the cytoplasm of basal cells of normal prostatic glands, whereas normal luminal cells were inconsistently weakly positive. Prostatic adenocarcinomas overexpressed maspin in 27/34 cases (79%). In the majority of the cases, the subcellular distribution showed a predominance of nuclear expression. In contrast, only 1 case of prostatic carcinoma expressed GST-pi. CONCLUSION Consistent coexpression of maspin and GST-pi was observed in basal cells of the prostatic glands, which could be used as an additional immunohistochemical test in the evaluation of prostatic malignancy. Prostatic adenocarcinomas express maspin in an aberrant nuclear distribution without coexpresion of GST-pi. These results indicate a deregulation of expression of maspin and GST-pi in prostatic adenocarcinomas.
Collapse
|
17
|
Henning SM, Wang P, Heber D. Chemopreventive effects of tea in prostate cancer: green tea versus black tea. Mol Nutr Food Res 2011; 55:905-20. [PMID: 21538852 DOI: 10.1002/mnfr.201000648] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/27/2011] [Accepted: 03/01/2011] [Indexed: 02/06/2023]
Abstract
The polyphenol compositions of green tea (GT) and black tea (BT) are very different due to post-harvest processing. GT contains higher concentrations of monomeric polyphenols, which affect numerous intracellular signaling pathways involved in prostate cancer (CaP) development. BT polymers, on the other hand, are poorly absorbed and are converted to phenolic acids by the colonic microflora. Therefore, after consumption of GT, higher concentrations of polyphenols are found in the circulation, whereas after BT consumption the phenolic acid levels in the circulation are higher. The majority of in vitro cell culture, in vivo animal, and clinical intervention studies examine the effects of extracts of GT or purified (-)-epigallocatechin-3-gallate (EGCG) on prostate carcinogenesis. These studies provide strong evidence supporting a chemopreventive effect of GT, but results from epidemiological studies of GT consumption are mixed. While the evidence for a chemopreventive effect of BT is much weaker than the body of evidence with regard to GT, there are several animal BT intervention studies demonstrating inhibition of CaP growth. This article will review in detail the available epidemiological and human clinical studies, as well as animal and basic mechanistic studies on GT and BT supporting a chemopreventive role in CaP.
Collapse
Affiliation(s)
- Susanne M Henning
- Center for Human Nutrition, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
18
|
Nrf2 and NF-κB and Their Concerted Modulation in Cancer Pathogenesis and Progression. Cancers (Basel) 2010; 2:483-97. [PMID: 24281078 PMCID: PMC3835087 DOI: 10.3390/cancers2020483] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/18/2010] [Accepted: 04/12/2010] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species, produced by oxidative stress, are implicated in the initiation, promotion, and malignant conversion of carcinogenesis through activation/suppression of redox-sensitive transcription factors. NF-E2-related factor 2 (Nrf2) encodes for antioxidant and general cytoprotection genes, while NF-κB regulates the expression of pro-inflammatory genes. A variety of anti-inflammatory or anti-carcinogenic phyto-chemicals suppress NF-κB signalling and activate the Nrf2-ARE pathway. In this review we consider the role of Nrf2 and NF-κB in cancer pathogenesis and progression, focusing on their concerted modulation and potential cross-talk.
Collapse
|
19
|
Sun Y, St Clair DK, Xu Y, Crooks PA, St Clair WH. A NADPH oxidase-dependent redox signaling pathway mediates the selective radiosensitization effect of parthenolide in prostate cancer cells. Cancer Res 2010; 70:2880-90. [PMID: 20233868 DOI: 10.1158/0008-5472.can-09-4572] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cells are usually under higher oxidative stress compared with normal cells. We hypothesize that introducing additional reactive oxygen species (ROS) insults or suppressing antioxidant capacity may selectively enhance cancer cell killing by oxidative stress-generating agents through stress overload or stress sensitization, whereas normal cells may be able to maintain redox homeostasis under exogenous ROS by adaptive response. Here, we show that parthenolide, a sesquiterpene lactone, selectively exhibits a radiosensitization effect on prostate cancer PC3 cells but not on normal prostate epithelial PrEC cells. Parthenolide causes oxidative stress in PC3 cells but not in PrEC cells, as determined by the oxidation of the ROS-sensitive probe H(2)DCFDA and intracellular reduced thiol and disulfide levels. In PC3 but not PrEC cells, parthenolide activates NADPH oxidase, leading to a decrease in the level of reduced thioredoxin, activation of phosphoinositide 3-kinase/Akt, and consequent FOXO3a phosphorylation, which results in the downregulation of FOXO3a targets antioxidant enzyme manganese superoxide dismutase and catalase. Importantly, when combined with radiation, parthenolide further increases ROS levels in PC3 cells whereas it decreases radiation-induced oxidative stress in PrEC cells, possibly by increasing reduced glutathione levels. Together, the results show that parthenolide selectively activates NADPH oxidase and mediates intense oxidative stress in prostate cancer cells by both increasing ROS generation and decreasing antioxidant defense capacity. The results support the concept of exploiting the intrinsic differences in the redox status of cancer cells and normal cells as targets for selective cancer killing.
