1
|
Davidson B, Holth A, Lindemann K, Zahl Eriksson AG, Nilsen TA, Torgunrud A. Molecular characteristics of tubo-ovarian carcinosarcoma at different anatomic locations. Virchows Arch 2024; 485:1053-1061. [PMID: 38733380 DOI: 10.1007/s00428-024-03821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Carcinosarcoma (CS) is an uncommon and clinically aggressive malignancy. The objective of the present study was to characterize the molecular features of CS at various anatomic locations, including serous effusions. Specimens (n = 32) consisted of 25 biopsies/surgical resection specimens and 7 serous effusions (6 peritoneal, 1 pleural) from 25 patients. Fresh-frozen cell pellets and surgical specimens underwent targeted next-generation sequencing covering 50 unique genes. A total of 31 mutations were found in 25 of the 32 tumors studied, of which 1 had 3 mutations, 4 had 2 different mutations, and 20 had a single mutation. The most common mutations were in TP53 (n = 25 in 24 tumors; 1 tumor with 2 different mutations), with less common mutations found in RB1 (n = 2), MET (n = 1), KRAS (n = 1), PTEN (n = 1), and KIT (n = 1). Patient-matched specimens harbored the same TP53 mutation. Tumors with no detected mutations were more common in serous effusion specimens (3/7; 43%) compared with surgical specimens (4/25; 16%). In conclusion, the molecular landscape of CS is dominated by TP53 mutations, reinforcing the observation that the majority of these tumors develop from high-grade serous carcinoma. Whether CS cells in serous effusions differ from their counterparts in solid lesions remains uncertain.
Collapse
Affiliation(s)
- Ben Davidson
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Institute of Clinical Medicine, N-0316, Oslo, Norway.
| | - Arild Holth
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Kristina Lindemann
- Faculty of Medicine, University of Oslo, Institute of Clinical Medicine, N-0316, Oslo, Norway
- Department of Gynecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Ane Gerda Zahl Eriksson
- Faculty of Medicine, University of Oslo, Institute of Clinical Medicine, N-0316, Oslo, Norway
- Department of Gynecologic Oncology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Thale Andrea Nilsen
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | - Annette Torgunrud
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| |
Collapse
|
2
|
Addante F, d’Amati A, Santoro A, Angelico G, Inzani F, Arciuolo D, Travaglino A, Raffone A, D’Alessandris N, Scaglione G, Valente M, Tinnirello G, Sfregola S, Padial Urtueta B, Piermattei A, Cianfrini F, Mulè A, Bragantini E, Zannoni GF. Mismatch Repair Deficiency as a Predictive and Prognostic Biomarker in Endometrial Cancer: A Review on Immunohistochemistry Staining Patterns and Clinical Implications. Int J Mol Sci 2024; 25:1056. [PMID: 38256131 PMCID: PMC10816607 DOI: 10.3390/ijms25021056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Among the four endometrial cancer (EC) TCGA molecular groups, the MSI/hypermutated group represents an important percentage of tumors (30%), including different histotypes, and generally confers an intermediate prognosis for affected women, also providing new immunotherapeutic strategies. Immunohistochemistry for MMR proteins (MLH1, MSH2, MSH6 and PMS2) has become the optimal diagnostic MSI surrogate worldwide. This review aims to provide state-of-the-art knowledge on MMR deficiency/MSI in EC and to clarify the pathological assessment, interpretation pitfalls and reporting of MMR status.
Collapse
Affiliation(s)
- Francesca Addante
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antonio d’Amati
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
- Unit of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Angela Santoro
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giuseppe Angelico
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.A.)
| | - Frediano Inzani
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, 27100 Pavia, Italy;
| | - Damiano Arciuolo
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Antonio Travaglino
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Antonio Raffone
- Gynecology and Obstetrics Unit, Department of Public Health, University of Naples Federico II, 80138 Naples, Italy
| | - Nicoletta D’Alessandris
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Giulia Scaglione
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Michele Valente
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Giordana Tinnirello
- Department of Medical and Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (G.A.)
| | - Stefania Sfregola
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Belen Padial Urtueta
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Alessia Piermattei
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Federica Cianfrini
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Antonino Mulè
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
| | - Emma Bragantini
- Department of Surgical Pathology, Ospedale S. Chiara, Largo Medaglie d’Oro 9, 38122 Trento, Italy
| | - Gian Franco Zannoni
- Unità di Ginecopatologia e Patologia Mammaria, Dipartimento Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy (A.d.); (G.S.); (A.P.); (G.F.Z.)
- Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
3
|
Erdogan EG, Yalta TD, Can N, Süt N, Taştekin E, Usta U, Puyan FÖ, Usturalı Keskin FE, Kurt BB. Clinicopathological and molecular analyses of uterine carcinosarcomas using next-generation sequencing: A single-center experience. INDIAN J PATHOL MICR 2023; 66:449-455. [PMID: 37530323 DOI: 10.4103/ijpm.ijpm_777_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background Uterine carcinosarcomas (UCS) constitute 3-4% of all uterine malignancies and 16% of deaths caused due to uterine neoplasms. Aim In this study, we aimed to perform DNA-based mutation analysis in 12 genes (KRAS, NRAS, EGFR, C-KIT, BRAF, PDGFRA, ALK, ERBB2, ERBB3, ESR1, RAF1, PIK3CA) to determine the molecular subtypes of UCS using next-generation sequencing (NGS) in patients with aggressive UCS and poor prognosis. We aimed to compare the results of our analysis with clinicopathological data to contribute to the development of targeted therapy approaches related to the molecular changes of UCS. Materials and Methods In this study, we included 12 cases diagnosed with uterine carcinosarcomas and examined the changes in oncogenes that play a role in UCS pathogenesis. For the analysis of mutation, the clinicopathological data were compared with the variations in the DNA-based gene panel consisting of 12 genes and 1237 variants in the UCS using the NGS method. Results EGFR mutation was found in 91.7% of the cases, mutation in 41.7%, PDGFRA mutation in 25%, KRAS and PIK3CA mutation in 16.7%, and C-KIT mutation in 8.3% of the cases. Although no statistical significance was found between the detected mutation and clinicopathological data, it was concluded that PDGFRA mutation might be associated with advanced-stage disease development. Conclusion This study's findings regarding different molecular types of UCS and information on oncogenesis of UCS can provide inferences for targeted therapies in the future by identifying targetable mutations representing early oncogenic events and thereby contribute toward further studies on this subject.
Collapse
Affiliation(s)
- Ezgi Genc Erdogan
- Department of Pathology, Faculty of Medicine, Trakya University, Edirne; Department of Pathology, Lüleburgaz State Hospital, Kırklareli, Turkey
| | - Tülin D Yalta
- Department of Pathology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Nuray Can
- Department of Pathology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Necdet Süt
- Department of Biostatistics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ebru Taştekin
- Department of Pathology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ufuk Usta
- Department of Pathology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Fulya Öz Puyan
- Department of Pathology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | | | - Busem B Kurt
- Department of Pathology, Tekirdağ State Hospital, Tekirdağ, Turkey
| |
Collapse
|
4
|
Li H, Liu D, Liu L, Huang S, Ma A, Zhang X. The role of HOTAIR/miR-152-3p/LIN28B in regulating the progression of endometrial squamous carcinoma. Arch Med Sci 2021; 17:434-448. [PMID: 33747279 PMCID: PMC7959016 DOI: 10.5114/aoms.2019.89632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/12/2019] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION There is growing evidence that long non-coding RNAs (lncRNAs) are correlated with malignancy in the modulation of tumor progression. This study aims to investigate the effect of homeobox protein (HOX) transcript antisense RNA (HOTAIR) on the migration and invasion of ESC. MATERIAL AND METHODS Starbase was used to identify miRNAs with complementary base pairing with HOTAIR. RNA pull-down and qRT-PCR were employed to investigate the effect of HOTAIR on miR-152-3p. In vitro cell migration and invasion assays were performed to assess the effects of HOTAIR and miR-152-3p on ESC. Computational software, TargetScan, was then used to identify the potential target of miR-152-3p, and their relationship was verified by immunoblotting analysis, qRT-PCR and luciferase reporter assay. RESULTS Starbase predicted a potential miR-152-3p binding site in HOTAIR, which was validated by RNA pull-down assay. HOTAIR was negatively correlated with miR-152-3p in ESC. Moreover, HOTAIR promoted migration and invasion of ESC. The oncogenic activity of HOTAIR was partly through its negative regulation of miR-152-3p. LIN28B was identified to be a direct target of miR-152-3p. A negative correlation between LIN28B and miR-152-3p was observed in ESC. In addition, overexpression of miR-152-3p suppressed the progression of ESC by directly targeting and regulating LIN28B. CONCLUSIONS Our results reveal that HOTAIR may be a driver of ESC through inhibiting miR-152-3p, a tumor suppressor, suggesting that miR-152-3p may be a potential target for advanced ESC therapeutic treatment.
