1
|
Hu X, Chen G, Huang Y, Cheng Q, Zhuo J, Su R, He C, Wu Y, Liu Z, Yang B, Wang S, Meng L, Zheng S, Lu D, Wei Q, Yang J, Wei X, Chen R, Xu X. Integrated Multiomics Reveals Silencing of has_circ_0006646 Promotes TRIM21-Mediated NCL Ubiquitination to Inhibit Hepatocellular Carcinoma Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306915. [PMID: 38357830 PMCID: PMC11040345 DOI: 10.1002/advs.202306915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Recent studies suggest that circular RNA (circRNA)-mediated post-translational modification of RNA-binding proteins (RBP) plays a pivotal role in metastasis of hepatocellular carcinoma (HCC). However, the specific mechanism and potential clinical therapeutic significance remain vague. This study attempts to profile the regulatory networks of circRNA and RBP using a multi-omics approach. Has_circ_0006646 (circ0006646) is an unreported circRNA in HCC and is associated with a poor prognosis. Silencing of circ0006646 significantly hinders metastasis in vivo. Mechanistically, circ0006646 prevents the interaction between nucleolin (NCL) and the E3 ligase tripartite motif-containing 21 to reduce the proteasome-mediated degradation of NCL via K48-linked polyubiquitylation. Furthermore, the change of NCL expression is proven to affect the phosphorylation levels of multiple proteins and inhibit p53 translation. Moreover, patient-derived tumor xenograft and lentivirus injection, which is conducted to simulate clinical treatment confirmed the potential therapeutic value. Overall, this study describes the integrated multi-omics landscape of circRNA-mediated NCL ubiquitination degradation in HCC metastasis and provides a novel therapeutic target.
Collapse
Affiliation(s)
- Xin Hu
- Zhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- NHC Key Laboratory of Combined Multi‐organ TransplantationHangzhou310003China
| | - Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhou310053China
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhou310053China
| | - Qiyang Cheng
- Department of Hepatobiliary SurgeryBeijing Chaoyang Hospital affiliated to Capital Medical UniversityBeijing100020China
| | - Jianyong Zhuo
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Renyi Su
- Zhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
| | - Chiyu He
- Zhejiang University School of MedicineHangzhou310058China
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhou310022China
| | - Yichao Wu
- Zhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
| | - Zhikun Liu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Beng Yang
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310006China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Lijun Meng
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi‐organ TransplantationHangzhou310003China
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhou310022China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310006China
| | - Di Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Qiang Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Jiayin Yang
- Department of Liver SurgeryLiver Transplantation CenterWest China Hospital of Sichuan UniversityChengdu332001China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhou310006China
| | - Ronggao Chen
- NHC Key Laboratory of Combined Multi‐organ TransplantationHangzhou310003China
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310006China
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhou310058China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhou310006China
- NHC Key Laboratory of Combined Multi‐organ TransplantationHangzhou310003China
| |
Collapse
|
2
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
3
|
Popiel-Kopaczyk A, Piotrowska A, Sputa-Grzegrzolka P, Smolarz B, Romanowicz H, Dziegiel P, Podhorska-Okolow M, Kobierzycki C. The Immunohistochemical Expression of Epithelial-Mesenchymal Transition Markers in Precancerous Lesions and Cervical Cancer. Int J Mol Sci 2023; 24:8063. [PMID: 37175770 PMCID: PMC10179043 DOI: 10.3390/ijms24098063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
In the epithelial-mesenchymal transition (EMT) process, cells lose their epithelial phenotype and gain mesenchymal features. This phenomenon was observed in the metastatic phase of neoplastic diseases, e.g., cervical cancer. There are specific markers that are expressed in the EMT. The aim of this study was to determine the localization of and associations between the immunohistochemical (IHC) expression of TWIST, SNAIL, and SLUG proteins in precancerous lesions and cervical cancer. The IHC analysis disclosed higher expressions of EMT markers in precancerous lesions and cervical cancer than in the control group. Moreover, stronger expression of TWIST, SNAIL, and SLUG was observed in cervical intraepithelial neoplasia grade 3 (CIN3) vs. CIN1, CIN3 vs. CIN2, and CIN2 vs. CIN1 cases (p < 0.05). In cervical cancer, IHC reactions demonstrated differences in TWIST, SNAIL, and SLUG expression in grade 1 (G1) vs. grade 2 (G2) (p < 0.0011; p < 0.0017; p < 0.0001, respectively) and in G1 vs. grade 3 (G3) (p < 0.0029; p < 0.0005; p < 0.0001, respectively). The results of our study clearly showed that existing differences in the expression of the tested markers in precancerous vs. cancerous lesions may be utilized in the diagnosis of cervical cancer. Further studies on bigger populations, as well as in comparison with well-known markers, may improve our outcomes.
Collapse
Affiliation(s)
- Aneta Popiel-Kopaczyk
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (P.D.); (C.K.)
| | - Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (P.D.); (C.K.)
| | - Patrycja Sputa-Grzegrzolka
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Beata Smolarz
- Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland; (B.S.); (H.R.)
| | - Hanna Romanowicz
- Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland; (B.S.); (H.R.)
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (P.D.); (C.K.)
