1
|
Kang H, Lv H, Tung TH, Ma D, Wang Z, Du J, Zhou K, Pan J, Zhang Y, Peng S, Yu Z, Shen B, Ye M. EGFR co-mutation is associated with the risk of recurrence in invasive lung adenocarcinoma with the micropapillary component. Asian J Surg 2024; 47:201-207. [PMID: 37574361 DOI: 10.1016/j.asjsur.2023.07.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 07/09/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Invasive lung adenocarcinoma (LUAD) patients with the micropapillary (MPP) component tend to have extremely poor prognosis. To optimize clinical outcomes, a better understanding of specific concurrent gene alterations and their impact on the prognosis of patients with the MPP component is necessary. METHOD A total of 621 Chinese patients with surgically resected invasive LUAD who underwent genetic testing for lung cancer were enrolled in this retrospective study. The genomic profiling of major lung cancer-related genes based on next-generation sequencing (NGS) was carried out on formalin-fixed paraffin-embedded tumor samples. RESULT Among 621 patients with invasive LUAD, 154 (24.8%, 154/621) had the MPP component. We found that PIK3CA (4.5% vs 1.3%), KRAS (9.1% vs 4.7%), and ROS1 (2.6% vs 0.4%) were more frequent in patients with the MPP component than those without the MPP component (P < 0.05). The co-mutation occurred in 66 patients (10.6%, 66/621), of which 19 patients with the MPP component. Most of them were EGFR co-mutations (89.5%, 17/19), including EGFR and PIK3CA, EGFR and ERBB2, and other types. Patients with the MPP component who harbored EGFR co-mutations showed significantly worse recurrence-free survival (RFS) than single EGFR mutation (median RFS 20.1 vs 30.5 months; hazard ratio [HR]: 8.008; 95% confidence interval [CI]: 1.322-48.508). CONCLUSIONS Patients with the MPP component harbored the co-mutation of driver genes had a higher risk of recurrence after surgery, especially in patients with EGFR co-mutation. EGFR co-mutation was a significant prognostic factor for RFS in patients with the MPP component.
Collapse
Affiliation(s)
- Haixin Kang
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Haiyan Lv
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Tao-Hsin Tung
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Dehua Ma
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Zheng Wang
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, China
| | - Juping Du
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Kai Zhou
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Juan Pan
- Department of Clinical Laboratory, Taizhou Hospital, Zhejiang University, Linhai, Zhejiang, 317000, China
| | - Yanjie Zhang
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Shuotao Peng
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Zhaonan Yu
- Hangzhou D.A. Medical Laboratory, Hangzhou, Zhejiang, 310000, China
| | - Bo Shen
- Department of Clinical Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, 317000, China.
| | - Minhua Ye
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, China.
| |
Collapse
|
2
|
Sagnak Yilmaz Z, Sarioglu S. Molecular Pathology of Micropapillary Carcinomas: Is Characteristic Morphology Related to Molecular Mechanisms? Appl Immunohistochem Mol Morphol 2023; 31:267-277. [PMID: 37036419 DOI: 10.1097/pai.0000000000001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023]
Abstract
Micropapillary carcinoma is an entity defined histologically in many organs. It is associated with lymph node metastasis and poor prognosis. The main mechanism for its histopathologic appearance is reverse polarization. Although the studies on this subject are limited, carcinomas with micropapillary morphology observed in different organs are examined by immunohistochemical and molecular methods. Differences are shown in these tumors compared with conventional carcinomas regarding the rate of somatic mutations, mRNA and miRNA expressions, and protein expression levels. TP53 , PIK3CA , TERT , KRAS , EGFR , MYC , FGFR1 , BRAF , AKT1 , HER2/ERBB2 , CCND1 , and APC mutations, which genes frequently detected in solid tumors, have also been detected in invasive micropapillary carcinoma (IMPC) in various organs. 6q chromosome loss, DNAH9 , FOXO3 , SEC. 63 , and FMN2 gene mutations associated with cell polarity or cell structure and skeleton have also been detected in IMPCs. Among the proteins that affect cell polarity, RAC1, placoglobin, as well as CLDNs, LIN7A, ZEB1, CLDN1, DLG1, CDH1 (E-cadherin), OCLN, AFDN/AF6, ZEB1, SNAI2, ITGA1 (integrin alpha 1), ITGB1 (integrin beta 1), RHOA, Jagged-1 (JAG1) mRNAs differentially express between IMPC and conventional carcinomas. Prediction of prognosis and targeted therapy may benefit from the understanding of molecular mechanisms of micropapillary morphology. This review describes the molecular pathologic mechanisms underlying the micropapillary changes of cancers in various organs in a cell polarity-related dimension.