Collapse
Affiliation(s)
- Hao Li
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| | - Dan Liu
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| | - Liping Liu
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| | - Sanxiu Huang
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| | - Aiping Ma
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| | - Xiaohong Zhang
- Department of Gynecology, The People's Hospital of Hanchuan, Hanchuan, Hubei, China
| |
Collapse
|
5
|
Kwon D, Ronen S, Giubellino A, Keiser E, Aung PP, Nagarajan P, Tetzlaff MT, Ivan D, Curry JL, Prieto VG, Torres-Cabala CA. Cutaneous adnexal carcinosarcoma: Immunohistochemical and molecular evidence of epithelial mesenchymal transition. J Cutan Pathol 2020; 48:526-534. [PMID: 32564423 DOI: 10.1111/cup.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 11/30/2022]
Abstract
Cutaneous carcinosarcomas are rare biphenotypic tumors that simultaneously show epithelial and mesenchymal differentiation. The most common carcinomatous components in skin carcinosarcomas are basal cell carcinoma and squamous cell carcinoma; adnexal carcinomas are rarely encountered. We report a case of an adnexal carcinoma with ductal and squamous differentiation and spindle cell component, which is interpreted as carcinosarcoma. Loss of immunohistochemical expression of E-cadherin and β-catenin detected in the sarcomatous component suggested epithelial mesenchymal transition (EMT). RNA sequencing analysis identified several gene mutations and alterations such as translocations and upregulations/downregulations, either shared by the two components of the tumor or differentially present in the carcinoma or the sarcoma parts. Thus, mutations in genes, such as TP53, were found in both components of the tumor while mutations in PDGFRA and RB1 (a pathogenic missense mutation) were exclusively present in the sarcomatous areas, further supporting EMT. EMT is a dynamic process by which tumors acquire mesenchymal phenotype while simultaneously losing epithelial properties. Although the pathways involved in EMT have been extensively studied, this phenomenon still needs to be investigated in cutaneous tumors of adnexal origin for a better understanding of their pathogenesis. These molecular changes may represent promising targets for personalized therapies.
Collapse
Affiliation(s)
- DongHyang Kwon
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shira Ronen
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alessio Giubellino
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minnesota, USA
| | - Elizabeth Keiser
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Phyu P Aung
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael T Tetzlaff
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Doina Ivan
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jonathan L Curry
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Victor G Prieto
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Carlos A Torres-Cabala
- Department of Pathology, Dermatopathology Section, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
Zhou H, Zhang C, Li H, Chen L, Cheng X. A novel risk score system of immune genes associated with prognosis in endometrial cancer. Cancer Cell Int 2020; 20:240. [PMID: 32549787 PMCID: PMC7294624 DOI: 10.1186/s12935-020-01317-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 06/02/2020] [Indexed: 12/24/2022] Open
Abstract
Background Endometrial cancer was the commonest gynecological malignancy in developed countries. Despite striking advances in multimodality management, however, for patients in advanced stage, targeted therapy still remained a challenge. Our study aimed to investigate new biomarkers for endometrial cancer and establish a novel risk score system of immune genes in endometrial cancer. Methods The clinicopathological characteristics and gene expression data were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) of immune genes between tumors and normal tissues were identified. Protein–protein interaction (PPI) network of immune genes and transcriptional factors was integrated and visualized in Cytoscape. Univariate and multivariate analysis were employed for key genes to establish a new risk score system. Receiver operating characteristic (ROC) curve and survival analysis were performed to investigate the prognostic value of the model. Association between clinical characteristics and the model was analyzed by logistic regression. For validation, we identified 34 patients with endometrial cancer from Fudan University Shanghai Cancer Center (FUSCC). We detected 14-genes mRNA expression and calculated the risk scores of each patients and we performed survival analysis between the high-risk group and the low-risk group. Results 23 normal tissues and 552 tumor tissues were obtained from TCGA database. 410 immune-related DEGs was identified by difference analysis and correlation analysis. KEGG and GO analysis revealed these DEGs were enriched in cell adhesion, chemotaxis, MAPK pathways and PI3K-Akt signaling pathway, which might regulate tumor progression and migration. All genes were screened for risk model construction and 14 hub immune-related genes (HTR3E, CBLC, TNF, PSMC4, TRAV30, PDIA3, FGF8, PDGFRA, ESRRA, SBDS, CRHR1, LTA, NR2F1, TNFRSF18) were prognostic in endometrial cancer. The area under the curve (AUC) was 0.787 and the high-risk group estimated by the model possessed worse outcome (P < 0.001). Multivariate analysis suggested that the model was indeed an independent prognostic factor (high-risk vs. low-risk, HR = 1.14, P < 0.001). Meanwhile, the high-risk group was prone to have higher grade (P = 0.002) and advanced clinical stage (P = 0.018). In FUSCC validation set, the high-risk group had worse survival than the low-risk group (P < 0.001). Conclusions In conclusion, the novel risk model of immune genes had some merits in predicting the prognosis of endometrial cancer and had strong correlation with clinical outcomes. Furthermore, it might provide new biomarkers for targeted therapy in endometrial cancer.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chufan Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haoran Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lihua Chen