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| | | | - Christopher Kobierzycki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.P.); (P.D.); (C.K.)
| |
Collapse
|
4
|
HMGA1 As a Potential Prognostic and Therapeutic Biomarker in Breast Cancer. DISEASE MARKERS 2022; 2022:7466555. [PMID: 36479041 PMCID: PMC9720233 DOI: 10.1155/2022/7466555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
Abstract
Background High-mobility group AT-hook1 (HMGA1) protein plays an important role in various diseases. However, the contribution of HMGA1 in breast cancer remains to be tapped. Methods The expression of HMGA1 was analyzed in The Cancer Genome Atlas (TCGA) and TIMER database, and immunohistochemistry was performed in 39 breast cancer (BC) patients. The correlation between HMGA1 expression and prognosis was evaluated using Kaplan-Meier plotter (KM plotter) in patients with breast cancer. Then, cBioPortal and bc-GenExMiner were requisitioned to analyze the contribution of HMGA1 expression to clinical features. In order to reveal the function of HMGA1 in breast cancer cells, enrichment analysis was performed using the clusterProfiler R software package. Moreover, CCK8 assay, EdU assay, and Cell Cycle Assay were performed to assess the proliferation, and transwell assay was used to evaluate cell migration and invasion. Flow cytometry was used to explore the role of HMGA1 on cell apoptosis. After that, the effect of HMGA1 on signaling pathways in BC cells was detected by western blot. Results HMGA1 was highly expressed in a variety of tumors tissues, including BC. High HMGA1 expression was correlated with poor prognosis in BC patients. Meanwhile, HMGA1 expression was increased in molecular phenotypes with poor prognosis (ER-, PR-, and HER2+) and associated with high-grade group, lymph node metastasis, and NPI (Nottingham Prognostic Index). Further, function analysis revealed HMGA1 was enriched in DNA replication and cell cycle pathways in breast cancer. Moreover, knockdown of HMGA1 caused apoptosis, inhibited proliferation, migration, and invasion of MCF-7 and MDA-MB-231 cells, in which the oncogenic signaling pathway of PI3K/AKT/MMP9 played a critical role. Conclusions HMGA1 was important for breast cancer progression and was a critical prognostic indicator, prompting a potential therapeutic target of breast cancer.
Collapse
|
5
|
Barillari G, Bei R, Manzari V, Modesti A. Infection by High-Risk Human Papillomaviruses, Epithelial-to-Mesenchymal Transition and Squamous Pre-Malignant or Malignant Lesions of the Uterine Cervix: A Series of Chained Events? Int J Mol Sci 2021; 22:13543. [PMID: 34948338 PMCID: PMC8703928 DOI: 10.3390/ijms222413543] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022] Open
Abstract
Wound healing requires static epithelial cells to gradually assume a mobile phenotype through a multi-step process termed epithelial-to-mesenchymal transition (EMT). Although it is inherently transient and reversible, EMT perdures and is abnormally activated when the epithelium is chronically exposed to pathogens: this event deeply alters the tissue and eventually contributes to the development of diseases. Among the many of them is uterine cervical squamous cell carcinoma (SCC), the most frequent malignancy of the female genital system. SCC, whose onset is associated with the persistent infection of the uterine cervix by high-risk human papillomaviruses (HR-HPVs), often relapses and/or metastasizes, being resistant to conventional chemo- or radiotherapy. Given that these fearsome clinical features may stem, at least in part, from the exacerbated and long-lasting EMT occurring in the HPV-infected cervix; here we have reviewed published studies concerning the impact that HPV oncoproteins, cellular tumor suppressors, regulators of gene expression, inflammatory cytokines or growth factors, and the interactions among these effectors have on EMT induction and cervical carcinogenesis. It is predictable and desirable that a broader comprehension of the role that EMT inducers play in SCC pathogenesis will provide indications to flourish new strategies directed against this aggressive tumor.
Collapse
Affiliation(s)
- Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 1 via Montellier, 00133 Rome, Italy; (R.B.); (V.M.); (A.M.)
| | | | | | | |
Collapse
|
6
|
Inhibiting the redox function of APE1 suppresses cervical cancer metastasis via disengagement of ZEB1 from E-cadherin in EMT. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:220. [PMID: 34210327 PMCID: PMC8246661 DOI: 10.1186/s13046-021-02006-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/06/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Metastasis is a major challenge in cervical cancer treatment. Previous studies have shown that the dual functional protein apurinic/apyrimidinic endonuclease 1 (APE1) promotes tumor metastasis and is overexpressed in cervical cancer. However, the biological role and mechanism of APE1 in cervical cancer metastasis have rarely been studied. METHODS We used gene set enrichment analysis (GSEA) to determine the APE1-related signaling pathways in cervical cancer. To investigate the role and mechanism of APE1 in cervical cancer metastasis and invasion, immunohistochemistry, immunofluorescence, western blotting, secondary structure prediction, coimmunoprecipitation, luciferase reporter, and electrophoretic mobility shift assays were performed. The inhibitory effects of the APE1 redox function inhibitor APX3330 on cervical cancer metastasis were evaluated using animal models. RESULTS Clinical data showed that high expression of APE1 was associated with lymph node metastasis in cervical cancer patients. GSEA results showed that APE1 was associated with epithelial to mesenchymal transition (EMT) in cervical cancer. Ectopic expression of APE1 promoted EMT and invasion of cervical cancer cells, whereas inhibition of APE1 suppressed EMT and invasion of cervical cancer cells in a redox function-dependent manner. Notably, APE1 redox function inhibitor APX3330 treatment dramatically suppressed cervical cancer cell lymph node and distant metastasis in vivo. Furthermore, we found that APE1 enhanced the interaction between ZEB1 and the E-cadherin promoter by binding to ZEB1, thereby suppressing the expression of E-cadherin, a negative regulator of EMT. CONCLUSION Our findings help to elucidate the role played by APE1 in cervical cancer metastasis and targeting APE1 redox function may be a novel strategy for inhibiting cervical cancer metastasis.