Collapse
Affiliation(s)
- Zeynep Sagnak Yilmaz
- Department of Molecular Pathology, Dokuz Eylül University Graduate School of Health Sciences
- Pathology Department, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Sulen Sarioglu
- Department of Molecular Pathology, Dokuz Eylül University Graduate School of Health Sciences
- Pathology Department, Dokuz Eylül University Faculty of Medicine, Izmir
| |
Collapse
|
3
|
Kramer Z, Kenessey I, Gángó A, Lendvai G, Kulka J, Tőkés AM. Cell polarity and cell adhesion associated gene expression differences between invasive micropapillary and no special type breast carcinomas and their prognostic significance. Sci Rep 2021; 11:18484. [PMID: 34531452 PMCID: PMC8446082 DOI: 10.1038/s41598-021-97347-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022] Open
Abstract
Invasive micropapillary carcinoma of the breast (IMPC) has been in the focus of several studies given its specific histology and clinicopathological course. We analysed mRNA expression profiles and the prognostic value of 43 genes involved in cell polarity, cell-adhesion and epithelial-mesenchymal transition (EMT) in IMPC tumors and compared them to invasive breast carcinomas of no special type (IBC-NST). IMPCs (36 cases), IBC-NSTs (36 cases) and mixed IMPC-IBC NSTs (8 cases) were investigated. mRNA expression level of selected genes were analysed using the NanoString nCounter Analysis System. Distant metastases free survival (DMFS) intervals were determined. Statistical analysis was performed using Statistica 13.5 software. Twelve genes showed significantly different expression in the IMPC group. There was no difference in DMFS according to histological type (IBC-NST vs. IMPC). High CLDN3, PALS1 and low PAR6 expression levels in the entire cohort were associated with shorter DMFS, and PALS1 was proven to be grade independent prognostic factor. Positive lymph node status was associated with higher levels of AKT1 expression. Differences in gene expression in IMPC versus IBC-NST may contribute to the unique histological appearance of IMPCs. No marked differences were observed in DMFS of the two groups. Altered gene expression in the mTOR signaling pathway in both tumor subtypes highlights the potential benefit from AKT/mTOR inhibitors in IMPCs similarly to IBC-NSTs.
Collapse
Affiliation(s)
- Zsófia Kramer
- 2nd Department of Pathology, Semmelweis University, Üllői Street 93, Budapest, 1091, Hungary
| | - István Kenessey
- 2nd Department of Pathology, Semmelweis University, Üllői Street 93, Budapest, 1091, Hungary
| | - Ambrus Gángó
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői Street 26, Budapest, 1085, Hungary
| | - Gábor Lendvai
- 2nd Department of Pathology, Semmelweis University, Üllői Street 93, Budapest, 1091, Hungary
| | - Janina Kulka
- 2nd Department of Pathology, Semmelweis University, Üllői Street 93, Budapest, 1091, Hungary.
| | - Anna-Mária Tőkés
- 2nd Department of Pathology, Semmelweis University, Üllői Street 93, Budapest, 1091, Hungary
| |
Collapse
|
4
|
Kołodziej P, Nicoś M, Krawczyk PA, Bogucki J, Karczmarczyk A, Zalewski D, Kubrak T, Kołodziej E, Makuch-Kocka A, Madej-Czerwonka B, Płachno BJ, Kocki J, Bogucka-Kocka A. The Correlation of Mutations and Expressions of Genes within the PI3K/Akt/mTOR Pathway in Breast Cancer-A Preliminary Study. Int J Mol Sci 2021; 22:2061. [PMID: 33669698 PMCID: PMC7922286 DOI: 10.3390/ijms22042061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
There is an urgent need to seek new molecular biomarkers helpful in diagnosing and treating breast cancer. In this elaboration, we performed a molecular analysis of mutations and expression of genes within the PI3K/Akt/mTOR pathway in patients with ductal breast cancer of various malignancy levels. We recognized significant correlations between the expression levels of the studied genes. We also performed a bioinformatics analysis of the data available on the international database TCGA and compared them with our own research. Studies on mutations and expression of genes were conducted using High-Resolution Melt PCR (HRM-PCR), Allele-Specific-quantitative PCR (ASP-qPCR), Real-Time PCR molecular methods in a group of women with ductal breast cancer. Bioinformatics analysis was carried out using web source Ualcan and bc-GenExMiner. In the studied group of women, it was observed that the prevalence of mutations in the studied PIK3CA and AKT1 genes was 29.63%. It was stated that the average expression level of the PIK3CA, PIK3R1, PTEN genes in the group of breast cancer patients is lower in comparison to the control group, while the average expression level of the AKT1 and mTOR genes in the studied group was higher in comparison to the control group. It was also indicated that in the group of patients with mutations in the area of the PIK3CA and AKT1 genes, the PIK3CA gene expression level is statistically significantly lower than in the group without mutations. According to our knowledge, we demonstrate, for the first time, that there is a very strong positive correlation between the levels of AKT1 and mTOR gene expression in the case of patients with mutations and without mutations.