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xi Cheng
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032 China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Barker HE, Scott CL. Genomics of gynaecological carcinosarcomas and future treatment options. Semin Cancer Biol 2019; 61:110-120. [PMID: 31622660 DOI: 10.1016/j.semcancer.2019.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
Abstract
Gynaecological carcinosarcomas are the most lethal gynaecological malignancies that are often highly resistant to standard chemotherapy. They are composed of both carcinomatous and sarcomatous components and are associated with high rates of metastatic disease. Due to their rarity, molecular studies have been carried out on relatively few tumours, revealing a broad spectrum of heterogeneity. In this review, we have collated the gene mutations, gene expression, epigenetic regulation and protein expression reported by a number of studies on gynaecological carcinosarcomas. Based on these results, we describe potential therapeutics that may demonstrate efficacy and present any pre-clinical studies that have been carried out. We also describe the pre-clinical models currently available for future research to assess the potential of molecularly matched therapies. Interestingly, over-expression of many biomarkers in carcinosarcoma tumours often doesn't correlate with a worse prognosis. Therefore, we propose that profiling the mutational landscape, gene expression, and gene amplification/deletion may better indicate potential treatment strategies and predict response, thus improving outcomes for women with this rare, aggressive disease.
Collapse
Affiliation(s)
- Holly E Barker
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia; Royal Women's Hospital, Parkville, Victoria, 3052, Australia; Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia; Peter MacCallum Cancer Centre, Grattan Street, Parkville, Victoria, 3010, Australia
| |
Collapse
|
8
|
Leskela S, Pérez-Mies B, Rosa-Rosa JM, Cristobal E, Biscuola M, Palacios-Berraquero ML, Ong S, Matias-Guiu Guia X, Palacios J. Molecular Basis of Tumor Heterogeneity in Endometrial Carcinosarcoma. Cancers (Basel) 2019; 11:cancers11070964. [PMID: 31324031 PMCID: PMC6678708 DOI: 10.3390/cancers11070964] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023] Open
Abstract
Endometrial carcinosarcoma (ECS) represents one of the most extreme examples of tumor heterogeneity among human cancers. ECS is a clinically aggressive, high-grade, metaplastic carcinoma. At the morphological level, intratumor heterogeneity in ECS is due to an admixture of epithelial (carcinoma) and mesenchymal (sarcoma) components that can include heterologous tissues, such as skeletal muscle, cartilage, or bone. Most ECSs belong to the copy-number high serous-like molecular subtype of endometrial carcinoma, characterized by the TP53 mutation and the frequently accompanied by a large number of gene copy-number alterations, including the amplification of important oncogenes, such as CCNE1 and c-MYC. However, a proportion of cases (20%) probably represent the progression of tumors initially belonging to the copy-number low endometrioid-like molecular subtype (characterized by mutations in genes such as PTEN, PI3KCA, or ARID1A), after the acquisition of the TP53 mutations. Only a few ECS belong to the microsatellite-unstable hypermutated molecular type and the POLE-mutated, ultramutated molecular type. A common characteristic of all ECSs is the modulation of genes involved in the epithelial to mesenchymal process. Thus, the acquisition of a mesenchymal phenotype is associated with a switch from E- to N-cadherin, the up-regulation of transcriptional repressors of E-cadherin, such as Snail Family Transcriptional Repressor 1 and 2 (SNAI1 and SNAI2), Zinc Finger E-Box Binding Homeobox 1 and 2 (ZEB1 and ZEB2), and the down-regulation, among others, of members of the miR-200 family involved in the maintenance of an epithelial phenotype. Subsequent differentiation to different types of mesenchymal tissues increases tumor heterogeneity and probably modulates clinical behavior and therapy response.
Collapse
Affiliation(s)
- Susanna Leskela
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain.
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Belen Pérez-Mies
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pathology, Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Juan Manuel Rosa-Rosa
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva Cristobal
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain
| | - Michele Biscuola
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pathology, Instituto de Biomedicina de Sevilla (IBiS), 41013 Seville, Spain
- Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Seville, Spain
| | | | - SuFey Ong
- NanoString Technologies, Inc, Seattle, WA 98109, USA
| | - Xavier Matias-Guiu Guia
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Pathology, Hospital U Arnau de Vilanova, 25198 Lleida, Spain
- Department of Pathology, Hospital U de Bellvitge, L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- IRBLLEIDA, IDIBELL, University of Lleida, 25003 Lleida, Spain
| | - José Palacios
- Department of Pathology, Institute Ramón y Cajal for Health Research, 28034 Madrid, Spain.