Collapse
|
7
|
Bryson BL, Tamagno I, Taylor SE, Parameswaran N, Chernosky NM, Balasubramaniam N, Jackson MW. Aberrant Induction of a Mesenchymal/Stem Cell Program Engages Senescence in Normal Mammary Epithelial Cells. Mol Cancer Res 2020; 19:651-666. [PMID: 33443106 DOI: 10.1158/1541-7786.mcr-19-1181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 10/23/2020] [Accepted: 12/15/2020] [Indexed: 11/16/2022]
Abstract
Although frequently associated with tumor progression, inflammatory cytokines initially restrain transformation by inducing senescence, a key tumor-suppressive barrier. Here, we demonstrate that the inflammatory cytokine, oncostatin M, activates a mesenchymal/stem cell (SC) program that engages cytokine-induced senescence (CIS) in normal human epithelial cells. CIS is driven by Snail induction and requires cooperation between STAT3 and the TGFβ effector, SMAD3. Importantly, as cells escape CIS, they retain the mesenchymal/SC program and are thereby bestowed with a set of cancer SC (CSC) traits. Of therapeutic importance, cells that escape CIS can be induced back into senescence by CDK4/6 inhibition, confirming that the mechanisms allowing cells to escape senescence are targetable and reversible. Moreover, by combining CDK4/6 inhibition with a senolytic therapy, mesenchymal/CSCs can be efficiently killed. Our studies provide insight into how the CIS barriers that prevent tumorigenesis can be exploited as potential therapies for highly aggressive cancers. IMPLICATIONS: These studies reveal how a normal cell's arduous escape from senescence can bestow aggressive features early in the transformation process, and how this persistent mesenchymal/SC program can create a novel potential targetability following tumor development.
Collapse
Affiliation(s)
- Benjamin L Bryson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Ilaria Tamagno
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Sarah E Taylor
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Neetha Parameswaran
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Noah M Chernosky
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Nikhila Balasubramaniam
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Mark W Jackson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
8
|
Lehman HL, Kidacki M, Stairs DB. Twist2 is NFkB-responsive when p120-catenin is inactivated and EGFR is overexpressed in esophageal keratinocytes. Sci Rep 2020; 10:18829. [PMID: 33139779 PMCID: PMC7608670 DOI: 10.1038/s41598-020-75866-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the most aggressive and fatal cancer types. ESCC classically progresses rapidly and frequently causes mortality in four out of five patients within two years of diagnosis. Yet, little is known about the mechanisms that make ESCC so aggressive. In a previous study we demonstrated that p120-catenin (p120ctn) and EGFR, two genes associated with poor prognosis in ESCC, work together to cause invasion. Specifically, inactivation of p120ctn combined with overexpression of EGFR induces a signaling cascade that leads to hyperactivation of NFkB and a resultant aggressive cell type. The purpose of this present study was to identify targets that are responsive to NFkB when p120ctn and EGFR are modified. Using human esophageal keratinocytes, we have identified Twist2 as an NFkB-responsive gene. Interestingly, we found that when NFkB is hyperactivated in cells with EGFR overexpression and p120ctn inactivation, Twist2 is significantly upregulated. Inhibition of NFkB activity results in nearly complete loss of Twist2 expression, suggesting that this potential EMT-inducing gene, is a responsive target of NFkB. There exists a paucity of research on Twist2 in any cancer type; as such, these findings are important in ESCC as well as in other cancer types.
Collapse
Affiliation(s)
- Heather L Lehman
- Department of Biology, Millersville University, Millersville, PA, 17551, USA
| | - Michal Kidacki
- Department of Internal Medicine, Mercy Catholic Medical Center, Darby, PA, 19023, USA
| | - Douglas B Stairs
- Department of Pathology, The Pennsylvania State University College of Medicine, 500 University Dr., Mail Code H083, Hershey, PA, 17033, USA.
| |
Collapse
|
9
|
Smigiel JM, Taylor SE, Bryson BL, Tamagno I, Polak K, Jackson MW. Cellular plasticity and metastasis in breast cancer: a pre- and post-malignant problem. JOURNAL OF CANCER METASTASIS AND TREATMENT 2019; 5:47. [PMID: 32355893 PMCID: PMC7192216 DOI: 10.20517/2394-4722.2019.26] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
As a field we have made tremendous strides in treating breast cancer, with a decline in the past 30 years of overall breast cancer mortality. However, this progress is met with little affect once the disease spreads beyond the primary site. With a 5-year survival rate of 22%, 10-year of 13%, for those patients with metastatic breast cancer (mBC), our ability to effectively treat wide spread disease is minimal. A major contributing factor to this ineffectiveness is the complex make-up, or heterogeneity, of the primary site. Within a primary tumor, secreted factors, malignant and pre-malignant epithelial cells, immune cells, stromal fibroblasts and many others all reside alongside each other creating a dynamic environment contributing to metastasis. Furthermore, heterogeneity contributes to our lack of understanding regarding the cells' remarkable ability to undergo epithelial/non-cancer stem cell (CSC) to mesenchymal/CSC (E-M/CSC) plasticity. The enhanced invasion & motility, tumor-initiating potential, and acquired therapeutic resistance which accompanies E-M/CSC plasticity implicates a significant role in metastasis. While most work trying to understand E-M/CSC plasticity has been done on malignant cells, recent evidence is emerging concerning the ability for pre-malignant cells to undergo E-M/CSC plasticity and contribute to the metastatic process. Here we will discuss the importance of E-M/CSC plasticity within malignant and pre-malignant populations of the tumor. Moreover, we will discuss how one may potentially target these populations, ultimately disrupting the metastatic cascade and increasing patient survival for those with mBC.