Collapse
Affiliation(s)
- Yulan Sun
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
20
|
Khan AP, Poisson LM, Bhat VB, Fermin D, Zhao R, Kalyana-Sundaram S, Michailidis G, Nesvizhskii AI, Omenn GS, Chinnaiyan AM, Sreekumar A. Quantitative proteomic profiling of prostate cancer reveals a role for miR-128 in prostate cancer. Mol Cell Proteomics 2010; 9:298-312. [PMID: 19955085 PMCID: PMC2830841 DOI: 10.1074/mcp.m900159-mcp200] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 10/21/2009] [Indexed: 11/06/2022] Open
Abstract
Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of biomarkers of cancer invasion and disease aggressiveness. Although alterations in gene expression have been extensively quantified during neoplastic progression, complementary analyses of proteomic changes have been limited. Here we interrogate the proteomic alterations in a cohort of 15 prostate-derived tissues that included five each from adjacent benign prostate, clinically localized prostate cancer, and metastatic disease from distant sites. The experimental strategy couples isobaric tags for relative and absolute quantitation with multidimensional liquid phase peptide fractionation followed by tandem mass spectrometry. Over 1000 proteins were quantified across the specimens and delineated into clinically localized and metastatic prostate cancer-specific signatures. Included in these class-specific profiles were both proteins that were known to be dysregulated during prostate cancer progression and new ones defined by this study. Enrichment analysis of the prostate cancer-specific proteomic signature, to gain insight into the functional consequences of these alterations, revealed involvement of miR-128-a/b regulation during prostate cancer progression. This finding was validated using real time PCR analysis for microRNA transcript levels in an independent set of 15 clinical specimens. miR-128 levels were elevated in benign prostate epithelial cell lines compared with invasive prostate cancer cells. Knockdown of miR-128 induced invasion in benign prostate epithelial cells, whereas its overexpression attenuated invasion in prostate cancer cells. Taken together, our profiles of the proteomic alterations of prostate cancer progression revealed miR-128 as a potentially important negative regulator of prostate cancer cell invasion.
Collapse
Affiliation(s)
- Amjad P. Khan
- From The Michigan Center for Translational Pathology
- Departments of Pathology
| | | | - Vadiraja B. Bhat
- Department of Pathology, Scott and White Hospital, Temple, Texas 76508
| | | | - Rong Zhao
- From The Michigan Center for Translational Pathology
- Departments of Pathology
| | | | | | | | - Gilbert S. Omenn
- Center for Computational Medicine and Biology
- Internal Medicine, and the
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Arul M. Chinnaiyan
- From The Michigan Center for Translational Pathology
- Howard Hughes Medical Institute
- Center for Computational Medicine and Biology
- Departments of Pathology
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Arun Sreekumar
- From The Michigan Center for Translational Pathology
- Departments of Pathology
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| |
Collapse
|
21
|
Yu S, Khor TO, Cheung KL, Li W, Wu TY, Huang Y, Foster BA, Kan YW, Kong AN. Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One 2010; 5:e8579. [PMID: 20062804 PMCID: PMC2799519 DOI: 10.1371/journal.pone.0008579] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 12/06/2009] [Indexed: 12/17/2022] Open
Abstract
Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) is a transcription factor which regulates the expression of many cytoprotective genes. In the present study, we found that the expression of Nrf2 was suppressed in prostate tumor of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) mice. Similarly, the expression of Nrf2 and the induction of NQO1 were also substantially suppressed in tumorigenic TRAMP C1 cells but not in non-tumorigenic TRAMP C3 cells. Examination of the promoter region of the mouse Nrf2 gene identified a CpG island, which was methylated at specific CpG sites in prostate TRAMP tumor and in TRAMP C1 cells but not in normal prostate or TRAMP C3 cells, as shown by bisulfite genomic sequencing. Reporter assays indicated that methylation of these CpG sites dramatically inhibited the transcriptional activity of the Nrf2 promoter. Chromatin immunopreceipitation (ChIP) assays revealed increased binding of the methyl-CpG-binding protein 2 (MBD2) and trimethyl-histone H3 (Lys9) proteins to these CpG sites in the TRAMP C1 cells as compared to TRAMP C3 cells. In contrast, the binding of RNA Pol II and acetylated histone H3 to the Nrf2 promoter was decreased. Furthermore, treatment of TRAMP C1 cells with DNA methyltransferase (DNMT) inhibitor 5-aza-2′-deoxycytidine (5-aza) and histone deacetylase (HDAC) inhibitor trichostatin A (TSA) restored the expression of Nrf2 as well as the induction of NQO1 in TRAMP C1 cells. Taken together, these results indicate that the expression of Nrf2 is suppressed epigenetically by promoter methylation associated with MBD2 and histone modifications in the prostate tumor of TRAMP mice. Our present findings reveal a novel mechanism by which Nrf2 expression is suppressed in TRAMP prostate tumor, shed new light on the role of Nrf2 in carcinogenesis and provide potential new directions for the detection and prevention of prostate cancer.
Collapse
Affiliation(s)
- Siwang Yu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jiang M, Fernandez S, Jerome WG, He Y, Yu X, Cai H, Boone B, Yi Y, Magnuson MA, Roy-Burman P, Matusik RJ, Shappell SB, Hayward SW. Disruption of PPARgamma signaling results in mouse prostatic intraepithelial neoplasia involving active autophagy. Cell Death Differ 2009; 17:469-81. [PMID: 19834493 PMCID: PMC2821953 DOI: 10.1038/cdd.2009.148] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARgamma) regulates the interface between cellular lipid metabolism, redox status and organelle differentiation. Conditional prostatic epithelial knockout of PPARgamma in mice resulted in focal hyperplasia which developed into mouse prostatic intraepithelial neoplasia (mPIN). The grade of PIN became more severe with time. Electron microscopy (EM) showed accumulated secondary lysosomes containing cellular organelles and debris suggestive of autophagy. Consistent with this analysis the autophagy marker LC-3 was found to be upregulated in areas of PIN in PPARgamma KO tissues. We selectively knocked down PPARgamma2 isoform in wild-type mouse prostatic epithelial cells and examined the consequences of this in a tissue recombination model. Histopathologically grafted tissues resembled the conditional PPARgamma KO mouse prostates. EM studies of PPARgamma- and PPARgamma2-deficient epithelial cells in vitro were suggestive of autophagy, consistent with the prostatic tissue analysis. This was confirmed by examining expression of beclin-1 and LC-3. Gene expression profiling in PPARgamma-/gamma2-deficient cells indicated a major dysregulation of cell cycle control and metabolic signaling networks related to peroxisomal and lysosomal maturation, lipid oxidation and degradation. The putative autophagic phenotypes of PPARgamma-deficient cells could be rescued by re-expression of either gamma1 or gamma2 isoform. We conclude that disruption of PPARgamma signaling results in autophagy and oxidative stress during mPIN pathogenesis.
