1
|
Brown LM, Ekert PG, Fleuren EDG. Biological and clinical implications of FGFR aberrations in paediatric and young adult cancers. Oncogene 2023:10.1038/s41388-023-02705-7. [PMID: 37130917 DOI: 10.1038/s41388-023-02705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Rare but recurrent mutations in the fibroblast growth factor receptor (FGFR) pathways, most commonly in one of the four FGFR receptor tyrosine kinase genes, can potentially be targeted with broad-spectrum multi-kinase or FGFR selective inhibitors. The complete spectrum of these mutations in paediatric cancers is emerging as precision medicine programs perform comprehensive sequencing of individual tumours. Identification of patients most likely to benefit from FGFR inhibition currently rests on identifying activating FGFR mutations, gene fusions, or gene amplification events. However, the expanding use of transcriptome sequencing (RNAseq) has identified that many tumours overexpress FGFRs, in the absence of any genomic aberration. The challenge now presented is to determine when this indicates true FGFR oncogenic activity. Under-appreciated mechanisms of FGFR pathway activation, including alternate FGFR transcript expression and concomitant FGFR and FGF ligand expression, may mark those tumours where FGFR overexpression is indicative of a dependence on FGFR signalling. In this review, we provide a comprehensive and mechanistic overview of FGFR pathway aberrations and their functional consequences in paediatric cancer. We explore how FGFR over expression might be associated with true receptor activation. Further, we discuss the therapeutic implications of these aberrations in the paediatric setting and outline current and emerging therapeutic strategies to treat paediatric patients with FGFR-driven cancers.
Collapse
Affiliation(s)
- Lauren M Brown
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.
| | - Emmy D G Fleuren
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Douglas JK, Callahan RE, Hothem ZA, Cousineau CS, Kawak S, Thibodeau BJ, Bergeron S, Li W, Peeples CE, Wasvary HJ. Genomic variation as a marker of response to neoadjuvant therapy in locally advanced rectal cancer. Mol Cell Oncol 2020; 7:1716618. [PMID: 32391418 PMCID: PMC7199754 DOI: 10.1080/23723556.2020.1716618] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023]
Abstract
There is variation in the responsiveness of locally advanced rectal cancer to neoadjuvant chemoradiation, from complete response to total resistance. This study compared genetic variation in rectal cancer patients who had a complete response to chemoradiation versus poor response, using tumor tissue samples sequenced with genomics analysis software. Rectal cancer patients treated with chemoradiation and proctectomy June 2006-March 2017 were grouped based on response to chemoradiation: those with no residual tumor after surgery (CR, complete responders, AJCC-CPR tumor grade 0, n = 8), and those with poor response (PR, AJCC-CPR tumor grade two or three on surgical resection, n = 8). We identified 195 variants in 83 genes in tissue specimens implicated in colorectal cancer biopathways. PR patients showed mutations in four genes not mutated in complete responders: KDM6A, ABL1, DAXX-ZBTB22, and KRAS. Ten genes were mutated only in the CR group, including ARID1A, PMS2, JAK1, CREBBP, MTOR, RB1, PRKAR1A, FBXW7, ATM C11orf65, and KMT2D, with specific discriminating variants noted in DMNT3A, KDM6A, MTOR, APC, and TP53. Although conclusions may be limited by small sample size in this pilot study, we identified multiple genetic variations in tumor DNA from rectal cancer patients who are poor responders to neoadjuvant chemoradiation, compared to complete responders.
Collapse
Affiliation(s)
| | - Rose E. Callahan
- Department of Surgical Research, Beaumont Research Institute, Royal Oak, MI, USA
| | | | | | - Samer Kawak
- Department of Surgery, Beaumont Health, Royal Oak, MI, USA
| | | | | | - Wei Li
- Department of Pathology, Beaumont Health, Royal Oak, MI, USA
| | | | | |
Collapse
|
3
|
Borgatti A, Koopmeiners JS, Sarver AL, Winter AL, Stuebner K, Todhunter D, Rizzardi AE, Henriksen JC, Schmechel S, Forster CL, Kim JH, Froelich J, Walz J, Henson MS, Breen M, Lindblad-Toh K, Oh F, Pilbeam K, Modiano JF, Vallera DA. Safe and Effective Sarcoma Therapy through Bispecific Targeting of EGFR and uPAR. Mol Cancer Ther 2017; 16:956-965. [PMID: 28193671 PMCID: PMC5418099 DOI: 10.1158/1535-7163.mct-16-0637] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 01/12/2023]
Abstract
Sarcomas differ from carcinomas in their mesenchymal origin. Therapeutic advancements have come slowly, so alternative drugs and models are urgently needed. These studies report a new drug for sarcomas that simultaneously targets both tumor and tumor neovasculature. eBAT is a bispecific angiotoxin consisting of truncated, deimmunized Pseudomonas exotoxin fused to EGF and the amino terminal fragment of urokinase. Here, we study the drug in an in vivo "ontarget" companion dog trial as eBAT effectively kills canine hemangiosarcoma and human sarcoma cells in vitro We reasoned the model has value due to the common occurrence of spontaneous sarcomas in dogs and a limited lifespan allowing for rapid accrual and data collection. Splenectomized dogs with minimal residual disease were given one cycle of eBAT followed by adjuvant doxorubicin in an adaptive dose-finding, phase I-II study of 23 dogs with spontaneous, stage I-II, splenic hemangiosarcoma. eBAT improved 6-month survival from <40% in a comparison population to approximately 70% in dogs treated at a biologically active dose (50 μg/kg). Six dogs were long-term survivors, living >450 days. eBAT abated expected toxicity associated with EGFR targeting, a finding supported by mouse studies. Urokinase plasminogen activator receptor and EGFR are targets for human sarcomas, so thorough evaluation is crucial for validation of the dog model. Thus, we validated these markers for human sarcoma targeting in the study of 212 human and 97 canine sarcoma samples. Our results support further translation of eBAT for human patients with sarcomas and perhaps other EGFR-expressing malignancies. Mol Cancer Ther; 16(5); 956-65. ©2017 AACR.
