1
|
da Silva DD, Araldi RP, Belizario MR, Rocha WG, Maciel RMDB, Cerutti JM. DLK1 Is Associated with Stemness Phenotype in Medullary Thyroid Carcinoma Cell Lines. Int J Mol Sci 2024; 25:11924. [PMID: 39595993 PMCID: PMC11594232 DOI: 10.3390/ijms252211924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare and aggressive tumor, often requiring systemic treatment in advanced or metastatic stages, where drug resistance presents a significant challenge. Given the role of cancer stem cells (CSCs) in cancer recurrence and drug resistance, we aimed to identify CSC subpopulations within two MTC cell lines harboring pathogenic variants in the two most common MEN2-associated codons. We analyzed 15 stemness-associated markers, along with well-established thyroid stem cell markers (CD133, CD44, and ALDH1), a novel candidate (DLK1), and multidrug resistance proteins (MRP1 and MRP3). The ability to efflux the fluorescent dye Hoechst 3342 and form spheroids, representing CSC behavior, was also assessed. MZ-CRC-1 cells (p.M918T) displayed higher expressions of canonical markers, DLK1, and MRP proteins than TT cells (p.C634W). MZ-CRC-1 cells also formed more spheroids and showed less dye accumulation (p < 0.0001). Finally, we observed that DLK1+ cells (those expressing DLK1) in both cell lines exhibited significantly higher levels of stemness markers compared to DLK1- cells (those lacking DLK1 expression). These findings underscore DLK1's role in enhancing the stemness phenotype, providing valuable insights into MTC progression and resistance and suggesting potential therapeutic implications.
Collapse
Affiliation(s)
- Danilo Dias da Silva
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Rodrigo Pinheiro Araldi
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Mariana Rocha Belizario
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Welbert Gomes Rocha
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| | - Rui Monteiro de Barros Maciel
- Laboratório de Endocrinologia Molecular e Translacional, Disciplina de Endocrinologia e Metabologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil;
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumour Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, SP, Brazil; (D.D.d.S.); (R.P.A.); (M.R.B.); (W.G.R.)
| |
Collapse
|
2
|
Mohamadi S, Mehrasa P, Mehramuz B, Kobravi S, Taghizadieh M, Salmaninejad A, Bayat M, Sadri Nahand J. The tumor microenvironment's gambit: Exosomal pawns on the board of head and neck cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189189. [PMID: 39343066 DOI: 10.1016/j.bbcan.2024.189189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The tumor microenvironment (TME) harbors a hidden universe of interactions that profoundly shape the behavior of head and neck cancers (HNCs). HNCs are not merely localized afflictions; they constitute a pressing global health crisis that impacts millions, frequently resulting in severe prognoses due to late-stage diagnosis and intrinsic resistance to conventional therapies. In this intricate interplay, cancer cells function as strategic players, adeptly manipulating their microenvironment to foster proliferation, evade immune detection, and withstand therapeutic interventions. Central to this dynamic play are exosomes, the enigmatic pawns of cellular communication, carrying vital messages across the board. This review elucidates the multifaceted roles of exosomes within the TME, highlighting their capacity to transmit critical signals that not only promote tumor progression but also modulate immune responses, ultimately playing a crucial role in the evolving narrative of HNC. Our insights aim to catalyze further research and exploration into exosome-targeted therapies, potentially transforming the landscape of HNC treatment and improving clinical outcomes in this formidable battle against cancer.
Collapse
Affiliation(s)
- Solmaz Mohamadi
- Faculty of Dentistry, Tabriz University of Medical Sciences, 15731 Tabriz, Iran
| | - Parisa Mehrasa
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramuz
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Kobravi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Tehran Azad University, Tehran, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 15731 Tabriz, Iran.
| |
Collapse
|
3
|
Wang W, Bai N, Li X. Comprehensive Analysis of the Prognosis and Drug Sensitivity of Differentiation-Related lncRNAs in Papillary Thyroid Cancer. Cancers (Basel) 2022; 14:1353. [PMID: 35267662 PMCID: PMC8909347 DOI: 10.3390/cancers14051353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Dedifferentiation is the main concern associated with radioactive iodine (RAI) refractoriness in patients with papillary thyroid cancer (PTC), and the underlying mechanisms of PTC dedifferentiation remain unclear. The present work aimed to identify a useful signature to indicate dedifferentiation and further explore its role in prognosis and susceptibility to chemotherapy drugs. A total of five prognostic-related DR-lncRNAs were selected to establish a prognostic-predicting model, and corresponding risk scores were closely associated with the infiltration of immune cells and immune checkpoint blockade. Moreover, we built an integrated nomogram based on DR-lncRNAs and age that showed a strong ability to predict the 3- and 5-year overall survival. Interestingly, drug sensitivity analysis revealed that the low-risk group was more sensitive to Bendamustine and TAS-6417 than the high-risk group. In addition, knockdown of DR-lncRNAs (DPH6-DT) strongly promoted cell proliferation, invasion, and migration via PI3K-AKT signal pathway in vitro. Furthermore, DPH6-DT downregulation also increased the expression of vimentin and N-cadherin during epithelial-mesenchymal transition. This study firstly confirms that DR-lncRNAs play a vital role in the prognosis and immune cells infiltration in patients with PTC, as well as a predictor of the drugs' chemosensitivity. Based on our results, DR-lncRNAs can serve as a promising prognostic biomarkers and treatment targets.
Collapse
Affiliation(s)
- Wenlong Wang
- Thyroid Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ning Bai
- Thyroid Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Xinying Li
- Thyroid Surgery Department, Xiangya Hospital, Central South University, Changsha 410008, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
4
|
Functional Implications of the Dynamic Regulation of EpCAM during Epithelial-to-Mesenchymal Transition. Biomolecules 2021; 11:biom11070956. [PMID: 34209658 PMCID: PMC8301972 DOI: 10.3390/biom11070956] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein expressed in epithelial tissues. EpCAM forms intercellular, homophilic adhesions, modulates epithelial junctional protein complex formation, and promotes epithelial tissue homeostasis. EpCAM is a target of molecular therapies and plays a prominent role in tumor biology. In this review, we focus on the dynamic regulation of EpCAM expression during epithelial-to-mesenchymal transition (EMT) and the functional implications of EpCAM expression on the regulation of EMT. EpCAM is frequently and highly expressed in epithelial cancers, while silenced in mesenchymal cancers. During EMT, EpCAM expression is downregulated by extracellular signal-regulated kinases (ERK) and EMT transcription factors, as well as by regulated intramembrane proteolysis (RIP). The functional impact of EpCAM expression on tumor biology is frequently dependent on the cancer type and predominant oncogenic signaling pathways, suggesting that the role of EpCAM in tumor biology and EMT is multifunctional. Membrane EpCAM is cleaved in cancers and its intracellular domain (EpICD) is transported into the nucleus and binds β-catenin, FHL2, and LEF1. This stimulates gene transcription that promotes growth, cancer stem cell properties, and EMT. EpCAM is also regulated by epidermal growth factor receptor (EGFR) signaling and the EpCAM ectoderm (EpEX) is an EGFR ligand that affects EMT. EpCAM is expressed on circulating tumor and cancer stem cells undergoing EMT and modulates metastases and cancer treatment responses. Future research exploring EpCAM’s role in EMT may reveal additional therapeutic opportunities.