- CIBER-ONC, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, 28801 Madrid, Spain.
| |
Collapse
|
9
|
Bell DW, Ellenson LH. Molecular Genetics of Endometrial Carcinoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:339-367. [PMID: 30332563 DOI: 10.1146/annurev-pathol-020117-043609] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endometrial cancer is the most commonly diagnosed gynecologic malignancy in the United States. Endometrioid endometrial carcinomas constitute approximately 85% of newly diagnosed cases; serous carcinomas represent approximately 3-10% of diagnoses; clear cell carcinoma accounts for <5% of diagnoses; and uterine carcinosarcomas are rare, biphasic tumors. Longstanding molecular observations implicate PTEN inactivation as a major driver of endometrioid carcinomas; TP53 inactivation as a major driver of most serous carcinomas, some high-grade endometrioid carcinomas, and many uterine carcinosarcomas; and inactivation of either gene as drivers of some clear cell carcinomas. In the past decade, targeted gene and exome sequencing have uncovered additional pathogenic aberrations in each histotype. Moreover, an integrated genomic analysis by The Cancer Genome Atlas (TCGA) resulted in the molecular classification of endometrioid and serous carcinomas into four distinct subgroups, POLE (ultramutated), microsatellite instability (hypermutated), copy number low (endometrioid), and copy number high (serous-like). In this review, we provide an overview of the major molecular features of the aforementioned histopathological subtypes and TCGA subgroups and discuss potential prognostic and therapeutic implications for endometrial carcinoma.
Collapse
Affiliation(s)
- Daphne W Bell
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Lora Hedrick Ellenson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/New York Presbyterian Hospital, New York, New York 10065, USA;
| |
Collapse
|
10
|
Remmerie M, Janssens V. Targeted Therapies in Type II Endometrial Cancers: Too Little, but Not Too Late. Int J Mol Sci 2018; 19:E2380. [PMID: 30104481 PMCID: PMC6121653 DOI: 10.3390/ijms19082380] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 01/14/2023] Open
Abstract
Type II endometrial carcinomas (ECs) are responsible for most endometrial cancer-related deaths due to their aggressive nature, late stage detection and high tolerance for standard therapies. However, there are no targeted therapies for type II ECs, and they are still treated the same way as the clinically indolent and easily treatable type I ECs. Therefore, type II ECs are in need of new treatment options. More recently, molecular analysis of endometrial cancer revealed phosphorylation-dependent oncogenic signalling in the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways to be most frequently altered in type II ECs. Consequently, clinical trials tested pharmacologic kinase inhibitors targeting these pathways, although mostly with rather disappointing results. In this review, we highlight the most common genetic alterations in type II ECs. Additionally, we reason why most clinical trials for ECs using targeted kinase inhibitors had unsatisfying results and what should be changed in future clinical trial setups. Furthermore, we argue that, besides kinases, phosphatases should no longer be ignored in clinical trials, particularly in type II ECs, where the tumour suppressive phosphatase protein phosphatase type 2A (PP2A) is frequently mutated. Lastly, we discuss the therapeutic potential of targeting PP2A for (re)activation, possibly in combination with pharmacologic kinase inhibitors.
Collapse
Affiliation(s)
- Michiel Remmerie
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Leuven Cancer Institute (LKI), B-3000 Leuven, Belgium.
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular & Molecular Medicine, University of Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Leuven Cancer Institute (LKI), B-3000 Leuven, Belgium.