Collapse
Affiliation(s)
- Antonella Borgatti
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota.
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Joseph S Koopmeiners
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Amber L Winter
- Clinical Investigation Center, College of Veterinary Medicine, St. Paul, Minnesota
| | - Kathleen Stuebner
- Clinical Investigation Center, College of Veterinary Medicine, St. Paul, Minnesota
| | - Deborah Todhunter
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Radiation Oncology, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Anthony E Rizzardi
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Jonathan C Henriksen
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Stephen Schmechel
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington
| | - Colleen L Forster
- BioNet Histology Research Laboratory, Academic Health Center, University of Minnesota, Minneapolis, Minnesota
| | - Jong-Hyuk Kim
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Jerry Froelich
- Department of Radiology, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Jillian Walz
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Michael S Henson
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina
- Cancer Genetics Program, University of North Carolina Lineberger Comprehensive Cancer Center, Raleigh, North Carolina
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Felix Oh
- Department of Radiation Oncology, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Kristy Pilbeam
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Jaime F Modiano
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Daniel A Vallera
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Radiation Oncology, School of Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
4
|
Abstract
SS18-SSX (formerly called SYT-SSX) fusion gene has been established clinically as a molecular diagnostic test for synovial sarcoma, but the prognostic value of the fusion gene variant for survival is controversial. The objective of this systematic review is to provide an up-to-date and unprecedented summary of the prognostic impact of SS18-SSX fusion type in synovial sarcoma. Studies evaluating SS18-SSX fusion type as a prognostic marker in synovial sarcoma were systematically searched for in MEDLINE, EMBASE, and Web of Science. Comparative analysis of the pooled hazard ratios (HR) between fusion types was carried out, in order to assess the likelihood of overall survival (OS), disease-specific survival (DSS), progression-free survival (PFS), and metastasis-free survival (MFS). A total of 10 studies comprising 902 patients with synovial sarcoma were considered for the meta-analysis. The pooled HR for eight eligible studies evaluating for OS or DSS was 1.28 (95% confidence interval: 0.81-2.00), suggesting no significant difference between SS18-SSX1 and SS18-SSX2 (P = 0.29). For seven studies which evaluated for PFS or MFS, the presence of SS18-SSX1 may indicate a lower survival probability than that of SS18-SSX2, although the effect did not reach a level of statistical significance (P = 0.09). There was no significant difference in OS or DSS between SS18-SSX1 and SS18-SSX2, but there were indications of SS18-SSX1 being an unfavorable prognostic factor of PFS or MFS. Further studies including cohorts with a longer follow-up period are needed.
Collapse
|
6
|
Gao L, Feng Z, Li Q, Li L, Chen L, Xiao T. Fibroblast growth factor receptor 4 polymorphism is associated with increased risk and poor prognosis of non-Hodgkin's lymphoma. Tumour Biol 2013; 35:2997-3002. [PMID: 24248544 DOI: 10.1007/s13277-013-1386-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/05/2013] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor receptor 4 (FGFR4) is expressed in various cell types and plays important roles in regulating immune responses. Evidence has shown that FGFR4 rs351855 (Gly388Arg) polymorphism may act as a risk factor for many diseases. In the current study, we investigated the association between FGFR4 polymorphisms and the susceptibility to non-Hodgkin's lymphoma (NHL) in the Chinese population. Two polymorphisms in the FGFR4 gene (rs351855G/A and rs147603016G/A) were detected by polymerase chain reaction-restriction fragment length polymorphism in 421 NHL cases and 486 healthy controls. Results showed that prevalence of rs351855AA genotype was significantly increased in patients than in controls (odds ratio [OR] = 2.02, 95% confidence interval [CI] 1.91-3.23, P < 0.001). Similarly, rs351855A allele presented significantly higher numbers in cases compared to healthy donors (49.8 versus 40.1%, P < 0.001). Further study revealed that the frequency of the rs351855G/A polymorphism was clearly elevated in cases with B cell subtype than those with T cell subtypes. When analyzing the survival time of NHL patients with FGFR4 rs351855G/A polymorphism, cases with AA genotype had significantly shorter survival time compared to the patients with GG genotype (P < 0.001) or GA genotype (P < 0.001). These results suggest that FGFR4 rs351855G/A polymorphism is associated with increased susceptibility to NHL and could be used as a marker for predicting the prognosis of the malignancy.
Collapse
Affiliation(s)
- Lei Gao
- Department of Hematology, Liaocheng People's Hospital, Liaocheng, Shandong Province, 252000, China
| | | | | | | | | | | |
Collapse
|