Collapse
|
5
|
Azhar Y, Achmad D, Lukman K, Hilmanto D. Pediatric Differentiated Thyroid Carcinoma Risk Factor For Analysis For Disease Free Survival. Indian J Med Paediatr Oncol 2021. [DOI: 10.4103/ijmpo.ijmpo_70_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Abstract
Context:The context of this study was epidemiology pediatric thyroid cancer in Bandung, Indonesia. Aims: The aim of this study is to evaluate clinical characteristics and outcome between children and young adult patients with differentiated thyroid cancer (DTC) treated in our hospital. Settings and Design:This was a cohort retrospective study. Materials and Methods: The medical records of 144 patients with DTC who underwent thyroid surgery followed by radioiodine and thyroid hormone suppression were retrospectively reviewed. Thyroid cancers were diagnosed between January 2007 and December 2010. Participants consisted of 43 patients who were younger than 21 years old and 101 young adult patients (older than 21 years old but younger or equal to 40 years). The clinical characteristics and outcomes were analyzed and compared, and then, recurrence-free survival was evaluated using Kaplan–Meier methods. Statistical Analysis Used: Software R 3.3.0 version for Windows was used in this study. Results: Female has higher tendency to have thyroid cancer than male (P = 0.006). Based on histopathology report, classic papillary thyroid cancer is the most common cancer type in children than young adult. However, there was no significant difference between two groups regarding thyroid cancer size and multifocality (P = 0.815 and P = 0.370). The risk of recurrent ratio of children to young adults is 3.88 (95% confidence interval [CI] 1.38; 10.91). A similar result trend has been shown for sex type, histopathology type, number of nodules, surgical technique, and metastasis parameters (adjusted hazard ratio = 7.91, 95% CI 2.11; 29.67). Conclusions: DTC in children shows more aggressive behavior compared to young adult patients.
Collapse
Affiliation(s)
- Yohana Azhar
- Department of Surgery, Hasan Sadikin Hospital, Universitas Padjadjaran Bandung, West Java, Indonesia
| | - Dimyati Achmad
- Department of Surgery, Hasan Sadikin Hospital, Universitas Padjadjaran Bandung, West Java, Indonesia
| | - Kiki Lukman
- Department of Surgery, Hasan Sadikin Hospital, Universitas Padjadjaran Bandung, West Java, Indonesia
| | - Dani Hilmanto
- Department of Pediatrics, Hasan Sadikin Hospital, Universitas Padjadjaran Bandung, West Java, Indonesia
| |
Collapse
|
6
|
Thyroid Cancer Stem-Like Cells: From Microenvironmental Niches to Therapeutic Strategies. J Clin Med 2021; 10:jcm10071455. [PMID: 33916320 PMCID: PMC8037626 DOI: 10.3390/jcm10071455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recent progress in thyroid cancer biology revealed a certain degree of intratumoral heterogeneity, highlighting the coexistence of cellular subpopulations with distinct proliferative capacities and differentiation abilities. Among those subpopulations, cancer stem-like cells (CSCs) are hypothesized to drive TC heterogeneity, contributing to its metastatic potential and therapy resistance. CSCs principally exist in tumor areas with specific microenvironmental conditions, the so-called stem cell niches. In particular, in thyroid cancer, CSCs' survival is enhanced in the hypoxic niche, the immune niche, and some areas with specific extracellular matrix composition. In this review, we summarize the current knowledge about thyroid CSCs, the tumoral niches that allow their survival, and the implications for TC therapy.
Collapse
|
7
|
Piper K, DePledge L, Karsy M, Cobbs C. Glioma Stem Cells as Immunotherapeutic Targets: Advancements and Challenges. Front Oncol 2021; 11:615704. [PMID: 33718170 PMCID: PMC7945033 DOI: 10.3389/fonc.2021.615704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most common and lethal primary brain malignancy. Despite major investments in research into glioblastoma biology and drug development, treatment remains limited and survival has not substantially improved beyond 1-2 years. Cancer stem cells (CSC) or glioma stem cells (GSC) refer to a population of tumor originating cells capable of self-renewal and differentiation. While controversial and challenging to study, evidence suggests that GCSs may result in glioblastoma tumor recurrence and resistance to treatment. Multiple treatment strategies have been suggested at targeting GCSs, including immunotherapy, posttranscriptional regulation, modulation of the tumor microenvironment, and epigenetic modulation. In this review, we discuss recent advances in glioblastoma treatment specifically focused on targeting of GCSs as well as their potential integration into current clinical pathways and trials.
Collapse
Affiliation(s)
- Keenan Piper
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States.,Sidney Kimmel Medical College, Philadelphia, PA, United States
| | - Lisa DePledge
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States.,University of Washington School of Medicine, Spokane, WA, United States
| | - Michael Karsy
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Charles Cobbs
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States
| |
Collapse
|
8
|
Thyroid Hürthle Cell Carcinoma: Clinical, Pathological, and Molecular Features. Cancers (Basel) 2020; 13:cancers13010026. [PMID: 33374707 PMCID: PMC7793513 DOI: 10.3390/cancers13010026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Hürthle cell carcinoma (HCC) represents 3–4% of thyroid carcinoma cases. It is characterized by its large, granular and eosinophilic cytoplasm, due to an excessive number of mitochondria. Hürthle cells can be identified only after fine needle aspiration cytology biopsy or by histological diagnosis after the surgical operation. Published studies on HCC indicate its putative high aggressiveness. In this article, current knowledge of HCC focusing on clinical features, cytopathological features, genetic changes, as well as pitfalls in diagnosis are reviewed in order to improve clinical management. Abstract Hürthle cell carcinoma (HCC) represents 3–4% of thyroid carcinoma cases. It is considered to be more aggressive than non-oncocytic thyroid carcinomas. However, due to its rarity, the pathological characteristics and biological behavior of HCC remain to be elucidated. The Hürthle cell is characterized cytologically as a large cell with abundant eosinophilic, granular cytoplasm, and a large hyperchromatic nucleus with a prominent nucleolus. Cytoplasmic granularity is due to the presence of numerous mitochondria. These mitochondria display packed stacking cristae and are arranged in the center. HCC is more often observed in females in their 50–60s. Preoperative diagnosis is challenging, but indicators of malignancy are male, older age, tumor size > 4 cm, a solid nodule with an irregular border, or the presence of psammoma calcifications according to ultrasound. Thyroid lobectomy alone is sufficient treatment for small, unifocal, intrathyroidal carcinomas, or clinically detectable cervical nodal metastases, but total thyroidectomy is recommended for tumors larger than 4 cm. The effectiveness of radioactive iodine is still debated. Molecular changes involve cellular signaling pathways and mitochondria-related DNA. Current knowledge of Hürthle cell carcinoma, including clinical, pathological, and molecular features, with the aim of improving clinical management, is reviewed.