Collapse
Affiliation(s)
- Jacob M. Smigiel
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sarah E. Taylor
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Benjamin L. Bryson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ilaria Tamagno
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kelsey Polak
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mark W. Jackson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
Gou J, Hu T, Li L, Xue L, Zhao X, Yi T, Li Z. Role of epithelial–mesenchymal transition regulated by twist basic helix-loop-helix transcription factor 2 (Twist2) in embryo implantation in mice. Reprod Fertil Dev 2019; 31:932-940. [DOI: 10.1071/rd18314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
In a previous study we found the expression of epithelial–mesenchymal transition (EMT) biomarkers, including E-cadherin and N-cadherin, was significantly altered in uterine endometrium during embryo implantation via regulation by microRNA (miRNA)-429 and protocadherin-8 (Pcdh8). As a natural continuation of the previous study, the aim of the present study was to explore the role of EMT during embryo implantation and the potential activity of twist basic helix-loop-helix transcription factor 2 (Twist2) in regulating embryo implantation. A pregnancy model was established by naturally mating adult female ICR mice with fertile males. A pseudopregnancy model was established by mating fertile female ICR mice with vasectomised males. An invitro model of embryo implantation was established by the coculture of Ishikawa and JAR spheroids. Endometrial tissue during the peri-implantation period was collected, as were Ishikawa cells, JAR cells and cocultured cells. The expression of EMT markers (E-cadherin, N-cadherin, vimentin and cytokeratin) and Twist2 was detected invivo and invitro using the western blot analysis during embryo implantation. The expression of N-cadherin and vimentin (mesenchymal markers) was upregulated in the invitro implantation model, with downregulation of E-cadherin and cytokeratin (epithelial markers) expression. The expression of N-cadherin, vimentin and Twist2 increased significantly at the implantation sites at the time of implantation (Day 5), whereas the expression of E-cadherin and cytokeratin decreased. Location of Twist2 during embryo implantation was detected by immunohistochemistry (IHC), which revealed that it was extensively expressed in endometrial glandular epithelium and luminal epithelium at implantation sites on Day 5. The effect of the expression of Twist2 on embryo implantation was evaluated by suppressing Twist2 using Twist2-short interference (si) RNA in invivo and invitro models. The numbers of implanted embryos and the implantation rate were compared invivo and invitro. Western blot analysis showed that suppression of Twist2 led to upregulation of E-cadherin and cytokeratin, accompanied by downregulation of N-cadherin and vimentin (P<0.05). The number of implanted embryos after Twist2-siRNA interference was lower than in normal pregnancy (mean (±s.d.) 2.4±0.5 vs 6.8±1.3 respectively; P<0.05). These findings suggest the involvement of EMT in embryo implantation. The suppression of Twist2 could suppress embryo implantation by regulating EMT.
Collapse
|
11
|
Zhou CF, Ma J, Huang L, Yi HY, Zhang YM, Wu XG, Yan RM, Liang L, Zhong M, Yu YH, Wu S, Wang W. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1. Oncogene 2018; 38:1256-1268. [PMID: 30254211 PMCID: PMC6363643 DOI: 10.1038/s41388-018-0511-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/03/2018] [Accepted: 07/31/2018] [Indexed: 12/20/2022]
Abstract
Cancer-secreted exosomal miRNAs are emerging mediators of cancer-stromal cross-talk in the tumor environment. Our previous miRNAs array of cervical squamous cell carcinoma (CSCC) clinical specimens identified upregulation of miR-221-3p. Here, we show that miR-221-3p is closely correlated with peritumoral lymphangiogenesis and lymph node (LN) metastasis in CSCC. More importantly, miR-221-3p is characteristically enriched in and transferred by CSCC-secreted exosomes into human lymphatic endothelial cells (HLECs) to promote HLECs migration and tube formation in vitro, and facilitate lymphangiogenesis and LN metastasis in vivo according to both gain-of-function and loss-of-function experiments. Furthermore, we identify vasohibin-1 (VASH1) as a novel direct target of miR-221-3p through bioinformatic target prediction and luciferase reporter assay. Re-expression and knockdown of VASH1 could respectively rescue and simulate the effects induced by exosomal miR-221-3p. Importantly, the miR-221-3p-VASH1 axis activates the ERK/AKT pathway in HLECs independent of VEGF-C. Finally, circulating exosomal miR-221-3p levels also have biological function in promoting HLECs sprouting in vitro and are closely associated with tumor miR-221-3p expression, lymphatic VASH1 expression, lymphangiogenesis, and LN metastasis in CSCC patients. In conclusion, CSCC-secreted exosomal miR-221-3p transfers into HLECs to promote lymphangiogenesis and lymphatic metastasis via downregulation of VASH1 and may represent a novel diagnostic biomarker and therapeutic target for metastatic CSCC patients in early stages.
Collapse
Affiliation(s)
- Chen-Fei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jing Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Lei Huang
- Institute of Cellular Medicine, Faculty of Medical Sciences, Framlington Place, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Hong-Yan Yi
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Mei Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomic, Guangzhou, 510515, China
| | - Xiang-Guang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Rui-Ming Yan
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Li Liang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yan-Hong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomic, Guangzhou, 510515, China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China. .,Department of Obstetrics and Gynecology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Wishahi M, Khalil H, Badawy MH, Elkholy A, Eseily K, Anis S, Eldahshan S, Kamel N, Romeih M. Upregulation of Twist2 in Non-Muscle Invasive Urothelial Carcinoma of the Bladder Correlate with Response to Treatment and Progression. Open Access Maced J Med Sci 2018; 6:1017-1022. [PMID: 29983794 PMCID: PMC6026420 DOI: 10.3889/oamjms.2018.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/15/2018] [Accepted: 05/19/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND: Twist2 is a transcription factor and an epithelial-to-mesenchymal transition that plays an important role in cell polarity, cell adhesion, and has a role in tumour invasion and metastases. AIM: In this study, we examined the expression of Twist2 in non-muscle invasive bladder carcinoma (NMIBC) and correlated the expression with response to treatment and tumour progression. METHODS: Data of 305 patients with NMIBC of Ta, T1 were retrieved from hospitals archives. Twist2 expression was examined in tissue samples by immunohistochemistry at initial diagnosis and final follow-up, normal control was 10 normal urothelium, 10 patients with muscle-invasive bladder cancer (MIBC) were a positive control. Treatment of NMIBC was implemented according to the European Association of Urology guidelines on NMIBC. The descriptive statistical analysis included means, standard deviation, p-value; Univariate and multivariate Cox regression analyses. RESULTS: Twist2 expression score was identified as negative, low (1-15%); medium (15-40%); and high (40-100%). Patients who had low or low medium scores at the initial diagnosis had a good response and a favourable prognosis. Expression of a high score of Twist2 in patients having high-grade T1 tumours showed non-responsiveness to repeated courses of intravesical bacillus Calmette Guerin (BCG) therapy and was upstaged to MIBC. CONCLUSION: Twist2 expression in tissue samples of NMIBC would indicate the tumour response to therapy, upgrading and upstaging in the follow up after intravesical BCG therapy.