Collapse
Affiliation(s)
- Przemysław Kołodziej
- Chair and Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland; (M.N.); (P.A.K.)
| | - Paweł A. Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland; (M.N.); (P.A.K.)
| | - Jacek Bogucki
- Department of Organic Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Agnieszka Karczmarczyk
- Department of Experimental Haematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Daniel Zalewski
- Chair and Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Tomasz Kubrak
- Department of Biochemistry and General Chemistry, Faculty of Medicine, University of Rzeszow, 35-310 Rzeszów, Poland;
| | - Elżbieta Kołodziej
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (E.K.); (J.K.)
| | - Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Barbara Madej-Czerwonka
- Department of Breast Surgery, District Specialist Hospital of Stefan Cardinal Wyszynski in Lublin, 20-718 Lublin, Poland;
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 30-387 Kraków, Poland;
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (E.K.); (J.K.)
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
5
|
Chen Y, Huang L, Dong Y, Tao C, Zhang R, Shao H, Shen H. Effect of AKT1 (p. E17K) Hotspot Mutation on Malignant Tumorigenesis and Prognosis. Front Cell Dev Biol 2020; 8:573599. [PMID: 33123537 PMCID: PMC7573235 DOI: 10.3389/fcell.2020.573599] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
The substitution of the seventeenth amino acid glutamate by lysine in the homologous structural domain of the Akt1 gene pleckstrin is a somatic cellular mutation found in breast, colorectal, and ovarian cancers, named p. Glu17Lys or E17K. In recent years, a growing number of studies have suggested that this mutation may play a unique role in the development of tumors. In this review article, we describe how AKT1(E17K) mutations stimulate downstream signals that cause cells to emerge transformed; we explore the differential regulation and function of E17K in different physiological and pathological settings; and we also describe the phenomenon that E17K impedes tumor growth by interfering with growth-promoting and chemotherapy-resistant AKT1lowQCC generation, an intriguing finding that mutants may prolong tumor patient survival by activating feedback mechanisms and disrupting transcription. This review is intended to provide a better understanding of the role of AKT1(E17K) in cancer and to inform the development of AKT1(E17K)-based antitumor strategies.
Collapse
Affiliation(s)
- Ying Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lan Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongjian Dong
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Costa R, Santa-Maria CA, Rossi G, Carneiro BA, Chae YK, Gradishar WJ, Giles FJ, Cristofanilli M. Developmental therapeutics for inflammatory breast cancer: Biology and translational directions. Oncotarget 2017; 8:12417-12432. [PMID: 27926493 PMCID: PMC5355355 DOI: 10.18632/oncotarget.13778] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer, which accounts for approximately 3% of cases of breast malignancies. Diagnosis relies largely on its clinical presentation, and despite a characteristic phenotype, underlying molecular mechanisms are poorly understood. Unique clinical presentation indicates that IBC is a distinct clinical and biological entity when compared to non-IBC. Biological understanding of non-IBC has been extrapolated into IBC and targeted therapies for HER2 positive (HER2+) and hormonal receptor positive non-IBC led to improved patient outcomes in the recent years. This manuscript reviews recent discoveries related to the underlying biology of IBC, clinical progress to date and suggests rational approaches for investigational therapies.