Collapse
|
9
|
The Possible Role of Cancer Stem Cells in the Resistance to Kinase Inhibitors of Advanced Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12082249. [PMID: 32796774 PMCID: PMC7465706 DOI: 10.3390/cancers12082249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Target therapy with various kinase inhibitors (KIs) has been extended to patients with advanced thyroid cancer, but only a subset of these compounds has displayed efficacy in clinical use. However, after an initial response to KIs, dramatic disease progression occurs in most cases. With the discovery of cancer stem cells (CSCs), it is possible to postulate that thyroid cancer resistance to KI therapies, both intrinsic and acquired, may be sustained by this cell subtype. Indeed, CSCs have been considered as the main drivers of metastatic activity and therapeutic resistance, because of their ability to generate heterogeneous secondary cell populations and survive treatment by remaining in a quiescent state. Hence, despite the impressive progress in understanding of the molecular basis of thyroid tumorigenesis, drug resistance is still the major challenge in advanced thyroid cancer management. In this view, definition of the role of CSCs in thyroid cancer resistance may be crucial to identifying new therapeutic targets and preventing resistance to anti-cancer treatments and tumor relapse. The aim of this review is to elucidate the possible role of CSCs in the development of resistance of advanced thyroid cancer to current anti-cancer therapies and their potential implications in the management of these patients.
Collapse
|
10
|
Gao Y, Wang F, Zhang L, Kang M, Zhu L, Xu L, Liang W, Zhang W. LINC00311 promotes cancer stem-like properties by targeting miR-330-5p/TLR4 pathway in human papillary thyroid cancer. Cancer Med 2020; 9:1515-1528. [PMID: 31894666 PMCID: PMC7013059 DOI: 10.1002/cam4.2815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/17/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Growing evidence has suggested that long noncoding RNAs (lncRNAs) play an essential role in the progression of papillary thyroid cancer (PTC). LncRNA LINC00311 was found to be able to regulate many cellular process in several diseases. However, the function and regulatory mechanism of LINC00311 remains unclear in PTC. In the present study, the results showed that the expression of LINC00311 was upregulated in PTC tissues and cells. Furthermore, knockdown of LINC00311 dramatically suppressed spheroid formation, proliferation, migration, and invasion in PTC cells in vitro. Mechanistic investigations revealed that LINC00311 was negatively correlated with the expression of miR‐330‐5p, meanwhile, TLR4 was a direct target of miR‐330‐5p. In addition, rescue assays further determined that LINC00311 contributed to the progression of PTC through regulating TLR4 expression. Taken together, these findings indicated that LINC00311 could promote cancer stem‐like properties by targeting miR‐330‐5p/TLR4 pathway in PTC.
Collapse
Affiliation(s)
- Yu Gao
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fan Wang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mei Kang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liyang Zhu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lei Xu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Liang
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Zhang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Veschi V, Verona F, Lo Iacono M, D'Accardo C, Porcelli G, Turdo A, Gaggianesi M, Forte S, Giuffrida D, Memeo L, Todaro M. Cancer Stem Cells in Thyroid Tumors: From the Origin to Metastasis. Front Endocrinol (Lausanne) 2020; 11:566. [PMID: 32982967 PMCID: PMC7477072 DOI: 10.3389/fendo.2020.00566] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid tumors are extremely heterogeneous varying from almost benign tumors with good prognosis as papillary or follicular tumors, to the undifferentiated ones with severe prognosis. Recently, several models of thyroid carcinogenesis have been described, mostly hypothesizing a major role of the thyroid cancer stem cell (TCSC) population in both cancer initiation and metastasis formation. However, the cellular origin of TCSC is still incompletely understood. Here, we review the principal epigenetic mechanisms relevant to TCSC origin and maintenance in both well-differentiated and anaplastic thyroid tumors. Specifically, we describe the alterations in DNA methylation, histone modifiers, and microRNAs (miRNAs) involved in TCSC survival, focusing on the potential of targeting aberrant epigenetic modifications for developing novel therapeutic approaches. Moreover, we discuss the bidirectional relationship between TCSCs and immune cells. The cells of innate and adaptive response can promote the TCSC-driven tumorigenesis, and conversely, TCSCs may favor the expansion of immune cells with protumorigenic functions. Finally, we evaluate the role of the tumor microenvironment and the complex cross-talk of chemokines, hormones, and cytokines in regulating thyroid tumor initiation, progression, and therapy refractoriness. The re-education of the stromal cells can be an effective strategy to fight thyroid cancer. Dissecting the genetic and epigenetic landscape of TCSCs and their interactions with tumor microenvironment cells is urgently needed to select more appropriate treatment and improve the outcome of patients affected by advanced differentiated and undifferentiated thyroid cancers.
Collapse
Affiliation(s)
- Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Francesco Verona
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stefano Forte
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Memeo
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
- *Correspondence: Matilde Todaro
| |
Collapse
|
12
|
Thyroid cancer stem-like cell exosomes: regulation of EMT via transfer of lncRNAs. J Transl Med 2018; 98:1133-1142. [PMID: 29967342 PMCID: PMC6138523 DOI: 10.1038/s41374-018-0065-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/23/2018] [Accepted: 03/20/2018] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancers are the most common endocrine malignancy and approximately 2% of thyroid cancers are anaplastic thyroid carcinoma (ATC), one of the most lethal and treatment resistant human cancers. Cancer stem-like cells (CSCs) may initiate tumorigenesis, induce resistance to chemotherapy and radiation therapy, have multipotent capability and may be responsible for recurrent and metastatic disease. The production of CSCs has been linked to epithelial-mesenchymal transition (EMT) and the acquisition of stemness. Exosomes are small (30-150 nm) membranous vesicles secreted by most cells that play a significant role in cell-to-cell communication. Many non-coding RNAs (ncRNA), such as long-non-coding RNAs (lncRNA), can initiate tumorigenesis and the EMT process. Exosomes carry ncRNAs to local and distant cell populations. This study examines secreted exosomes from two in vitro cell culture models; an EMT model and a CSC model. The EMT was induced in a papillary thyroid carcinoma (PTC) cell line by TGFβ1 treatment. Exosomes from this model were isolated and cultured with naïve PTC cells and examined for EMT induction. In the CSC model, exosomes were isolated from a CSC clonal line, cultured with a normal thyroid cell line and examined for EMT induction. The EMT exosomes transferred the lncRNA MALAT1 and EMT effectors SLUG and SOX2; however, EMT was not induced in this model. The exosomes from the CSC model also transferred the lncRNA MALAT1 and the transcription factors SLUG and SOX2 but additionally transferred linc-ROR and induced EMT in the normal thyroid cells. Preliminary siRNA studies directed towards linc-ROR reduced invasion. We hypothesize that CSC exosomes transfer lncRNAs, importantly linc-ROR, to induce EMT and inculcate the local tumor microenvironment and the distant metastatic niche. Therapies directed towards CSCs, their exosomes and/or the lncRNAs they carry may reduce a tumor's metastatic capacity.