Collapse
Affiliation(s)
- Mohamed Wishahi
- Urology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Heba Khalil
- Pathology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Mohamed H Badawy
- Urology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Amr Elkholy
- Urology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Khaled Eseily
- Urology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Shady Anis
- Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samir Eldahshan
- Urology Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Noura Kamel
- Pathology Departments, National Research Centre, Cairo, Egypt
| | - Mahmoud Romeih
- Biochemistry Department, Theodor Bilharz Research Institute, Cairo, Egypt
| |
Collapse
|
13
|
Bowers LW, Rossi EL, McDonell SB, Doerstling SS, Khatib SA, Lineberger CG, Albright JE, Tang X, deGraffenried LA, Hursting SD. Leptin Signaling Mediates Obesity-Associated CSC Enrichment and EMT in Preclinical TNBC Models. Mol Cancer Res 2018; 16:869-879. [PMID: 29453319 PMCID: PMC5967653 DOI: 10.1158/1541-7786.mcr-17-0508] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/13/2017] [Accepted: 01/23/2018] [Indexed: 12/19/2022]
Abstract
Obesity is associated with poor prognosis in triple-negative breast cancer (TNBC). Preclinical models of TNBC were used to test the hypothesis that increased leptin signaling drives obesity-associated TNBC development by promoting cancer stem cell (CSC) enrichment and/or epithelial-to-mesenchymal transition (EMT). MMTV-Wnt-1 transgenic mice, which develop spontaneous basal-like, triple-negative mammary tumors, received either a control diet (10% kcal from fat) or a diet-induced obesity regimen (DIO, 60% kcal from fat) for up to 42 weeks (n = 15/group). Mice were monitored for tumor development and euthanized when tumor diameter reached 1.5 cm. Tumoral gene expression was assessed via RNA sequencing (RNA-seq). DIO mice had greater body weight and percent body fat at termination than controls. DIO mice, versus controls, demonstrated reduced survival, increased systemic metabolic and inflammatory perturbations, upregulated tumoral CSC/EMT gene signature, elevated tumoral aldehyde dehydrogenase activity (a CSC marker), and greater leptin signaling. In cell culture experiments using TNBC cells (murine: E-Wnt and M-Wnt; human: MDA-MB-231), leptin enhanced mammosphere formation, and media supplemented with serum from DIO versus control mice increased cell viability, migration, invasion, and CSC- and EMT-related gene expression, including Foxc2, Twist2, Vim, Akt3, and Sox2 In E-Wnt cells, knockdown of leptin receptor ablated these procancer effects induced by DIO mouse serum. These findings indicate that increased leptin signaling is causally linked to obesity-associated TNBC development by promoting CSC enrichment and EMT.Implications: Leptin-associated signals impacting CSC and EMT may provide new targets and intervention strategies for decreasing TNBC burden in obese women. Mol Cancer Res; 16(5); 869-79. ©2018 AACR.
Collapse
Affiliation(s)
- Laura W Bowers
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Emily L Rossi
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Shannon B McDonell
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Steven S Doerstling
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Subreen A Khatib
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Claire G Lineberger
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Jody E Albright
- Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina
| | - Xiaohu Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | | | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
- Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina
| |
Collapse
|
14
|
Wei WF, Zhou CF, Wu XG, He LN, Wu LF, Chen XJ, Yan RM, Zhong M, Yu YH, Liang L, Wang W. MicroRNA-221-3p, a TWIST2 target, promotes cervical cancer metastasis by directly targeting THBS2. Cell Death Dis 2017; 8:3220. [PMID: 29242498 PMCID: PMC5870596 DOI: 10.1038/s41419-017-0077-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/26/2017] [Accepted: 09/27/2017] [Indexed: 01/05/2023]
Abstract
MicroRNAs have implicated in the relapse and metastasis of cervical cancer, which is the leading cause of cervical cancer-related mortality. However, the underlying molecular mechanisms need further elucidation. Our present study revealed that miR-221-3p is transcriptionally promoted in metastatic cervical cancer tissues compared with non-metastatic cervical cancer tissues. Forced overexpression of miR-221-3p facilitated EMT and promoted cell migration and invasion in vitro and lymphatic metastasis in vivo. Twist homolog 2 (TWIST2) was found to be a key transcription factor binding to the promoter of miR-221-3p. Inhibitors of miR-221-3p drastically reduced the induction of EMT and decreased cell migration and invasion mediated by TWIST2. By combined computational and experimental approaches, THBS2 was recognized to be an important downstream target gene of miR-221-3p. In cervical cancer tissues, especially with lymphatic metastasis, miR-221-3p and TWIST2 were increased and THBS2 was decreased, suggesting that TWIST2 induces miR-221-3p expression and consequently suppresses its direct target THBS2 in lymphatic metastasis CC. Our findings uncover a mechanistic role for miR-221-3p in lymph node metastasis, suggesting that miR-221-3p is upregulated by the transcription factor TWIST2 and downregulates its target THBS2, which may potentially promote lymph node metastasis in cervical cancer.