Collapse
Affiliation(s)
- Ricardo Costa
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America
| | - Cesar A Santa-Maria
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Giovanna Rossi
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Benedito A Carneiro
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Young Kwang Chae
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - William J Gradishar
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Francis J Giles
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| | - Massimo Cristofanilli
- Developmental Therapeutics Program, Division of Hematology/Oncology, Feinberg School of Medicine, Chicago, United States of America.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, United States of America
| |
Collapse
|
7
|
Heng J, Guo X, Wu W, Wang Y, Li G, Chen M, Peng L, Wang S, Dai L, Tang L, Wang J. Integrated analysis of promoter mutation, methylation and expression of AKT1 gene in Chinese breast cancer patients. PLoS One 2017; 12:e0174022. [PMID: 28301567 PMCID: PMC5354459 DOI: 10.1371/journal.pone.0174022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND As downstream mediators of PI3K /PTEN /AKT /mTORC1 pathway, the AKT isoforms play critical roles in tumorgenesis. Although the pleiotropic effects of AKT1 in breast cancer have been reported, the genetic and epigenetic characteristics of AKT1 promoter region in breast cancer remains to be identified. In this study we aimed to investigate the promoter mutation spectrum, methylation and gene expression pattern of AKT1 and their relationship with breast cancer. METHODS By using PCR target sequence enrichment and next-generation sequencing technology, we sequenced AKT1 promoter region in pairs of breast tumor and normal tissues from 95 unselected Chinese breast cancer patients. The methylation of the promoter region and the expression profile of AKT1 in the same cohort were detected with bisulfite next-generation sequencing and qPCR, respectively. RESULTS We identified 28 somatic mutations in 23 of the 95 (24.2%) breast cancer samples. And 19 of the 28 mutations were located in transcription factor (TF) binding sites. In the 23 patients with somatic mutations, no significant change of methylation or expression was found comparing with other patients. AKT1 promoter region was significantly hypo-methylated in tumor compared with matched normal tissue (P = 0.0014) in the 95 patients. The expression of AKT1 was significantly suppressed in tumor tissue (P = 0.0375). In clinicopathological factor analysis, AKT1 showed significant hypo-methylation (P = 0.0249) and suppressed expression (P = 0.0375) in HER2 negative subtype. And a trend of decrease in expression level (P = 0.0624) of AKT1 in the ER negative subtype was observed, which is significantly decreased in basal-like breast tumor (P = 0.0328). CONCLUSIONS Hypo-methylation and suppressed expression of AKT1 was observed to be associated with breast cancer in our cohort. The methylation and expression of AKT1 were both significantly associated with HER2 status. The promoter mutation of AKT1 did not show significant association with its methylation and expression status. These results suggested that the promoter mutation, methylation and gene expression of AKT1 may play distinct roles in tumorgenesis of breast cancer and the integrated analysis of methylation and expression of AKT1 might serve as potential biomarkers for diagnosis and classification of breast cancer.
Collapse
Affiliation(s)
- Jianfu Heng
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xinwu Guo
- Sanway Gene Technology Inc., Changsha, Hunan, China
| | - Wenhan Wu
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yue Wang
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Guoli Li
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ming Chen
- Sanway Gene Technology Inc., Changsha, Hunan, China
| | - Limin Peng
- Sanway Gene Technology Inc., Changsha, Hunan, China
| | - Shouman Wang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lizhong Dai
- Sanway Gene Technology Inc., Changsha, Hunan, China
- Research Center for Technologies in Nucleic Acid-Based Diagnostics, Changsha, Hunan, China
- Research Center for Technologies in Nucleic Acid-Based Diagnostics and Therapeutics, Changsha, Hunan, China
| | - Lili Tang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail: (JW); (LLT)
| | - Jun Wang
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, Hunan, China
- Research Center for Technologies in Nucleic Acid-Based Diagnostics, Changsha, Hunan, China
- Research Center for Technologies in Nucleic Acid-Based Diagnostics and Therapeutics, Changsha, Hunan, China
- * E-mail: (JW); (LLT)
| |
Collapse
|
8
|
Liau JY, Lee YH, Tsai JH, Yuan CT, Chu CY, Hong JB, Sheen YS. FrequentPIK3CAactivating mutations in nipple adenomas. Histopathology 2016; 70:195-202. [DOI: 10.1111/his.13043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jau-Yu Liau
- Department of Pathology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
- Graduate Institute of Pathology; National Taiwan University College of Medicine; Taipei Taiwan
| | - Yi-Hsuan Lee
- Department of Pathology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Jia-Huei Tsai
- Department of Pathology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
- Graduate Institute of Pathology; National Taiwan University College of Medicine; Taipei Taiwan
| | - Chang-Tsu Yuan
- Department of Pathology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Chia-Yu Chu
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Jin-Bon Hong
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Yi-Shuan Sheen
- Department of Dermatology; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| |
Collapse
|
9
|
Rudolph M, Anzeneder T, Schulz A, Beckmann G, Byrne AT, Jeffers M, Pena C, Politz O, Köchert K, Vonk R, Reischl J. AKT1 (E17K) mutation profiling in breast cancer: prevalence, concurrent oncogenic alterations, and blood-based detection. BMC Cancer 2016; 16:622. [PMID: 27515171 PMCID: PMC4982009 DOI: 10.1186/s12885-016-2626-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 07/26/2016] [Indexed: 12/30/2022] Open
Abstract
Background The single hotspot mutation AKT1 [G49A:E17K] has been described in several cancers, with the highest incidence observed in breast cancer. However, its precise role in disease etiology remains unknown. Methods We analyzed more than 600 breast cancer tumor samples and circulating tumor DNA for AKT1E17K and alterations in other cancer-associated genes using Beads, Emulsions, Amplification, and Magnetics digital polymerase chain reaction technology and targeted exome sequencing. Results Overall AKT1E17K mutation prevalence was 6.3 % and not correlated with age or menopausal stage. AKT1E17K mutation frequency tended to be lower in patients with grade 3 disease (1.9 %) compared with those with grade 1 (11.1 %) or grade 2 (6 %) disease. In two cohorts of patients with advanced metastatic disease, 98.0 % (n = 50) and 97.1 % (n = 35) concordance was obtained between tissue and blood samples for the AKT1E17K mutation, and mutation capture rates of 66.7 % (2/3) and 85.7 % (6/7) in blood versus tissue samples were observed. Although AKT1-mutant tumor specimens were often found to harbor concurrent alterations in other driver genes, a subset of specimens harboring AKT1E17K as the only known driver alteration was also identified. Initial follow-up survival data suggest that AKT1E17K could be associated with increased mortality. These findings warrant additional long-term follow-up. Conclusions The data suggest that AKT1E17K is the most likely disease driver in certain breast cancer patients. Blood-based mutation detection is achievable in advanced-stage disease. These findings underpin the need for a further enhanced-precision medicine paradigm in the treatment of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2626-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marion Rudolph
- Bayer Pharma AG, Muellerstrasse 178, 13353, Berlin, Germany.