Collapse
|
13
|
Vosgha H, Ariana A, Smith RA, Lam AKY. miR-205 targets angiogenesis and EMT concurrently in anaplastic thyroid carcinoma. Endocr Relat Cancer 2018; 25:323-337. [PMID: 29317480 DOI: 10.1530/erc-17-0497] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023]
Abstract
The current study aims to evaluate for the first time the inhibitory roles of miR-205 in the pathogenesis of anaplastic thyroid carcinoma. In addition, we investigated the mechanisms by which miR-205 regulates angiogenesis and epithelial-to-mesenchymal transition (EMT) in cancer. Two anaplastic thyroid carcinoma cell lines were transfected with the expression vector pCMV-MIR-205 Selected markers of angiogenesis and EMT including vascular endothelial growth factor A (VEGF-A) and zinc finger E-box-binding homeobox 1 (ZEB1) were investigated by Western blot. The interaction of miR-205 expression with EMT and angiogenesis were also investigated by assessment of matrix metalloproteinases 2 and 9 (MMP2 and MMP 9), SNAI1 (Snai1 family zinc finger 1), vimentin, E-cadherin and N-cadherin. The function of miR-205 was further tested with VEGF enzyme-linked immunosorbent assay (ELISA), wound healing, invasion and tube formation assays. Using an animal model, we studied the association of miR-205 with angiogenesis, proliferation and invasion. The following results were obtained. Permanent overexpression of miR-205 significantly suppressed angiogenesis and EMT by simultaneously targeting VEGF-A, ZEB1 and downstream products. Ectopic expression of miR-205 in cancer cells led to decreased migration, invasion and tube formation of endothelial cells. In addition, inhibition of tumour growth, vascularisation and invasion were noted in the mouse tumour xenografts. Our findings provide insights into simultaneous regulatory role of miR-205 in the pathogenesis of anaplastic thyroid carcinoma by suppressing both angiogenesis and EMT. This may open avenues to exploit miR-205 as an alternative cancer therapeutic strategy in the future.
Collapse
Affiliation(s)
- Haleh Vosgha
- Cancer Molecular PathologySchool of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Armin Ariana
- Cancer Molecular PathologySchool of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Robert Anthony Smith
- Cancer Molecular PathologySchool of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Genomics Research CentreInstitute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular PathologySchool of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
14
|
Zhang R, Hardin H, Huang W, Buehler D, Lloyd RV. Long Non-coding RNA Linc-ROR Is Upregulated in Papillary Thyroid Carcinoma. Endocr Pathol 2018; 29:1-8. [PMID: 29280051 DOI: 10.1007/s12022-017-9507-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Long non-coding RNAs (lncRNAs) may contribute to carcinogenesis and tumor progression by regulating transcription and gene expression. The role of lncRNAs in the regulation of thyroid cancer progression is being extensively examined. Here, we analyzed three lncRNAs that were overexpressed in papillary thyroid carcinomas, long intergenic non-protein coding RNA, regulator of reprogramming (Linc-ROR, ROR) PVT1 oncogene (PVT1), and HOX transcript antisense intergenic RNA (HOTAIR) to determine their roles in thyroid tumor development and progression. ROR expression has not been previously examined in thyroid carcinomas. Tissue microarrays (TMAs) of formalin-fixed paraffin-embedded tissue sections from 129 thyroid cases of benign and malignant tissues were analyzed by in situ hybridization (ISH), automated image analysis, and real-time PCR. All three lncRNAs were most highly expressed in the nuclei of PTCs. SiRNA experiments with a PTC cell line, TPC1, showed inhibition of proliferation with siRNAs for all three lncRNAs while invasion was inhibited with siRNAs for ROR and HOTAIR. SiRNA experiments with ROR also led to increased expression of miR-145, supporting the role of ROR as an endogenous miR-145 sponge. After treatment with TGF-β, there was increased expression of ROR, PVT1, and HOTAIR in the PTC1 cell line compared to control groups, indicating an induction of their expression during epithelial to mesenchymal transition (EMT). These results indicate that ROR, PVT1, and HOTAIR have important regulatory roles during the development of PTCs.
Collapse
Affiliation(s)
- Ranran Zhang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA.
| |
Collapse
|
15
|
Tesselaar MH, Smit JW, Nagarajah J, Netea-Maier RT, Plantinga TS. Pathological processes and therapeutic advances in radioiodide refractory thyroid cancer. J Mol Endocrinol 2017; 59:R141-R154. [PMID: 28931558 DOI: 10.1530/jme-17-0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022]
Abstract
While in most patients with non-medullary thyroid cancer (TC), disease remission is achieved by thyroidectomy and ablation of tumor remnants by radioactive iodide (RAI), a substantial subgroup of patients with metastatic disease present tumor lesions that have acquired RAI resistance as a result of dedifferentiation. Although oncogenic mutations in BRAF, TERT promoter and TP53 are associated with an increased propensity for induction of dedifferentiation, the role of genetic and epigenetic aberrations and their effects on important intracellular signaling pathways is not yet fully elucidated. Also immune, metabolic, stemness and microRNA pathways have emerged as important determinants of TC dedifferentiation and RAI resistance. These signaling pathways have major clinical implications since their targeting could inhibit TC progression and could enable redifferentiation to restore RAI sensitivity. In this review, we discuss the current insights into the pathological processes conferring dedifferentiation and RAI resistance in TC and elaborate on novel advances in diagnostics and therapy to improve the clinical outcome of RAI-refractory TC patients.
Collapse
Affiliation(s)
- Marika H Tesselaar
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes W Smit
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - James Nagarajah
- Radiology & Nuclear MedicineRadboud University Medical Center, Nijmegen, The Netherlands
| | - Romana T Netea-Maier
- Internal MedicineDivision of Endocrinology Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theo S Plantinga
- Department of PathologyRadboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Roy M, Connor J, Al-Niaimi A, Rose SL, Mahajan A. Aldehyde dehydrogenase 1A1 (ALDH1A1) expression by immunohistochemistry is associated with chemo-refractoriness in patients with high-grade ovarian serous carcinoma. Hum Pathol 2017; 73:1-6. [PMID: 28851663 DOI: 10.1016/j.humpath.2017.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/09/2017] [Accepted: 06/29/2017] [Indexed: 01/09/2023]
Abstract
Aldehyde dehydrogenase-1A1 (ALDH1A1), CD133, CD44, and CD24 have been reported as cancer stem cell markers in ovarian cancers. The goal of our study was to assess the prognostic significance of these markers in patients with advanced serous ovarian cancer. Formalin-fixed, paraffin-embedded tissues from 347 ovarian cancers were used to construct a microarray. Immunohistochemical studies for ALDH1A1, CD133, CD44, and CD24 were performed and scored semiquantitatively by 2 pathologists based on intensity and percent of positive immunoreactive cells. Immunohistochemistry was compared to clinical parameters and survival. Of the 347 cases, early stage disease, nonserous tumors, cases with incomplete therapy, and cores with no tumor were excluded. Immunohistochemistry was interpretable in 124 of the 136 stage III and IV ovarian serous carcinoma. ALDH1A1, CD24, and CD44 were variably detected in both tumor and stromal cells, and immunoreactivity in tumor was stronger than in stromal cells. CD133 immunoreactivity was not quantified due to nonspecific staining in tumor and stroma. Statistical analyses using χ2 and Student t test revealed that ALDH1A1-positive (n=53) carcinoma were 3 times more likely to demonstrate platinum refractoriness than ALDH1A1-negative (n=71) tumors (17% vs. 6%, respectively; p=.04); however, neither progression free nor overall survival was influenced by ALDH1A1 status in this cohort. The expression of CD44 and CD24 had no clinicopathological associations in the present study. Our study supports that ALDH1A1 expression is associated with poor response to platinum-based therapy in patients with high-grade ovarian serous carcinoma. Further study of this relationship is needed to understand how this could impact clinical care.