Collapse
Affiliation(s)
- Wen-Fei Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Chen-Fei Zhou
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiang-Guang Wu
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Li-Na He
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Lan-Fang Wu
- Department of Obstetrics and Gynecology, Third Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiao-Jing Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Rui-Ming Yan
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yan-Hong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Li Liang
- Department of pathology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
15
|
Abbadie C, Pluquet O, Pourtier A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell Mol Life Sci 2017; 74:4471-4509. [PMID: 28707011 PMCID: PMC11107641 DOI: 10.1007/s00018-017-2587-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.
Collapse
Affiliation(s)
- Corinne Abbadie
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France.
| | - Olivier Pluquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| |
Collapse
|
16
|
Wu L, Han L, Zhou C, Wei W, Chen X, Yi H, Wu X, Bai X, Guo S, Yu Y, Liang L, Wang W. TGF-β1-induced CK17 enhances cancer stem cell-like properties rather than EMT in promoting cervical cancer metastasis via the ERK1/2-MZF1 signaling pathway. FEBS J 2017; 284:3000-3017. [PMID: 28703907 DOI: 10.1111/febs.14162] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 12/18/2022]
Abstract
Tumor metastasis remains a major obstacle for improving overall cancer survival in cervical cancer (CC), which may be due to the existence of tumor microenvironment-related cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT). The mechanism underlying these processes needs to be further elucidated. Here, we report that TGF-β1, one of the key microenvironmental stimuli, can enhance CSC characteristics, facilitate the EMT, and induce CK17. Silencing CK17 expression attenuated CSC-like properties without affecting the EMT markers induced by TGF-β1, whereas forced overexpression of CK17 promoted lymphatic metastasis in vivo even without EMT inducement. Inhibitors of ERK1/2 signaling drastically decreased the induction of CK17 mediated by TGF-β1. By combined computational and experimental approaches, we identified and validated that MZF1 was a key transcription factor binding to the promoter of CK17. Taken together, these results demonstrate that CK17 induced by the TGF-β1-ERK1/2-MZF1 signaling pathway facilitates metastasis by promoting the acquisition of CSC properties rather than by inducing the EMT process in CC, suggesting that this CK17-related signaling pathway might be a suitable target for the development of therapy for CC metastasis.
Collapse
Affiliation(s)
- Lanfang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Lingfei Han
- Department of Minimally Invasive Gynecologic Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenfei Zhou
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenfei Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaojing Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyan Yi
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangguang Wu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiangyang Bai
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Suiqun Guo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yanhong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Han M, Xu W. EMP3 is induced by TWIST1/2 and regulates epithelial-to-mesenchymal transition of gastric cancer cells. Tumour Biol 2017; 39:1010428317718404. [PMID: 28718375 DOI: 10.1177/1010428317718404] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study, we aimed to explore new downstream effectors of TWIST1/2 in inducing epithelial-to-mesenchymal transition in gastric cancer. Bioinformatic data mining was performed using data in The Cancer Genome Atlas Stomach Adenocarcinoma. Survival curves were generated using Kaplan-Meier plotter. Gastric cancer cell lines (AGS and SGC-7901) were used as in vitro cell model to investigate the regulative effect of TWIST1/2 on epithelial membrane protein 3 expression and the progression of epithelial-to-mesenchymal transition. Results showed that TWIST1 and TWIST2 are usually co-upregulated in patients with primary gastric cancer. High TWIST1 expression is associated with worse overall survival (hazard ratio = 1.26; 95% confidence interval = 1.06-1.49; p = 0.007) and also worse first progression-free survival (hazard ratio = 1.47; 95% confidence interval = 1.18-1.82; p < 0.0001). Similarly, high TWIST2 expression is associated with unfavorable overall survival (hazard ratio = 1.71; 95% confidence interval = 1.32-2.22; p < 0.0001) and progression-free survival (hazard ratio = 1.99; 95% confidence interval = 1.45-2.72; p < 0.0001). Epithelial membrane protein 3 is negatively correlated to CDH1 expression (Pearson's r = -0.46) but is positively correlated to VIM expression (Pearson's r = 0.83). Knockdown of epithelial membrane protein 3 significantly increased E-cadherin but significantly decreased Vimentin expression in AGS cells. Gastric cancer patients with metastasis have significantly higher epithelial membrane protein 3 expression than the cases without metastasis. In addition, high epithelial membrane protein 3 expression is associated with worse overall survival (hazard ratio = 2.59; 95% confidence interval = 2.06-3.26; p < 0.0001) and also worse progression-free survival (hazard ratio = 2.21; 95% confidence interval = 1.78-2.74; p < 0.0001). In conclusion, epithelial membrane protein 3 is a downstream effector of TWIST1/2 in inducing epithelial-to-mesenchymal transition in gastric cancer. Epithelial membrane protein 3 upregulation might be associated with gastric cancer metastasis and is a potential indicator of unfavorable overall survival and progression-free survival in gastric cancer patients.