| | | | - Anke Schulz
- Bayer Pharma AG, Muellerstrasse 178, 13353, Berlin, Germany
| | - Georg Beckmann
- Bayer Pharma AG, Muellerstrasse 178, 13353, Berlin, Germany
| | - Annette T Byrne
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,At the time of manuscript preparation, the author was on a Science Foundation Ireland-funded industry secondment, Bayer HealthCare Pharmaceuticals, Whippany, NJ, USA
| | | | - Carol Pena
- Bayer HealthCare Pharmaceuticals, Whippany, NJ, USA
| | - Oliver Politz
- Bayer Pharma AG, Muellerstrasse 178, 13353, Berlin, Germany
| | - Karl Köchert
- Bayer Pharma AG, Muellerstrasse 178, 13353, Berlin, Germany
| | - Richardus Vonk
- Bayer Pharma AG, Muellerstrasse 178, 13353, Berlin, Germany
| | - Joachim Reischl
- Bayer Pharma AG, Muellerstrasse 178, 13353, Berlin, Germany.,AstraZeneca R&D, Personalized Healthcare and Biomarkers, Gothenburg, Sweden
| |
Collapse
|
10
|
Jahn SW, Kashofer K, Thüringer A, Abete L, Winter E, Eidenhammer S, Viertler C, Tavassoli F, Moinfar F. Mutation Profiling of Usual Ductal Hyperplasia of the Breast Reveals Activating Mutations Predominantly at Different Levels of the PI3K/AKT/mTOR Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:15-23. [PMID: 26718977 DOI: 10.1016/j.ajpath.2015.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 08/29/2015] [Accepted: 09/28/2015] [Indexed: 01/05/2023]
Abstract
Usual ductal hyperplasia (UDH) of the breast is generally regarded as a nonneoplastic proliferation, albeit loss of heterozygosity has long been reported in a part of these lesions. To gain deeper insights into the molecular drivers of these lesions, an extended mutation profiling was performed. The coding regions of 409 cancer-related genes were investigated by next-generation sequencing in 16 cases of UDH, nine unassociated with neoplasia (classic) and seven arising within papillomas. Phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (mTOR) activation was investigated by phosphorylated AKT, mTOR, and S6 immunohistochemistry. Of 16 lesions, 10 (63%) were mutated; 56% of classic lesions were unassociated with neoplasia, and 71% of lesions arose in papillomas. Fourteen missense mutations were detected: PIK3CA [6 (43%) of 14], AKT1 [2 (14%) of 14], as well as GNAS, MTOR, PIK3R1, LPHN3, LRP1B, and IGF2R [each 1 (7%) of 14]. Phosphorylated mTOR was seen in 83% and phosphorylated S6 in 86% of evaluable lesions (phospho-AKT staining was technically uninterpretable). In conclusion, UDH displays mutations of the phosphatidylinositol 3-kinase/AKT/mTOR axis at different levels, with PIK3R1, MTOR, and GNAS mutations not previously described. Specifically, oncogenic G-protein activation represents a yet unrecognized route to proliferation in UDH. On the basis of evidence of activating mutations, loss of heterozygosity, and a mass forming proliferation, we propose that UDH is most appropriately viewed as an early neoplastic intraductal proliferation.