Collapse
Affiliation(s)
- Madhuchhanda Roy
- Department of Pathology, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Joseph Connor
- Department of Pathology, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Ahmed Al-Niaimi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Stephen L Rose
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Wisconsin Hospital and Clinics, Madison, WI 53792
| | - Aparna Mahajan
- Department of Pathology, University of Wisconsin Hospital and Clinics, Madison, WI 53792.
| |
Collapse
|
17
|
Iftikhar H, Ikram M, Muhammad AY, Nathani KR. Unusual Presentation of Differentiated Thyroid Cancer Metastasis. Int Arch Otorhinolaryngol 2017; 22:167-170. [PMID: 29619107 PMCID: PMC5882378 DOI: 10.1055/s-0037-1604038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/05/2017] [Indexed: 12/26/2022] Open
Abstract
Introduction
The rates of thyroid cancers are on a rise, especially well-differentiated thyroid cancers. This could be partly due to newer diagnostic modalities, like high-resolution ultrasound, that can pick up smaller lesions. Differentiated thyroid cancers with distant metastases are not common, and even rarer is the initial presentation with complaints not related to the neck.
Objectives
The objective of this series was to study and report the unusual cases of patients with differentiated thyroid cancer with distant metastasis. There is a lack of data in the literature on these cases, and due to the rarity of such metastases, no definite treatment protocol has been defined.
Methods
A retrospective chart review of 1,200 cases of thyroid surgeries was performed. A total of 10 cases of well-differentiated thyroid cancer on the final histopathology exam that had initially presented with usual complaints to departments other than the Otolaryngology Department were identified.
Results
A total of 6 patients had papillary carcinoma, whereas 4 patients had follicular carcinoma on final the histopathology exam. Two patients presented with iliac crest lesions, 2 with vertebral lesions one each with parapharyngeal mass, supraclavicular mass, labia majora swelling and bleeding, lung, rib and neck of femur lesion.
Conclusion
There are still no specific guidelines on how to address these patients with differentiated thyroid cancer with distant metastasis (except for the cases of bone and lung lesions) and on which treatment should be offered in case of recurrence. More studies on the subject are required.
Collapse
Affiliation(s)
- Haissan Iftikhar
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Mubasher Ikram
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | | | | |
Collapse
|
18
|
Hatakeyama H, Hoshino K, Mizoguchi K, Suzuki T, Hatanaka KC, Yamaya Y, Kano S, Mizumachi T, Homma A. Atypical adenoma of the thyroid diagnosed as anaplastic cancer by cytopathology. Diagn Cytopathol 2017; 45:928-933. [PMID: 28544576 DOI: 10.1002/dc.23751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/07/2017] [Accepted: 05/08/2017] [Indexed: 11/05/2022]
Abstract
Atypical adenoma of the thyroid is a rare form of tumor, and its accurate diagnosis prior to surgical resection is difficult as the histological and pathological morphologies are very similar to those of anaplastic thyroid carcinoma (ATC), and its anaplastic transformation remains to be elucidated. We reported a case of a 75-year-old female with a thyroid isthmus nodule diagnosed repeatedly by FNAC as anaplastic carcinoma. Both the first and second FNAC specimen slides showed a large number of scattered or aggregated atypical cells consisting of large, pleomorphic nuclei with irregular membranes, chromatin clumps and prominent nucleoli. The morphology of the surgical specimen was similar to that of an anaplastic carcinoma and although it showed signs of transition from a normal follicular epithelium, there was no invasive growth or mitosis. This lesion was diagnosed as an atypical adenoma, and a papillary carcinoma was also present in the right lobe of the thyroid. Here we evaluate the molecular features of atypical adenomas in comparison with 9 ATC samples, and discuss whether or not atypical adenomas represent a form of premalignant lesion. Ki-67 expression was found to be very low in atypical adenomas whereas all ATC samples showed high levels of Ki-67 expression. Epithelial-mesenchymal transition (EMT) marker expression suggested that atypical adenomas maintain their epithelial phenotype to a higher degree than do ATCs. Differential diagnosis between ATC and atypical adenoma is difficult by cytological and histological methods alone, and Ki-67 and EMT marker expression may support the diagnosis.
Collapse
Affiliation(s)
- Hiromitsu Hatakeyama
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kimiko Hoshino
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kenji Mizoguchi
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takayoshi Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Kanako C Hatanaka
- Department of Surgical Pathology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yukie Yamaya
- Department of Surgical Pathology, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Satoshi Kano
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takatsugu Mizumachi
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Akihiro Homma
- Department of Otolaryngology-Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
19
|
Sheng L, Zhang S, Xu H. Effect of Slug-Mediated Down-Regulation of E-Cadherin on Invasiveness and Metastasis of Anaplastic Thyroid Cancer Cells. Med Sci Monit 2017; 23:138-143. [PMID: 28070118 PMCID: PMC5242203 DOI: 10.12659/msm.902725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Slug has been found to promote migration and invasion of many cancer cells, including anaplastic thyroid cancer (ATC). Thus, targeting Slug expression could provide new approaches for the treatment of patients with ATC. MATERIAL AND METHODS Small interfering RNA (siRNA) targeting Slug (Slug siRNA) was used to construct clonal derivatives in the metastatic ATC SW1736 cells. Slug cDNA transfection was used to restore the Slug expression in the Slug siRNA-transfected SW1736 cells (Slug siRNA/SW1736). E-cadherin siRNA was used to inhibit E-cadherin expression in the Slug siRNA/SW1736 cells. The SW1736 cell migration, invasion, and signaling pathway was analyzed in vitro. Furthermore, the stable Slug siRNA-transfected SW1736 clones were used for the lung metastasis assay in an in vivo mouse model. RESULTS Targeting Slug expression in SW1736 cells showed a 45% decrease in migration and an 85% decrease in invasiveness in vitro. Knockdown of E-cadherin by E-cadherin siRNA transfection or Slug overexpression by Slug cDNA transfection restored the invasive and migrative ability in SW1736 cells. In addition, we found an 80% decrease in the number of macroscopic lung metastases nodes of mice by in vivo analysis. Western blot assay showed that Slug expression was inhibited and E-cadherin expression was increased in the Slug siRNA-transfected tumors. CONCLUSIONS Targeting Slug signaling pathway is effective in preventing lung metastasis in ATC.
Collapse
Affiliation(s)
- Li Sheng
- Department of Clinical Laboratory, Yantai Yu-Huang-Ding Hospital, Yantai, Shandong, China (mainland)
| | - Shanjuan Zhang
- Department of Imaging, People's Hospital of Rizhao, Rizhao, Shandong, China (mainland)
| | - Hui Xu
- Department of Medicine, People's Hospital of Weifang, Weifang, Shandong, China (mainland)
| |
Collapse
|
20
|
Vicari L, Colarossi C, Giuffrida D, De Maria R, Memeo L. Cancer stem cells as a potential therapeutic target in thyroid carcinoma. Oncol Lett 2016; 12:2254-2260. [PMID: 27698787 DOI: 10.3892/ol.2016.4936] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/24/2016] [Indexed: 02/06/2023] Open
Abstract
A number of studies have indicated that tumor growth and proliferation is dependent on a small subset of cells, defined as cancer stem cells (CSCs). CSCs have the capability to self-renew, and are involved with cancer propagation, relapse and metastatic dissemination. CSCs have been isolated from numerous tissues, including normal and cancerous thyroid tissue. A regulatory network of signaling pathways and microRNAs (miRNAs) control the properties of CSCs. Differentiated thyroid carcinoma is the most common type of endocrine cancer, with an increasing incidence. Anaplastic thyroid carcinoma is the most rare type of endocrine cancer; however, it also exhibits the highest mortality rate among thyroid malignancies, with an extremely short survival time. Thyroid CSCs are invasive and highly resistant to conventional therapies, including radiotherapy and chemotherapy, which results in disease relapse even when the primary lesion has been eradicated. Therefore, targeting thyroid CSCs may represent an effective treatment strategy against aggressive neoplasms, including recurrent and radioresistant tumors. The present review summarizes the current literature regarding thyroid CSCs and discusses therapeutic strategies that target these cells, with a focus on the function of self-renewal pathways and miRNAs. Elucidation of the mechanisms that regulate CSC growth and survival may improve novel therapeutic approaches for treatment-resistant thyroid cancers.