| |
Collapse
|
11
|
Wang X, Goldstein D, Crowe PJ, Yang JL. Antitumour effects and mechanisms of action of the panHER inhibitor, dacomitinib, alone and in combination with the STAT3 inhibitor, S3I-201, in human sarcoma cell lines. Int J Oncol 2018; 52:2143-2154. [PMID: 29620166 DOI: 10.3892/ijo.2018.4337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/12/2018] [Indexed: 11/06/2022] Open
Abstract
The 5-year survival rate for metastatic sarcoma is 16%. Although the phosphorylated human epidermal growth factor receptor (pEGFR/HER1) has been shown to be an independent predictor of overall survival in patients with sarcoma, we have previously demonstrated that sarcoma cell lines exhibit resistance, despite gefitinib blocking p-EGFR and signal transducers in EGFR downstream pathways. Gefitinib failed to decrease the ratio of phosphorylated (p-)signal transducer and activator of transcription (STAT3)/p-STAT1, suggesting that relative STAT3 abundance and activation may be involved in drug resistance. In this study, we used the panHER inhibitor, dacomitinib, to further block HER2-dependent activation, applying multiple methods, such as proliferation assay, clonogenic survival assay, anti-anoikis assay and western blot analysis. Although dacomitinib inhibited EGFR, HER2, AKT and Erk activation more effectively than gefitinib, it still only exerted minimal anti-proliferative effects on sarcoma cell lines due to the STAT3 escape pathway. However, the addition of the STAT3 inhibitor, S3I-201, to dacomitinib achieved a significant enhancement in growth inhibition, by perturbing p-STAT3/p-STAT1. Using a panel of sarcoma cell lines with different histological types, we identified that the addition of the STAT3 inhibitor enhanced the growth inhibitory effects of the panHER inhibitor, dacomitinib, on sarcoma cells. Our findings may have clinical implications on overcoming the resistance caused by the STAT3 escape pathway and optimising EGFR/panHER-targeted therapy in sarcoma.
Collapse
Affiliation(s)
- Xiaochun Wang
- Sarcoma and Nano-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - David Goldstein
- Department of Medical Oncology, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Philip J Crowe
- Sarcoma and Nano-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jia-Lin Yang
- Sarcoma and Nano-Oncology Group, Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
12
|
Le Gallo M, Rudd ML, Urick ME, Hansen NF, Merino MJ, Mutch DG, Goodfellow PJ, Mullikin JC, Bell DW. The FOXA2 transcription factor is frequently somatically mutated in uterine carcinosarcomas and carcinomas. Cancer 2017; 124:65-73. [PMID: 28940304 DOI: 10.1002/cncr.30971] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND Uterine carcinosarcomas (UCSs) are a rare but clinically aggressive form of cancer. They are biphasic tumors consisting of both epithelial and sarcomatous components. The majority of uterine carcinosarcomas are clonal, with the carcinomatous cells undergoing metaplasia to give rise to the sarcomatous component. The objective of the current study was to identify novel somatically mutated genes in UCSs. METHODS We whole exome sequenced paired tumor and nontumor DNAs from 14 UCSs and orthogonally validated 464 somatic variants using Sanger sequencing. Fifteen genes that were somatically mutated in at least 2 tumor exomes were Sanger sequenced in another 39 primary UCSs. RESULTS Overall, among 53 UCSs in the current study, the most frequently mutated of these 15 genes were tumor protein p53 (TP53) (75.5%), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) (34.0%), protein phosphatase 2, regulatory subunit A, alpha (PPP2R1A) (18.9%), F-box and WD repeat domain containing 7 (FBXW7) (18.9%), chromodomain helicase DNA binding protein 4 (CHD4) (17.0%), and forkhead box A2 (FOXA2) (15.1%). FOXA2 has not previously been implicated in UCSs and was predominated by frameshift and nonsense mutations. One UCS with a FOXA2 frameshift mutation expressed truncated FOXA2 protein by immunoblotting. Sequencing of FOXA2 in 160 primary endometrial carcinomas revealed somatic mutations in 5.7% of serous, 22.7% of clear cell, 9% of endometrioid, and 11.1% of mixed endometrial carcinomas, the majority of which were frameshift mutations. CONCLUSIONS Collectively, the findings of the current study provide compelling genetic evidence that FOXA2 is a pathogenic driver gene in the etiology of primary uterine cancers, including UCSs. Cancer 2018;124:65-73. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Matthieu Le Gallo
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Meghan L Rudd
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Mary Ellen Urick
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Nancy F Hansen
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | -
- National Institutes of Health Intramural Sequencing Center, National Institutes of Health, Rockville, Maryland
| | - Maria J Merino
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David G Mutch
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Paul J Goodfellow
- Department of Obstetrics and Gynecology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - James C Mullikin
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Daphne W Bell
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
13
|
Eritja N, Yeramian A, Chen BJ, Llobet-Navas D, Ortega E, Colas E, Abal M, Dolcet X, Reventos J, Matias-Guiu X. Endometrial Carcinoma: Specific Targeted Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:149-207. [PMID: 27910068 DOI: 10.1007/978-3-319-43139-0_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy in the western world with more than 280,000 cases per year worldwide. Prognosis for EC at early stages, when primary surgical resection is the most common initial treatment, is excellent. Five-year survival rate is around 70 %.Several molecular alterations have been described in the different types of EC. They occur in genes involved in important signaling pathways. In this chapter, we will review the most relevant altered pathways in EC, including PI3K/AKT/mTOR, RAS-RAF-MEK-ERK, Tyrosine kinase, WNT/β-Catenin, cell cycle, and TGF-β signaling pathways. At the end of the chapter, the most significant clinical trials will be briefly discussed.This information is important to identify specific targets for therapy.