Collapse
Affiliation(s)
- Stephan W Jahn
- Institute of Pathology, Medical University of Graz, Graz, Austria.
| | - Karl Kashofer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrea Thüringer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Luca Abete
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Elke Winter
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | | | - Fattaneh Tavassoli
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Farid Moinfar
- Institute of Pathology, Medical University of Graz, Graz, Austria; Department of Pathology, Hospital of the Sisters of Charity, Linz, Austria
| |
Collapse
|
11
|
Dirican E, Akkiprik M, Özer A. Mutation distributions and clinical correlations of PIK3CA gene mutations in breast cancer. Tumour Biol 2016; 37:7033-45. [PMID: 26921096 DOI: 10.1007/s13277-016-4924-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/28/2016] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BCa) is the most common cancer and the second cause of death among women. Phosphoinositide 3-kinase (PI3K) signaling pathway has a crucial role in the cellular processes such as cell survival, growth, division, and motility. Moreover, oncogenic mutations in the PI3K pathway generally involve the activation phosphatidylinositol-4,5-bisphosphate 3-kinase-catalytic subunit alpha (PIK3CA) mutation which has been identified in numerous BCa subtypes. In this review, correlations between PIK3CA mutations and their clinicopathological parameters on BCa will be described. It is reported that PIK3CA mutations which have been localized mostly on exon 9 and 20 hot spots are detected 25-40 % in BCa. This relatively high frequency can offer an advantage for choosing the best treatment options for BCa. PIK3CA mutations may be used as biomarkers and have been major focus of drug development in cancer with the first clinical trials of PI3K pathway inhibitors currently in progress. Screening of PIK3CA gene mutations might be useful genetic tests for targeted therapeutics or diagnosis. Increasing data about PIK3CA mutations and its clinical correlations with BCa will help to introduce new clinical applications in the near future.
Collapse
Affiliation(s)
- Ebubekir Dirican
- Department of Medical Biology, School of Medicine, Marmara University, Başıbüyük Mah., Maltepe Başıbüyük Yolu Sok., No: 9/1, 34854, Maltepe, Istanbul, Turkey
| | - Mustafa Akkiprik
- Department of Medical Biology, School of Medicine, Marmara University, Başıbüyük Mah., Maltepe Başıbüyük Yolu Sok., No: 9/1, 34854, Maltepe, Istanbul, Turkey.
| | - Ayşe Özer
- Department of Medical Biology, School of Medicine, Marmara University, Başıbüyük Mah., Maltepe Başıbüyük Yolu Sok., No: 9/1, 34854, Maltepe, Istanbul, Turkey
| |
Collapse
|
12
|
Davies BR, Guan N, Logie A, Crafter C, Hanson L, Jacobs V, James N, Dudley P, Jacques K, Ladd B, D'Cruz CM, Zinda M, Lindemann J, Kodaira M, Tamura K, Jenkins EL. Tumors with AKT1E17K Mutations Are Rational Targets for Single Agent or Combination Therapy with AKT Inhibitors. Mol Cancer Ther 2015; 14:2441-51. [PMID: 26351323 DOI: 10.1158/1535-7163.mct-15-0230] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/20/2015] [Indexed: 01/28/2023]
Abstract
AKT1(E17K) mutations occur at low frequency in a variety of solid tumors, including those of the breast and urinary bladder. Although this mutation has been shown to transform rodent cells in culture, it was found to be less oncogenic than PIK3CA mutations in breast epithelial cells. Moreover, the therapeutic potential of AKT inhibitors in human tumors with an endogenous AKT1(E17K) mutation is not known. Expression of exogenous copies of AKT1(E17K) in MCF10A breast epithelial cells increased phosphorylation of AKT and its substrates, induced colony formation in soft agar, and formation of lesions in the mammary fat pad of immunodeficient mice. These effects were inhibited by the allosteric and catalytic AKT inhibitors MK-2206 and AZD5363, respectively. Both AKT inhibitors caused highly significant growth inhibition of breast cancer explant models with AKT1(E17K) mutation. Furthermore, in a phase I clinical study, the catalytic Akt inhibitor AZD5363 induced partial responses in patients with breast and ovarian cancer with tumors containing AKT1(E17K) mutations. In MGH-U3 bladder cancer xenografts, which contain both AKT1(E17K) and FGFR3(Y373C) mutations, AZD5363 monotherapy did not significantly reduce tumor growth, but tumor regression was observed in combination with the FGFR inhibitor AZD4547. The data show that tumors with AKT1(E17K) mutations are rational therapeutic targets for AKT inhibitors, although combinations with other targeted agents may be required where activating oncogenic mutations of other proteins are present in the same tumor.