Collapse
Affiliation(s)
- Luisa Vicari
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | - Dario Giuffrida
- Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| | | | - Lorenzo Memeo
- Cell Biology Unit, IOM Ricerca Srl, Viagrande I-95029 Catania, Italy; Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande I-95029 Catania, Italy
| |
Collapse
|
21
|
Dima M, Pecce V, Biffoni M, Di Gioia CRT, Tallini G, Biffoni M, Rosignolo F, Verrienti A, Sponziello M, Damante G, Russo D, Durante C. Molecular profiles of cancer stem-like cell populations in aggressive thyroid cancers. Endocrine 2016; 53:145-56. [PMID: 26370117 DOI: 10.1007/s12020-015-0739-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/06/2015] [Indexed: 12/18/2022]
Abstract
A substantial proportion of patients with advanced thyroid carcinoma fail to respond to or at some point become refractory to conventional therapies. This resistance and the phenomena of thyroid cancer progression and metastasis themselves are thought to be related to tumor-cell sub-populations with stem-like properties. We isolated thyrospheres from four advanced thyroid carcinomas that were resistant to radioiodine therapy and analyzed their molecular profiles. ALDH activity and proteomic profile of main stem cell markers were used to assess stem cell properties. The TaqMan Low Density Array approach was used to evaluate the expression of several genes involved in the EMT process. The phosphorylation status of tyrosine kinase receptors (RTKs) was analyzed to identify potential markers for targeted therapies. We then investigated the effects of the EMT-inhibitor crizotinib on both cell proliferation and phosphorylation status of RTK targets. The cancer stem-like properties of a subset of cells from primary cultures of each tumor were demonstrated. A wide variability among thyrospheres arising from the four thyroid cancers in terms of ALDH activity, stem cell marker expression, and phosphoproteome profiling was present. Dysregulated expression of genes involved in the EMT was observed in all four thyrosphere lines. Treatment with crizotinib was ineffective in cancer stem-like cells, suggesting the presence of a mechanism of resistance in thyrospheres. Collectively, our data indicate that thyroid cancer stem-like populations vary markedly from tumor to tumor and require detailed molecular and biological characterization if they are to be used as the basis of "personalized" treatment of aggressive disease.
Collapse
Affiliation(s)
- Mariavittoria Dima
- Dipartimento di Medicina Interna e Specialità Mediche, Università di Roma "Sapienza", Rome, Italy
| | - Valeria Pecce
- Dipartimento di Medicina Interna e Specialità Mediche, Università di Roma "Sapienza", Rome, Italy
| | - Mauro Biffoni
- Dipartimento di Ematologia, Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Rome, Italy
| | | | - Giovanni Tallini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Marco Biffoni
- Dipartimento di Scienze Chirurgiche, Università di Roma "Sapienza", Rome, Italy
| | - Francesca Rosignolo
- Dipartimento di Medicina Interna e Specialità Mediche, Università di Roma "Sapienza", Rome, Italy
| | - Antonella Verrienti
- Dipartimento di Medicina Interna e Specialità Mediche, Università di Roma "Sapienza", Rome, Italy
| | - Marialuisa Sponziello
- Dipartimento di Medicina Interna e Specialità Mediche, Università di Roma "Sapienza", Rome, Italy
| | - Giuseppe Damante
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, Udine, Italy
| | - Diego Russo
- Dipartimento di Scienze della Salute, Università di Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy.
| | - Cosimo Durante
- Dipartimento di Medicina Interna e Specialità Mediche, Università di Roma "Sapienza", Rome, Italy
| |
Collapse
|
22
|
Lin Z, Lu X, Li W, Sun M, Peng M, Yang H, Chen L, Zhang C, Cai L, Li Y. Association of Cancer Stem Cell Markers with Aggressive Tumor Features in Papillary Thyroid Carcinoma. Cancer Control 2015; 22:508-14. [PMID: 26678979 DOI: 10.1177/107327481502200418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Zhenzhen Lin
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
| | - Xuemian Lu
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
- Chinese-American Research Institute for Diabetic Complications, Ruian Center, Ruian, Zhejiang, China
| | - Weihua Li
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
| | - Mengli Sun
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
| | - Mengmeng Peng
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
| | - Hong Yang
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
| | - Liangmiao Chen
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
| | - Chi Zhang
- Department of Endocrinology, Third Affiliated Hospital, Wenzhou Medical University, Ruian, Zhejiang, China
- Chinese-American Research Institute for Diabetic Complications, Ruian Center, Ruian, Zhejiang, China
| | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, Ruian Center, Ruian, Zhejiang, China
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky
| | - Yan Li
- Department of Surgery, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
23
|
Zane M, Scavo E, Catalano V, Bonanno M, Todaro M, De Maria R, Stassi G. Normal vs cancer thyroid stem cells: the road to transformation. Oncogene 2015; 35:805-15. [PMID: 25961919 DOI: 10.1038/onc.2015.138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 01/06/2023]
Abstract
Recent investigations in thyroid carcinogenesis have led to the isolation and characterisation of a subpopulation of stem-like cells, responsible for tumour initiation, progression and metastasis. Nevertheless, the cellular origin of thyroid cancer stem cells (SCs) remains unknown and it is still necessary to define the process and the target population that sustain malignant transformation of tissue-resident SCs or the reprogramming of a more differentiated cell. Here, we will critically discuss new insights into thyroid SCs as a potential source of cancer formation in light of the available information on the oncogenic role of genetic modifications that occur during thyroid cancer development. Understanding the fine mechanisms that regulate tumour transformation may provide new ground for clinical intervention in terms of prevention, diagnosis and therapy.