Collapse
Affiliation(s)
- M Jiang
- Department of Urologic Surgery, A-1302 MCN, Vanderbilt University Medical Center, Nashville, TN 37232-2765, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mavis CK, Morey Kinney SR, Foster BA, Karpf AR. Expression level and DNA methylation status of glutathione-S-transferase genes in normal murine prostate and TRAMP tumors. Prostate 2009; 69:1312-24. [PMID: 19444856 PMCID: PMC2836025 DOI: 10.1002/pros.20976] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Glutathione-S-transferase (Gst) genes are downregulated in human prostate cancer, and GSTP1 silencing is mediated by promoter DNA hypermethylation in this malignancy. We examined Gst gene expression and Gst promoter DNA methylation in normal murine prostates and Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) tumors. METHODS Primary and metastatic tumors were obtained from TRAMP mice, and normal prostates were obtained from strain-matched WT mice (n = 15/group). Quantitative real-time RT-PCR was used to measure GstA4, GstK1, GstM1, GstO1, and GstP1 mRNA expression, and Western blotting and immunohistochemical staining was used to measure GstM1 and GstP1 protein expression. MassARRAY Quantitative Methylation Analysis was used to measure DNA methylation of the 5' CpG islands of GstA4, GstK1, GstM1, GstO1, and GstP1. TRAMP-C2 cells were treated with the epigenetic remodeling drugs decitabine and trichostatin A (TSA) alone and in combination, and Gst gene expression was measured. RESULTS Of the genes analyzed, GstM1 and GstP1 were expressed at highest levels in normal prostate. All five Gst genes showed greatly reduced expression in primary tumors compared to normal prostate, but not in tumor metastases. Gst promoter methylation was unchanged in TRAMP tumors compared to normal prostate. Combined decitabine + TSA treatment significantly enhanced the expression of 4/5 Gst genes in TRAMP-C2 cells. CONCLUSIONS Gst genes are extensively downregulated in primary but not metastatic TRAMP tumors. Promoter DNA hypermethylation does not appear to drive Gst gene repression in TRAMP primary tumors; however, pharmacological studies using TRAMP cells suggest the involvement of epigenetic mechanisms in Gst gene repression.
Collapse
Affiliation(s)
- Cory K Mavis
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | |
Collapse
|
24
|
Fania C, Anastasia L, Vasso M, Papini N, Capitanio D, Venerando B, Gelfi C. Proteomic signature of reversine-treated murine fibroblasts by 2-D difference gel electrophoresis and MS: Possible associations with cell signalling networks. Electrophoresis 2009; 30:2193-206. [DOI: 10.1002/elps.200800800] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Gruber-Olipitz M, Ströbel T, Kang SU, John JPP, Grotzer MA, Slavc I, Lubec G. Neurotrophin 3/TrkC-regulated proteins in the human medulloblastoma cell line DAOY. Electrophoresis 2009; 30:540-9. [PMID: 19156760 DOI: 10.1002/elps.200800325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Medulloblastoma (MB) is the most common malignant childhood brain tumor and high neurotrophin (NP) receptor TrkC mRNA expression was identified as a powerful independent predictor of favorable survival outcome. In order to determine downstream effector proteins of TrkC signaling, the MB cell line DAOY was stably transfected with a vector containing the full-length TrkC cDNA sequence or an empty vector control. A proteomic approach was used to search for expressional changes by two mass spectrometric methods and immunoblotting for validation of significant results. Multiple time points for up to 48 h following NP-3-induced TrkC receptor activation were chosen. Thirteen proteins from several pathways (nucleoside diphosphate kinase A, stathmin, valosin-containing protein, annexin A1, dihydropyrimidinase-related protein-3, DJ-1 protein, glutathione S-transferase P, lamin A/C, fascin, cofilin, vimentin, vinculin, and moesin) were differentially expressed and most have been shown to play a role in differentiation, migration, invasion, proliferation, apoptosis, drug resistance, or oncogenesis. Knowledge on effectors of TrkC signaling may represent a first useful step for the identification of marker candidates or reflecting probable pharmacological targets for specific treatment of MB.