Collapse
Affiliation(s)
- Barry R Davies
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, United Kingdom.
| | - Nin Guan
- Gatehouse Park, Waltham, Massachusetts
| | - Armelle Logie
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Claire Crafter
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Lyndsey Hanson
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Vivien Jacobs
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Neil James
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Philippa Dudley
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | | | | | | | | | - Justin Lindemann
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Makoto Kodaira
- Department of Breast and Medical Oncology, National Cancer Centre Hospital, Tokyo, Japan
| | - Kenji Tamura
- Department of Breast and Medical Oncology, National Cancer Centre Hospital, Tokyo, Japan
| | | |
Collapse
|
13
|
Gruel N, Benhamo V, Bhalshankar J, Popova T, Fréneaux P, Arnould L, Mariani O, Stern MH, Raynal V, Sastre-Garau X, Rouzier R, Delattre O, Vincent-Salomon A. Polarity gene alterations in pure invasive micropapillary carcinomas of the breast. Breast Cancer Res 2014; 16:R46. [PMID: 24887297 PMCID: PMC4095699 DOI: 10.1186/bcr3653] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/01/2014] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Pure invasive micropapillary carcinoma (IMPC) is a special type of breast carcinoma characterised by clusters of cells presenting polarity abnormalities. The biological alterations underlying this pattern remain unknown. METHODS Pangenomic analysis (n=39), TP53 (n=43) and PIK3CA (n=41) sequencing in a series of IMPCs were performed. A subset of cases was also analysed with whole-exome sequencing (n=4) and RNA sequencing (n=6). Copy number variation profiles were compared with those of oestrogen receptors and grade-matched invasive ductal carcinomas (IDCs) of no special type. RESULTS Unsupervised analysis of genomic data distinguished two IMPC subsets: one (Sawtooth/8/16) exhibited a significant increase in 16p gains (71%), and the other (Firestorm/Amplifier) was characterised by a high frequency of 8q (35%), 17q (20% to 46%) and 20q (23% to 30%) amplifications and 17p loss (74%). TP53 mutations (10%) were more frequently identified in the amplifier subset, and PIK3CA mutations (4%) were detected in both subsets. Compared to IDC, IMPC exhibited specific loss of the 6q16-q22 region (45%), which is associated with downregulation of FOXO3 and SEC63 gene expression. SEC63 and FOXO3 missense mutations were identified in one case each (2%). Whole-exome sequencing combined with RNA sequencing of IMPC allowed us to identify somatic mutations in genes involved in polarity, DNAH9 and FMN2 (8% and 2%, respectively) or ciliogenesis, BBS12 and BBS9 (2% each) or genes coding for endoplasmic reticulum protein, HSP90B1 and SPTLC3 (2% each) and cytoskeleton, UBR4 and PTPN21 (2% each), regardless of the genomic subset. The intracellular biological function of the mutated genes identified by gene ontology analysis suggests a driving role in the clinicopathological characteristics of IMPC. CONCLUSION In our comprehensive molecular analysis of IMPC, we identified numerous genomic alterations without any recurrent fusion genes. Recurrent somatic mutations of genes participating in cellular polarity and shape suggest that they, together with other biological alterations (such as epigenetic modifications and stromal alterations), could contribute to the morphological pattern of IMPC. Though none of the individual abnormalities demonstrated specificity for IMPC, whether their combination in IMPC may have a cumulative effect that drives the abnormal polarity of IMPC needs to be examined further with in vitro experiments.
Collapse
MESH Headings
- Axonemal Dyneins/genetics
- Base Sequence
- Breast/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Calmodulin-Binding Proteins/genetics
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/pathology
- Cell Polarity/genetics
- Chaperonins
- Class I Phosphatidylinositol 3-Kinases
- Cytoskeletal Proteins/genetics
- DNA Copy Number Variations
- Exome/genetics
- Female
- Forkhead Box Protein O3
- Forkhead Transcription Factors/biosynthesis
- Forkhead Transcription Factors/genetics
- Formins
- Gene Amplification/genetics
- Group II Chaperonins/genetics
- Humans
- Membrane Glycoproteins/genetics
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Microfilament Proteins/biosynthesis
- Molecular Chaperones
- Mutation, Missense
- Neoplasm Invasiveness/genetics
- Neoplasm Proteins/genetics
- Nuclear Proteins/biosynthesis
- Phosphatidylinositol 3-Kinases/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- RNA-Binding Proteins
- Receptor, ErbB-2/biosynthesis
- Receptors, Estrogen/biosynthesis
- Retrospective Studies
- Sequence Analysis, DNA
- Sequence Analysis, RNA
- Sequence Deletion/genetics
- Serine C-Palmitoyltransferase/genetics
- Tumor Suppressor Protein p53/genetics
- Ubiquitin-Protein Ligases
Collapse
Affiliation(s)
- Nadège Gruel
- INSERM U830, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
- Department of Translational Research, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Vanessa Benhamo
- INSERM U830, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
- Department of Translational Research, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | | | - Tatiana Popova
- INSERM U830, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Paul Fréneaux