Collapse
Affiliation(s)
- M Zane
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - E Scavo
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - V Catalano
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - M Bonanno
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - M Todaro
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - R De Maria
- Regina Elena National Cancer Institute, Rome, Italy
| | - G Stassi
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
24
|
Pandian V, Ramraj S, Khan FH, Azim T, Aravindan N. Metastatic neuroblastoma cancer stem cells exhibit flexible plasticity and adaptive stemness signaling. Stem Cell Res Ther 2015; 6:2. [PMID: 25888913 PMCID: PMC4396071 DOI: 10.1186/s13287-015-0002-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/28/2022] Open
Abstract
Introduction High-risk neuroblastoma (HR-NB) presenting with hematogenous metastasis is one of the most difficult cancers to cure. Patient survival is poor. Aggressive tumors contain populations of rapidly proliferating clonogens that exhibit stem cell properties, cancer stem cells (CSCs). Conceptually, CSCs that evade intensive multimodal therapy dictate tumor progression, relapse/recurrence, and poor clinical outcomes. Herein, we investigated the plasticity and stem-cell related molecular response of aggressive metastatic neuroblastoma cells that fit the CSC model. Methods Well-characterized clones of metastatic site-derived aggressive cells (MSDACs) from a manifold of metastatic tumors of clinically translatable HR-NB were characterized for their CSC fit by examining epithelial-to-mesenchymal transition (EMT) (E-cadherin, N-Cadherin), survival (NFκB P65, p50, IκB and pIκB) and drug resistance (ABCG2) by immunoblotting; pluripotency maintenance (Nanog, SOX2) by immunofluorescence; and EMT and stemness related transcription of 93 genes by QPCR profiling. Plasticity of MSDACs under sequential alternation of culture conditions with serum and serum-free stem-cell conditions was assessed by clonal expansion (BrdU incorporation), tumorosphere formation (anchorage independent growth), EMT and stemness related transcriptome (QPCR profiling) and validated with MYC, SOX2, EGFR, NOTCH1 and CXCL2 immunoblotting. Results HR-NB MSDACs maintained in alternated culture conditions, serum-free stem cell medium to growth medium with serum and vice versa identified its flexible revocable plasticity characteristics. We observed signatures of stem cell-related molecular responses consistent with phenotypic conversions. Successive reintroduction to the favorable niche not only regained identical EMT, self-renewal capacity, pluripotency maintenance, and other stem cell-related signaling events, but also instigated additional events depicting aggressive adaptive plasticity. Conclusions Together, these results demonstrated the flexible plasticity of HR-NB MSDACs that typically fit the CSC model, and further identified the intrinsic adaptiveness of the successive phenotype switching that clarifies the heterogeneity of HR-NB. Moreover, the continuous ongoing acquisition of stem cell-related molecular rearrangements may hold the key to the switch from favorable disease to HR-NB. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0002-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vijayabaskar Pandian
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Satishkumar Ramraj
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Faizan H Khan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Tasfia Azim
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
25
|
Abstract
The thyroid parafollicular cell, or commonly named "C-cell," functions in serum calcium homeostasis. Elevations in serum calcium trigger release of calcitonin from the C-cell, which in turn functions to inhibit absorption of calcium by the intestine, resorption of bone by the osteoclast, and reabsorption of calcium by renal tubular cells. Oncogenic transformation of the thyroid C-cell is thought to progress through a hyperplastic process prior to malignancy with increasing levels of serum calcitonin serving as a biomarker for tumor burden. The discovery that multiple endocrine neoplasia type 2 is caused by activating mutations of the RET gene serves to highlight the RET-RAS-MAPK signaling pathway in both initiation and progression of medullary thyroid carcinoma (MTC). Thyroid C-cells are known to express RET at high levels relative to most cell types; therefore, aberrant activation of this receptor is targeted primarily to the C-cell, providing one possible cause of tissue-specific oncogenesis. The role of RET signaling in normal C-cell function is unknown though calcitonin gene transcription appears to be sensitive to RET activation. Beyond RET, the modeling of oncogenesis in animals and screening of human tumors for candidate gene mutations have uncovered mutation of RAS family members and inactivation of Rb1 regulatory pathway as potential mediators of C-cell transformation. A growing understanding of how RET interacts with these pathways, both in normal C-cell function and during oncogenic transformation, will help in the development of novel molecular-targeted therapies.
Collapse
Affiliation(s)
- Gilbert J Cote
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1461, Houston, TX, 77030, USA.
| | - Elizabeth G Grubbs
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1484, Houston, TX, 77030, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1461, Houston, TX, 77030, USA
| |
Collapse
|
26
|
Arancio W, Carina V, Pizzolanti G, Tomasello L, Pitrone M, Baiamonte C, Amato MC, Giordano C. Anaplastic Thyroid Carcinoma: A ceRNA Analysis Pointed to a Crosstalk between SOX2, TP53, and microRNA Biogenesis. Int J Endocrinol 2015; 2015:439370. [PMID: 25705224 PMCID: PMC4326218 DOI: 10.1155/2015/439370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/28/2014] [Accepted: 09/10/2014] [Indexed: 12/18/2022] Open
Abstract
It has been suggested that cancer stem cells (CSC) may play a central role in oncogenesis, especially in undifferentiated tumours. Anaplastic thyroid carcinoma (ATC) has characteristics suggestive of a tumour enriched in CSC. Previous studies suggested that the stem cell factor SOX2 has a preeminent hierarchical role in determining the characteristics of stem cells in SW1736 ATC cell line. In detail, silencing SOX2 in SW1736 is able to suppress the expression of the stem markers analysed, strongly sensitizing the line to treatment with chemotherapeutic agents. Therefore, in order to further investigate the role of SOX2 in ATC, a competing endogenous RNA (ceRNA) analysis was conducted in order to isolate new functional partners of SOX2. Among the interactors, of particular interest are genes involved in the biogenesis of miRNAs (DICER1, RNASEN, and EIF2C2), in the control cell cycle (TP53, CCND1), and in mitochondrial activity (COX8A). The data suggest that stemness, microRNA biogenesis and functions, p53 regulatory network, cyclin D1, and cell cycle control, together with mitochondrial activity, might be coregulated.
Collapse
Affiliation(s)
- Walter Arancio
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- *Walter Arancio:
| | - Valeria Carina
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Istituto Ortopedico Rizzoli (IOR), Section of Biology and Genetics, Department of Pathobiology and Medical and Forensic Biotechnology (Di.Bi.Me.F.), University of Palermo, Via Divisi 83, 90100 Palermo, Italy
| | - Giuseppe Pizzolanti
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | - Laura Tomasello
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | - Maria Pitrone
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | - Concetta Baiamonte
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | - Marco Calogero Amato
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| | - Carla Giordano
- Section of Cardio-Respiratory and Endocrine-Metabolic Diseases, Biomedical Department of Internal and Specialist Medicine (Di.Bi.M.I.S.), University of Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
| |
Collapse
|
27
|
Hsu KT, Yu XM, Audhya AW, Jaume JC, Lloyd RV, Miyamoto S, Prolla TA, Chen H. Novel approaches in anaplastic thyroid cancer therapy. Oncologist 2014; 19:1148-55. [PMID: 25260367 PMCID: PMC4221369 DOI: 10.1634/theoncologist.2014-0182] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/18/2014] [Indexed: 11/17/2022] Open
Abstract
Anaplastic thyroid cancer (ATC), accounting for less than 2% of all thyroid cancer, is responsible for the majority of death from all thyroid malignancies and has a median survival of 6 months. The resistance of ATC to conventional thyroid cancer therapies, including radioiodine and thyroid-stimulating hormone suppression, contributes to the very poor prognosis of this malignancy. This review will cover several cellular signaling pathways and mechanisms, including RET/PTC, RAS, BRAF, Notch, p53, and histone deacetylase, which are identified to play roles in the transformation and dedifferentiation process, and therapies that target these pathways. Lastly, novel approaches and agents involving the Notch1 pathway, nuclear factor κB, Trk-fused gene, cancer stem-like cells, mitochondrial mutation, and tumor immune microenvironment are discussed. With a better understanding of the biological process and treatment modality, the hope is to improve ATC outcome in the future.