Collapse
Affiliation(s)
- Nuria Eritja
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Andree Yeramian
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Bo-Juen Chen
- New York Genome Center, New York, NY, 10013, USA
| | - David Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne, NE1 3BZ, UK
| | - Eugenia Ortega
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Eva Colas
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Miguel Abal
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Jaume Reventos
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
| |
Collapse
|
14
|
Ritterhouse LL, Howitt BE. Molecular Pathology: Predictive, Prognostic, and Diagnostic Markers in Uterine Tumors. Surg Pathol Clin 2017; 9:405-26. [PMID: 27523969 DOI: 10.1016/j.path.2016.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article focuses on the diagnostic, prognostic, and predictive molecular biomarkers in uterine malignancies, in the context of morphologic diagnoses. The histologic classification of endometrial carcinomas is reviewed first, followed by the description and molecular classification of endometrial epithelial malignancies in the context of histologic classification. Taken together, the molecular and histologic classifications help clinicians to approach troublesome areas encountered in clinical practice and evaluate the utility of molecular alterations in the diagnosis and subclassification of endometrial carcinomas. Putative prognostic markers are reviewed. The use of molecular alterations and surrogate immunohistochemistry as prognostic and predictive markers is also discussed.
Collapse
Affiliation(s)
- Lauren L Ritterhouse
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Brooke E Howitt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Yang JL, Gupta RD, Goldstein D, Crowe PJ. Significance of Phosphorylated Epidermal Growth Factor Receptor and Its Signal Transducers in Human Soft Tissue Sarcoma. Int J Mol Sci 2017; 18:ijms18061159. [PMID: 28556791 PMCID: PMC5485983 DOI: 10.3390/ijms18061159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/19/2022] Open
Abstract
Previous studies have shown that total epidermal growth factor receptor (EGFR) protein is highly expressed in soft tissue sarcoma (STS). We aimed to investigate the significance of phosphorylated-EGFR (pEGFR) and its activated-downstream signal transducers in STS tissue samples. A tissue microarray comprising 87 STS samples was assessed for total EGFR, pEGFR and its phosphorylated signal transducers and expression was correlated with clinicopathlogical parameters including patient outcome. Although the expression of total EGFR was significantly associated with adverse STS histologic grade (p = 0.004) and clinical stage (p = 0.012) similar to pEGFR, phosphorylated protein kinase B (pAkt) and phosphorylated extracellular signal regulated kinase (pERK), it is not a prognostic factor for survival. By contrast, the expression of pEGFR is an independent factor for cancer specific survival, while pERK is an independent prognostic factor for both overall and cancer specific survival in STS (p < 0.05, Cox proportional hazard model and log-rank test) in addition to the recognised factors of tumour grade and clinical stage. pERK and pEGFR are new independent prognostic factors for overall and/or cancer specific survival in STS. The expression of EGFR/pEGFR, and their associated downstream signal transducers, was associated with STS progression, suggesting that EGFR downstream signalling pathways may jointly support STS cell survival.
Collapse
Affiliation(s)
- Jia-Lin Yang
- Department of Surgery, Clinical School of Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney 2001, Australia.
- Sarcoma and Nanooncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Clinical School of Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney 2001, Australia.
| | - Romi Das Gupta
- Department of Paediatric and Burns Surgery, Lady Cilento Children's Hospital, Children's Health Queensland, Brisbane 4000, Australia.
| | - David Goldstein
- Sarcoma and Nanooncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Clinical School of Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney 2001, Australia.
- Department of Medical Oncology, Clinical School of Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney 2001, Australia.
| | - Philip J Crowe
- Department of Surgery, Clinical School of Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney 2001, Australia.
- Sarcoma and Nanooncology Group, Adult Cancer Program, Lowy Cancer Research Centre, Clinical School of Prince of Wales Hospital, Faculty of Medicine, University of New South Wales, Sydney 2001, Australia.