Collapse
Affiliation(s)
- Ming Han
- 1 School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Wanpeng Xu
- 2 Department of Gastrointestinal and Anal Diseases Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
18
|
Grunz-Borgmann EA, Nichols LA, Wang X, Parrish AR. Twist2 Is Upregulated in Early Stages of Repair Following Acute Kidney Injury. Int J Mol Sci 2017; 18:ijms18020368. [PMID: 28208580 PMCID: PMC5343903 DOI: 10.3390/ijms18020368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/05/2017] [Accepted: 02/03/2017] [Indexed: 12/04/2022] Open
Abstract
The aging kidney is a marked by a number of structural and functional changes, including an increased susceptibility to acute kidney injury (AKI). Previous studies from our laboratory have shown that aging male Fischer 344 rats (24 month) are more susceptible to apoptosis-mediated injury than young counterparts. In the current studies, we examined the initial injury and early recovery phases of mercuric chloride-induced AKI. Interestingly, the aging kidney had decreased serum creatinine compared to young controls 1 day following mercuric chloride injury, but by day 4, serum creatinine was significantly elevated, suggesting that the aging kidney did not recover from injury. This conclusion is supported by the findings that serum creatinine and kidney injury molecule-1 (Kim-1) gene expression remain elevated compared to young controls at 10 days post-injury. To begin to elucidate mechanism(s) underlying dysrepair in the aging kidney, we examined the expression of Twist2, a helix-loop-helix transcription factor that may mediate renal fibrosis. Interestingly, Twist2 gene expression was elevated following injury in both young and aged rats, and Twist2 protein expression is elevated by mercuric chloride in vitro.
Collapse
Affiliation(s)
- Elizabeth A Grunz-Borgmann
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - LaNita A Nichols
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Xinhui Wang
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | - Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
19
|
Taherian-Esfahani Z, Abedin-Do A, Nouri Z, Mirfakhraie R, Ghafouri-Fard S, Motevaseli E. Lactobacilli Differentially Modulate mTOR and Wnt/ β-Catenin Pathways in Different Cancer Cell Lines. IRANIAN JOURNAL OF CANCER PREVENTION 2016; 9:e5369. [PMID: 27703648 PMCID: PMC5038836 DOI: 10.17795/ijcp-5369] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/09/2016] [Accepted: 05/18/2016] [Indexed: 01/27/2023]
Abstract
Background Lactobacilli are a group of beneficial bacteria whose anti cancer effects have been evaluated in different cancer cell lines as well as animal models and human subjects. Such anti cancer effects can be exerted via different mechanisms such as modulation of immune response as well as inhibition of pathogens colonization. In addition, lactobacilli have direct cytotoxic effects against cancer cells which may be exerted through modulation of expression cancer related pathways. Objectives The aim of this study is to find the mechanism of anti cancer effects of two lactobacilli strains, Lactobacillus. crispatus (LC) and Lactobacillus. rhamnosus (LR). Materials and Methods We analyzed expression of some mTOR and Wnt/ β-catenin pathways genes in three cancer cell lines (HeLa, MDA-MB-231 and HT-29) following treatment with LC and LR culture supernatants. Results Of note, the expression of CCND1 as a marker of cell proliferation, survival, and angiogenesis, has been decreased following LR treatment in all cell lines. In addition, the expression of SFRP2, an antagonist of Wnt pathway, has been increased in HT-29 following LR treatment and in HeLa cells following LR and LC treatments. Furthermore, we have demonstrated the downregulation of S6K1 expression, a marker of poor prognosis, following LR treatment in HT-29 and following LR and LC treatments in MDA-MB-231 cell line. Conclusions Consequently, lactobacilli can modulate expression of mTOR and Wnt/ β-catenin pathways genes in cancer cell lines in a strain specific as well as cell type specific manner.
Collapse
Affiliation(s)
- Zahra Taherian-Esfahani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Atieh Abedin-Do
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Zahra Nouri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Reza Mirfakhraie
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
20
|
Galván JA, Helbling M, Koelzer VH, Tschan MP, Berger MD, Hädrich M, Schnüriger B, Karamitopoulou E, Dawson H, Inderbitzin D, Lugli A, Zlobec I. TWIST1 and TWIST2 promoter methylation and protein expression in tumor stroma influence the epithelial-mesenchymal transition-like tumor budding phenotype in colorectal cancer. Oncotarget 2015; 6:874-85. [PMID: 25528769 PMCID: PMC4359262 DOI: 10.18632/oncotarget.2716] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/08/2014] [Indexed: 12/13/2022] Open
Abstract
Tumor budding in colorectal cancer is likened to an epithelial-mesenchymal transition (EMT) characterized predominantly by loss of E-cadherin and up-regulation of E-cadherin repressors like TWIST1 and TWIST2. Here we investigate a possible epigenetic link between TWIST proteins and the tumor budding phenotype. TWIST1 and TWIST2 promoter methylation and protein expression were investigated in six cell lines and further correlated with tumor budding in patient cohort 1 (n = 185). Patient cohort 2 (n = 112) was used to assess prognostic effects. Laser capture microdissection (LCM) of tumor epithelium and stroma from low- and high-grade budding cancers was performed. In colorectal cancers, TWIST1 and TWIST2 expression was essentially restricted to stromal cells. LCM results of a high-grade budding case show positive TWIST1 and TWIST2 stroma and no methylation, while the low-grade budding case was characterized by negative stroma and strong hypermethylation. TWIST1 stromal cell staining was associated with adverse features like more advanced pT (p = 0.0044), lymph node metastasis (p = 0.0301), lymphatic vessel invasion (p = 0.0373), perineural invasion (p = 0.0109) and worse overall survival time (p = 0.0226). Stromal cells may influence tumor budding in colorectal cancers through expression of TWIST1. Hypermethylation of the tumor stroma may represent an alternative mechanism for regulation of TWIST1.