Collapse
Affiliation(s)
- Kun-Tai Hsu
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Xiao-Min Yu
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Anjon W Audhya
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Juan C Jaume
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Ricardo V Lloyd
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shigeki Miyamoto
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tomas A Prolla
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Herbert Chen
- Endocrine Surgery Research Laboratories, Department of Surgery, Department of Biomolecular Chemistry, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Department of Pathology and Laboratory Medicine, Department of Oncology, Department of Genetics and Medical Genetics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
28
|
Abstract
Thyroid cancer is one of the most rapidly increasing malignancies. The reasons for this increase is not completely known, but increases in the diagnosis of papillary thyroid microcarcinomas and follicular variant of papillary thyroid carcinomas along with the enhanced detection of well-differentiated thyroid carcinomas are probably all contributing factors. Although most cases of well-differentiated thyroid carcinomas are associated with an excellent prognosis, a small percentage of patients with well-differentiated thyroid carcinomas as well as most patients with poorly differentiated and anaplastic thyroid carcinomas have recurrent and/or metastatic disease that is often fatal. The cancer stem-like cell (CSC) model suggests that a small number of cells within a cancer, known as CSCs, are responsible for resistance to chemotherapy and radiation therapy, as well as for recurrent and metastatic disease. This review discusses current studies about thyroid CSCs, the processes of epithelial-to-mesenchymal transition (EMT), and mesenchymal-to-epithelial transition that provide plasticity to CSC growth, in addition to the role of microRNAs in CSC development and regulation. Understanding the biology of CSCs, EMT and the metastatic cascade should lead to the design of more rational targeted therapies for highly aggressive and fatal thyroid cancers.
Collapse
Affiliation(s)
- Zhenying Guo
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin School of Medicine and Public Health, Zhejiang, China
| | - Heather Hardin
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin School of Medicine and Public Health, Zhejiang, China
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory MedicineUniversity of Wisconsin School of Medicine and Public Health, Zhejiang, China
| |
Collapse
|
29
|
Madani A, Jozaghi Y, Tabah R, How J, Mitmaker E. Rare metastases of well-differentiated thyroid cancers: a systematic review. Ann Surg Oncol 2014; 22:460-6. [PMID: 25192681 DOI: 10.1245/s10434-014-4058-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND A minority of metastatic well-differentiated thyroid cancer (WDTC) patients present with end-organ disease other than in the lung, bone or lymph nodes. These metastases tend to be overlooked because of their low incidence, and this results in delayed diagnosis. The purpose of this study was to perform a systematic review of the clinical and histologic features of unusual WDTC metastases. METHODS A systematic literature search of bibliographic databases, reference lists of articles, and conference proceedings was performed up to 2013. Studies were included if they reported on adult patients with WDTC and pathology-proven metastases to end-organs other than lung, bone, or lymph nodes. A total of 238 studies were included in a qualitative analysis. Data is expressed as N (%) and median [interquartile range]. RESULTS A total of 492 patients (median age, 62 years [50-70 years]) were identified in 197 case reports and 42 case series. There were 22 different end-organ metastatic sites documented with either papillary [255 (57 %)], follicular [172 (39 %)], or Hürthle-cell [18 (4 %)] histology. A total of 181 (41 %) patients presented with solitary metastasis and 54 (93 %) with elevated serum thyroglobulin. Positron emission tomography and whole-body radioactive iodine scans revealed hypermetabolic foci in 28 (97 %) and 50 (81 %) cases, respectively. Disease-free interval following the initial diagnosis of the primary thyroid cancer was highly variable, ranging from synchronous presentation [66 (33 %)] to metachronous disease after 516 months [mean 86 months (SD 90)]. CONCLUSIONS WDTC can manifest with highly variable and unusual clinical features. Rare sites of metastases should be considered in the absence of the more common extra-cervical disease recurrence locations.
Collapse
Affiliation(s)
- Amin Madani
- Division of General Surgery, McGill University, Montreal, QC, Canada,
| | | | | | | | | |
Collapse
|
30
|
Reeb AN, Li W, Lin RY. Bioluminescent human thyrospheres allow noninvasive detection of anaplastic thyroid cancer growth and metastases in vivo. Thyroid 2014; 24:1134-8. [PMID: 24684373 PMCID: PMC4080863 DOI: 10.1089/thy.2014.0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND We have previously demonstrated that thyrospheres derived from human anaplastic thyroid cancer (ATC) cell lines can reconstitute and sustain tumor growth in vivo. The aim of this study was to use luciferase-expressing thyrospheres to establish a clinically relevant mouse model of ATC that allows noninvasive and sensitive monitoring of tumor progression. METHODS Two human ATC cell lines stably transfected with a firefly luciferase gene were used to generate thyrospheres under stem cell culture conditions. Cells were orthotopically implanted into the thyroids of immunodeficient NOD/SCIDIl2rg-/- mice to initiate tumors. Tumor progression and metastasis were evaluated by bioluminescent imaging weekly as well as histologic analysis postmortem. RESULTS We show that only 100 thyrosphere cells are needed for tumor development, and that tumors can be monitored with bioluminescent imaging as early as 7-14 days after implantation. Subsequent histologic evaluation of tissue sections confirmed characteristics of high-grade malignant neoplasms. CONCLUSIONS This approach offers rapid and highly sensitive noninvasive detection options for the preclinical assessment of novel ATC therapeutics in vivo.
Collapse
Affiliation(s)
- Ashley N Reeb
- Department of Otolaryngology-Head and Neck Surgery, Saint Louis University School of Medicine , Saint Louis, Missouri
| | | | | |
Collapse
|
31
|
Nilubol N, Boufraqech M, Zhang L, Kebebew E. Loss of CPSF2 expression is associated with increased thyroid cancer cellular invasion and cancer stem cell population, and more aggressive disease. J Clin Endocrinol Metab 2014; 99:E1173-82. [PMID: 24654752 PMCID: PMC4079301 DOI: 10.1210/jc.2013-4140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Identification of molecular factors that promote thyroid cancer progression have important clinical implications for therapy and prognostication in patients with papillary thyroid cancer (PTC). The aim of this study was to validate and determine the function of dysregulated genes that were associated increased mortality in patients with PTC. Experiemental Design: We selected the cleavage and polyadenylation specificity factor subunit 2 (CPSF2) gene from the top 5 significantly dysregulated genes associated with PTC-associated mortality from our previous study. We used 86 PTC samples enriched for aggressive disease (recurrence and mortality) by quantitative RT-PCR (qRT-PCR). In vitro functional studies of the validated gene were performed. RESULTS Decreased CPSF2 gene expression was associated with shorter disease-free survival (P = .03), large tumor size (T3 and T4) (P = .03), tumor recurrence (P < .01), and mortality (P < .01), independent of BRAF V600E mutation status. CPSF2 knockdown increased cellular invasion by 1.8- to 3.2-fold (P < .01) and increased markers of thyroid cancer stem cells (CD44 and CD133 expression). Immunohistochemistry showed an inverse correlation between CD44 protein expression in PTC samples and CPSF2 expression. CONCLUSION Decreased CPSF2 expression is associated with increased cellular invasion and cancer stem cell population, and more aggressive disease in PTC.
Collapse
Affiliation(s)
- Naris Nilubol
- Endocrine Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|