| |
Collapse
|
16
|
Fleitas T, Ibarrola-Villava M, Ribas G, Cervantes A. MassARRAY determination of somatic oncogenic mutations in solid tumors: Moving forward to personalized medicine. Cancer Treat Rev 2016; 49:57-64. [DOI: 10.1016/j.ctrv.2016.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
|
17
|
Lemetre C, Vieites B, Ng CKY, Piscuoglio S, Schultheis AM, Marchiò C, Murali R, Lopez-García MA, Palacios JC, Jungbluth AA, Terracciano LM, Reis-Filho JS, Weigelt B. RNASeq analysis reveals biological processes governing the clinical behaviour of endometrioid and serous endometrial cancers. Eur J Cancer 2016; 64:149-58. [PMID: 27420608 DOI: 10.1016/j.ejca.2016.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Endometrial carcinoma comprises a group of tumours with distinct histologic and molecular features and clinical behaviour. Here, we sought to define the biological processes that govern the clinical behaviour of endometrial cancers. METHODS Sixteen prototype genes representative of different biological processes that would likely play a role in endometrial and other hormone-driven cancers were defined. RNA-sequencing gene expression data from 323 endometrial cancers from The Cancer Genome Atlas (TCGA) were used to determine the transcription module of each prototype gene. The expression of prototype genes and modules and their association with outcome was assessed in univariate and multivariate survival analyses. The association of MSH6 expression with outcome was validated in an independent cohort of 243 primary endometrial cancers using immunohistochemistry. RESULTS We observed that the clinical behaviour of endometrial cancers as a group was associated with hormone receptor signalling, PI3K pathway signalling and DNA mismatch repair processes. When analysed separately, in endometrioid carcinomas, hormone receptor, PI3K and DNA mismatch repair modules were significantly associated with outcome in univariate analysis, whereas the clinical behaviour of serous cancers was likely governed by apoptosis and Wnt signalling. Multivariate survival analysis revealed that MSH6 gene expression was associated with outcome of endometrial cancer patients independently from traditional prognostic clinicopathologic parameters, which was confirmed in an independent cohort at the protein level. CONCLUSION Endometrioid and serous endometrial cancers are underpinned by distinct molecular pathways. MSH6 expression levels may be associated with outcome in endometrial cancers as a group.
Collapse
Affiliation(s)
- Christophe Lemetre
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Begoña Vieites
- Department of Pathology, University of Seville, University Hospital Virgen del Rocío, Seville, Spain
| | - Charlotte K Y Ng
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Salvatore Piscuoglio
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anne M Schultheis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caterina Marchiò
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medical Sciences, University of Turin, Turin, Italy
| | - Rajmohan Murali
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria A Lopez-García
- Department of Pathology, University of Seville, University Hospital Virgen del Rocío, Seville, Spain
| | - Jose C Palacios
- Department of Anatomic Pathology, University Hospital Ramón y Cajal, Madrid, Spain
| | - Achim A Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luigi M Terracciano
- Molecular Pathology Division, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
18
|
Ando M, Saito Y, Morikawa T, Omura G, Kobayashi K, Akashi K, Yoshida M, Ebihara Y, Fujimoto C, Fukayama M, Yamasoba T, Asakage T. Maxillary carcinosarcoma: Identification of a novelMETmutation in both carcinomatous and sarcomatous components through next generation sequencing. Head Neck 2015; 37:E179-85. [DOI: 10.1002/hed.24043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2015] [Indexed: 01/14/2023] Open
Affiliation(s)
- Mizuo Ando
- Department of Otolaryngology; Head and Neck Surgery, University of Tokyo Hospital; Tokyo Japan
| | - Yuki Saito
- Department of Otolaryngology; Head and Neck Surgery, University of Tokyo Hospital; Tokyo Japan
| | - Teppei Morikawa
- Department of Pathology; University of Tokyo Hospital; Tokyo Japan
| | - Go Omura
- Department of Otolaryngology; Head and Neck Surgery, University of Tokyo Hospital; Tokyo Japan
| | - Kenya Kobayashi
- Department of Otolaryngology; Head and Neck Surgery, University of Tokyo Hospital; Tokyo Japan
| | - Ken Akashi
- Department of Otolaryngology; Head and Neck Surgery, University of Tokyo Hospital; Tokyo Japan
| | - Masafumi Yoshida
- Department of Otolaryngology; Head and Neck Surgery, University of Tokyo Hospital; Tokyo Japan
| | - Yasuhiro Ebihara
- Department of Otolaryngology; Head and Neck Surgery, University of Tokyo Hospital; Tokyo Japan
| | - Chisato Fujimoto
- Department of Otolaryngology; Head and Neck Surgery, University of Tokyo Hospital; Tokyo Japan
| | - Masashi Fukayama
- Department of Pathology; University of Tokyo Hospital; Tokyo Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology; Head and Neck Surgery, University of Tokyo Hospital; Tokyo Japan
| | - Takahiro Asakage
- Department of Otolaryngology; Head and Neck Surgery, University of Tokyo Hospital; Tokyo Japan
| |
Collapse
|