Collapse
|
26
|
Barve A, Khor TO, Nair S, Reuhl K, Suh N, Reddy B, Newmark H, Kong AN. Gamma-tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice. Int J Cancer 2009; 124:1693-9. [PMID: 19115203 DOI: 10.1002/ijc.24106] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gamma-tocopherol (gamma-T) alone or in combination with alpha-tocopherol has been shown to suppress biomarkers of oxidative stress in asthamatics and human subjects with metabolic syndrome. Oxidative stress has been implicated as a key event in prostate carcinogenesis. Hence, the purpose of this study was to examine the effects of gamma-tocopherol-enriched mixed tocopherol diet on prostate carcinogenesis in a murine prostate cancer model (TRAMP). 8 week old TRAMP males were fed 0.1% gamma-T-enriched mixed tocopherol diet that contained 20-fold higher levels of gamma-tocopherol, and roughly 3-fold higher levels of alpha-tocopherol. The effect of such diet on tumor and PIN development was observed. The expression of phase II detoxifying, antioxidant enzymes and Nrf2 mRNA and protein were determined by RT-PCR, immunohistochemistry and western blotting techniques. Treatment with gamma-T-enriched mixed tocopherols significantly suppressed the incidence of palpable tumor and Prostate Intraepithelial Neoplasia (PIN) development without affecting the expression of the transgene (SV-40). Tumor progression occurred with a significant suppression of antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase, heme-oxygenase-1 and phase II detoxifying enzymes. Treatment with gamma-T-enriched mixed tocopherol diet upregulated the expression of most detoxifying and antioxidant enzymes. Nrf2-a redox sensitive transcription factor known to mediate the expression of phase II detoxifying enzymes, was also significantly upregulated following treatment with gamma-T-enriched mixed tocopherol diet. Gamma-T-enriched mixed tocopherols significantly up-regulated the expression of Nrf2 and its related detoxifying and antioxidant enzymes thereby suppressing PIN and tumor development.
Collapse
Affiliation(s)
- Avantika Barve
- Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Koutros S, Berndt SI, Sinha R, Ma X, Chatterjee N, Alavanja MCR, Zheng T, Huang WY, Hayes RB, Cross AJ. Xenobiotic metabolizing gene variants, dietary heterocyclic amine intake, and risk of prostate cancer. Cancer Res 2009; 69:1877-84. [PMID: 19223546 DOI: 10.1158/0008-5472.can-08-2447] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We recently reported that heterocyclic amines (HCA) are associated with prostate cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. We now use extensive genetic data from this resource to determine if risks associated with dietary HCAs {2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP); 2-amino-3,8-dimethylimidazo[4,5-b]quinoxaline (MeIQx); and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (DiMeIQx)} from cooked meat are modified by single nucleotide polymorphisms (SNP) in genes involved in HCA metabolism (CYP1A1, CYP1A2, CYP1B1, GSTA1, GSTM1, GSTM3, GSTP1, NAT1, NAT2, SULT1A1, SULT1A2, and UGT1A locus). We conducted a nested case-control study that included 1,126 prostate cancer cases and 1,127 controls selected for a genome-wide association study for prostate cancer. Unconditional logistic regression was used to estimate odds ratios (OR), 95% confidence intervals (95% CI), and P values for the interaction between SNPs, HCA intake, and risk of prostate cancer. The strongest evidence for an interaction was noted between DiMeIQx and MeIQx and the polymorphism rs11102001 downstream of the GSTM3 locus (P(interaction) = 0.001 for both HCAs; statistically significant after correction for multiple testing). Among men carrying the A variant, the risk of prostate cancer associated with high DiMeIQx intake was 2-fold greater than that with low intake (OR, 2.3; 95% CI, 1.2-4.7). The SNP rs11102001, which encodes a nonsynonymous amino acid change P356S in EPS8L3, is a potential candidate modifier of the effect of HCAs on prostate cancer risk. The observed effect provides evidence to support the hypothesis that HCAs may act as promoters of malignant transformation by altering mitogenic signaling.