- Department of Tumor Biology, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Laurent Arnould
- Department of Pathology, Centre Georges François Leclerc, and CRB Ferdinand Cabanne, 1 rue Professeur Marion BP 77 980, 21079 Dijon Cédex, France
| | - Odette Mariani
- Department of Tumor Biology, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Marc-Henri Stern
- INSERM U830, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Virginie Raynal
- INSERM U830, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Xavier Sastre-Garau
- Department of Tumor Biology, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Roman Rouzier
- Department of Surgery, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Olivier Delattre
- INSERM U830, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| | - Anne Vincent-Salomon
- INSERM U830, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
- Department of Tumor Biology, Institut Curie, 26 rue d’Ulm, 75248 Paris Cédex 05, France
| |
Collapse
|
14
|
Frequent phosphatidylinositol-3-kinase mutations in proliferative breast lesions. Mod Pathol 2014; 27:740-50. [PMID: 24186142 DOI: 10.1038/modpathol.2013.197] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 01/08/2023]
Abstract
The phosphatidylinositol-3-kinase pathway is one of the most commonly altered molecular pathways in invasive breast carcinoma, with phosphatidylinositol-3-kinase catalytic subunit (PIK3CA) mutations in 25% of invasive carcinomas. Ductal carcinoma in situ (DCIS), benign papillomas, and small numbers of columnar cell lesions harbor an analogous spectrum of PIK3CA and AKT1 mutations, yet there is little data on usual ductal hyperplasia and atypical ductal and lobular neoplasias. We screened 192 formalin-fixed paraffin-embedded breast lesions from 75 patients for point mutations using a multiplexed panel encompassing 643 point mutations across 53 genes, including 58 PIK3CA substitutions. PIK3CA point mutations were identified in 31/62 (50%) proliferative lesions (usual ductal hyperplasia and columnar cell change), 10/14 (71%) atypical hyperplasias (atypical ductal hyperplasia and flat epithelial atypia), 7/16 (44%) lobular neoplasias (atypical lobular hyperplasia and lobular carcinoma in situ), 10/21 (48%) DCIS, and 13/37 (35%) invasive carcinomas. In genotyping multiple lesions of different stage from the same patient/specimen, we found considerable heterogeneity; most notably, in 12 specimens the proliferative lesion was PIK3CA mutant but the concurrent carcinoma was wild type. In 11 additional specimens, proliferative epithelium and cancer contained different point mutations. The frequently discordant genotypes of usual ductal hyperplasia/columnar cell change and concurrent carcinoma support a role for PIK3CA-activating point mutations in breast epithelial proliferation, perhaps more so than transformation. Further, these data suggest that proliferative breast lesions are heterogeneous and may represent non-obligate precursors of invasive carcinoma.
Collapse
|
15
|
Maher GJ, Goriely A, Wilkie AOM. Cellular evidence for selfish spermatogonial selection in aged human testes. Andrology 2013; 2:304-14. [PMID: 24357637 DOI: 10.1111/j.2047-2927.2013.00175.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 12/22/2022]
Abstract
Owing to a recent trend for delayed paternity, the genomic integrity of spermatozoa of older men has become a focus of increased interest. Older fathers are at higher risk for their children to be born with several monogenic conditions collectively termed paternal age effect (PAE) disorders, which include achondroplasia, Apert syndrome and Costello syndrome. These disorders are caused by specific mutations originating almost exclusively from the male germline, in genes encoding components of the tyrosine kinase receptor/RAS/MAPK signalling pathway. These particular mutations, occurring randomly during mitotic divisions of spermatogonial stem cells (SSCs), are predicted to confer a selective/growth advantage on the mutant SSC. This selective advantage leads to a clonal expansion of the mutant cells over time, which generates mutant spermatozoa at levels significantly above the background mutation rate. This phenomenon, termed selfish spermatogonial selection, is likely to occur in all men. In rare cases, probably because of additional mutational events, selfish spermatogonial selection may lead to spermatocytic seminoma. The studies that initially predicted the clonal nature of selfish spermatogonial selection were based on DNA analysis, rather than the visualization of mutant clones in intact testes. In a recent study that aimed to identify these clones directly, we stained serial sections of fixed testes for expression of melanoma antigen family A4 (MAGEA4), a marker of spermatogonia. A subset of seminiferous tubules with an appearance and distribution compatible with the predicted mutant clones were identified. In these tubules, termed 'immunopositive tubules', there is an increased density of spermatogonia positive for markers related to selfish selection (FGFR3) and SSC self-renewal (phosphorylated AKT). Here we detail the properties of the immunopositive tubules and how they relate to the predicted mutant clones, as well as discussing the utility of identifying the potential cellular source of PAE mutations.
Collapse
Affiliation(s)
- G J Maher
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|