Collapse
Affiliation(s)
- Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Rockville, Maryland 20852, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kulbacka J, Bar J, Chwilkowska A, Dumanska M, Drag-Zalesinska M, Wysocka T, Stach K, Bednarz I, Lugowski M, Marcinkowska A, Gamian A, Saczko J. Oxidative modulation of marcaine and lekoptin in H9C2 rat myoblasts. Acta Pharmacol Sin 2009; 30:184-92. [PMID: 19194452 PMCID: PMC4002470 DOI: 10.1038/aps.2008.27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 12/18/2008] [Indexed: 01/03/2023] Open
Abstract
AIM The cytotoxicity of marcaine was estimated in combination with a calcium channel blocker. In addition, the influence of marcaine and marcaine plus lekoptin on a model system using the H9C2 cardiac cell line was investigated. METHODS Cells were incubated for five hours with marcaine, lekoptin, or with both drugs simultaneously. Apoptotic cells were detected using the TUNEL assay and the alkaline comet assay. Mitochondrial cell function after drug uptake was examined using the MTT assay. The concentration of MDA (malondialdehyde) -- the final product of fatty-acid peroxidation, was quantified spectrophotometrically. The expression of glutathione S-transferase pi (GST-pi) was detected by immunofluorescence (IF) and Western blotting (WB) and inducible nitric oxide synthase (iNOS) was assessed by immunocytochemical staining (ABC). RESULTS Incubation with marcaine resulted in the highest number of apoptotic cells. After incubation with both marcaine and lekoptin, moderate damage to cells (54.2%+/-1.775% of DNA destruction) was observed. The highest levels of iNOS and GST-pi expression were observed in cells treated with marcaine and marcaine plus lekoptin. The characteristic nuclear GST-pi expression was observed in cells treated with both drugs. CONCLUSION Lekoptin stimulated cells to proliferate. Marcaine caused membrane damage and ultimately cell death.
Collapse
Affiliation(s)
- Julita Kulbacka
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hokaiwado N, Takeshita F, Naiki-Ito A, Asamoto M, Ochiya T, Shirai T. Glutathione S-transferase Pi mediates proliferation of androgen-independent prostate cancer cells. Carcinogenesis 2008; 29:1134-8. [PMID: 18413363 PMCID: PMC2443274 DOI: 10.1093/carcin/bgn097] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prostate cancers generally acquire an androgen-independent growth capacity with progression, resulting in resistance to antiandrogen therapy. Therefore, identification of the genes regulated through this process may be important for understanding the mechanisms of prostate carcinogenesis. We here utilized androgen-dependent/independent transplantable tumors, newly established with the 'transgenic rat adenocarcinoma in prostate' (TRAP) model, to analyze their gene expression using microarrays. Among the overexpressed genes in androgen-independent prostate cancers compared with the androgen-dependent tumors, glutathione S-transferase pi (GST-pi) was included. In line with this, human prostate cancer cell lines PC3 and DU145 (androgen independent) had higher expression of GST-pi compared with LNCaP (androgen dependent) as determined by semiquantitative reverse transcription-polymerase chain reaction analysis. To investigate the roles of GST-pi expression in androgen-independent human prostate cancers, GST-pi was knocked down by a small interfering RNA (siRNA), resulting in significant decrease of the proliferation rate in the androgen-independent PC3 cell line. In vivo, administration of GST-pi siRNA-atelocollagen complex decreased GST-pi protein expression, resulting in enhanced numbers of TdT mediated dUTP-biotin nick-end labering (TUNEL)-positive apoptotic cells. These findings suggest that GST-pi might play important roles in proliferation of androgen-independent human prostate cancer cells.
Collapse
Affiliation(s)
- Naomi Hokaiwado
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Frohlich DA, McCabe MT, Arnold RS, Day ML. The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene 2008; 27:4353-62. [PMID: 18372916 DOI: 10.1038/onc.2008.79] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The impact of oxidative stress in human cancer has been extensively studied. It is accepted that elevated reactive oxygen species (ROS) promote mutagenic DNA damage. Even with an extensive armament of cellular antioxidants and detoxification enzymes, alterations to DNA occur that initiate cellular transformation. Erythroid 2p45 (NF-E2)-related factor 2 (Nrf2) is a basic-region leucine zipper transcription factor that mediates the expression of key protective enzymes through the antioxidant-response element (ARE). By analysing 10 human prostate cancer microarray data sets, we have determined that Nrf2 and members of the glutathione-S-transferase (GST) mu family are extensively decreased in human prostate cancer. Using the TRAMP transgene and Rb and Nrf2 knockout murine models, we demonstrated that the loss of Nrf2 initiates a detrimental cascade of reduced GST expression, elevated ROS levels and ultimately DNA damage associated with tumorigenesis. Based on overwhelming data from clinical samples and the current functional analysis, we propose that the disruption of the Nrf2-antioxidant axis leads to increased oxidative stress and DNA damage in the initiation of cellular transformation in the prostate gland.
Collapse
Affiliation(s)
- D A Frohlich
- Department of Urology, UMCC, University of Michigan, Ann Arbor, MI 48109-0944, USA
| | | | | | | |
Collapse
|