Collapse
Affiliation(s)
- José A Galván
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern 3010, Switzerland
| | - Melina Helbling
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern 3010, Switzerland
| | - Viktor H Koelzer
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern 3010, Switzerland.,Clinical Pathology Division, Institute of Pathology, University of Bern, Switzerland
| | - Mario P Tschan
- Experimental Pathology Division, Institute of Pathology, University of Bern, Switzerland
| | - Martin D Berger
- Department of Medical Oncology, Bern University Hospital, Bern, Switzerland
| | - Marion Hädrich
- Departments of Visceral Surgery and Medicine, Bern University Hospital, Bern, Switzerland
| | - Beat Schnüriger
- Departments of Visceral Surgery and Medicine, Bern University Hospital, Bern, Switzerland
| | - Eva Karamitopoulou
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern 3010, Switzerland.,Clinical Pathology Division, Institute of Pathology, University of Bern, Switzerland
| | - Heather Dawson
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern 3010, Switzerland.,Clinical Pathology Division, Institute of Pathology, University of Bern, Switzerland
| | - Daniel Inderbitzin
- Departments of Visceral Surgery and Medicine, Bern University Hospital, Bern, Switzerland.,Department of Surgery, Tiefenau Hospital, Bern, Switzerland
| | - Alessandro Lugli
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern 3010, Switzerland.,Clinical Pathology Division, Institute of Pathology, University of Bern, Switzerland
| | - Inti Zlobec
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Bern 3010, Switzerland
| |
Collapse
|
21
|
FAN QIONG, QIU MEITING, ZHU ZHU, ZHOU JINHUA, CHEN LIMO, ZHOU YE, GU WEI, WANG LIHUA, LI ZHUNAN, XU YING, CHENG WEIWEI, WU DAN, BAO WEI. Twist induces epithelial-mesenchymal transition in cervical carcinogenesis by regulating the TGF-β/Smad3 signaling pathway. Oncol Rep 2015; 34:1787-94. [DOI: 10.3892/or.2015.4143] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/22/2015] [Indexed: 11/06/2022] Open
|
22
|
Marchegiani S, Davis T, Tessadori F, van Haaften G, Brancati F, Hoischen A, Huang H, Valkanas E, Pusey B, Schanze D, Venselaar H, Vulto-van Silfhout AT, Wolfe LA, Tifft CJ, Zerfas PM, Zambruno G, Kariminejad A, Sabbagh-Kermani F, Lee J, Tsokos MG, Lee CCR, Ferraz V, da Silva EM, Stevens CA, Roche N, Bartsch O, Farndon P, Bermejo-Sanchez E, Brooks BP, Maduro V, Dallapiccola B, Ramos FJ, Chung HYB, Le Caignec C, Martins F, Jacyk WK, Mazzanti L, Brunner HG, Bakkers J, Lin S, Malicdan MCV, Boerkoel CF, Gahl WA, de Vries BBA, van Haelst MM, Zenker M, Markello TC. Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes. Am J Hum Genet 2015; 97:99-110. [PMID: 26119818 DOI: 10.1016/j.ajhg.2015.05.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/21/2015] [Indexed: 11/29/2022] Open
Abstract
Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based solely upon the nature of the substituting amino acid: a lysine at TWIST2 residue 75 resulted in AMS, whereas a glutamine or alanine yielded BSS. TWIST2 encodes a basic helix-loop-helix transcription factor that regulates the development of mesenchymal tissues. All identified mutations fell in the basic domain of TWIST2 and altered the DNA-binding pattern of Flag-TWIST2 in HeLa cells. Comparison of wild-type and mutant TWIST2 expressed in zebrafish identified abnormal developmental phenotypes and widespread transcriptome changes. Our results suggest that autosomal-dominant TWIST2 mutations cause AMS or BSS by inducing protean effects on the transcription factor's DNA binding.
Collapse
Affiliation(s)
- Shannon Marchegiani
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, MD 20892, USA
| | - Taylor Davis
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Federico Tessadori
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Gijs van Haaften
- Department of Medical Genetics, University Medical Center Utrecht, 3508 AB Utrecht, the Netherlands
| | - Francesco Brancati
- Department of Medical, Oral, and Biotechnological Sciences, University of G. d' Annunzio Chieti and Pescara, Chieti 66100, Italy
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Haigen Huang
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elise Valkanas
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Barbara Pusey
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Denny Schanze
- Medizinische Fakultät und Universitätsklinikum Magdeburg, Institute of Human Genetics, 39120 Magdeburg, Germany
| | - Hanka Venselaar
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | | | - Lynne A Wolfe
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Office of the Clinical Director, National Human Genome Research Institute/NIH, Bethesda, MD 20892, USA
| | - Cynthia J Tifft
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Office of the Clinical Director, National Human Genome Research Institute/NIH, Bethesda, MD 20892, USA
| | - Patricia M Zerfas
- Office of Research Services, Division of Veterinary Resources, NIH, Bethesda, MD 20892, USA
| | - Giovanna Zambruno
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata IDI-IRCCS, Rome 00167, Italy
| | | | | | - Janice Lee
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA
| | - Maria G Tsokos
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chyi-Chia R Lee
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Victor Ferraz
- Departamento de Genetica, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Sao Paulo 14049, Brazil
| | - Eduarda Morgana da Silva
- Departamento de Genetica, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Sao Paulo 14049, Brazil
| | - Cathy A Stevens
- Department of Medical Genetics, T.C. Thompson Children's Hospital, Chattanooga, TN 37403, USA
| | - Nathalie Roche
- Department of Plastic and Reconstructive Surgery, University Hospital of Ghent, Ghent 9000, Belgium
| | - Oliver Bartsch
- Institute of Human Genetics, Johannes Gutenberg University, Mainz 55131, Germany
| | - Peter Farndon
- Clinical Genetics Unit, Birmingham Women's Healthcare Trust, Birmingham B15 2TG, UK
| | - Eva Bermejo-Sanchez
- ECEMC (Spanish Collaborative Study of Congenital Malformations), CIAC, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III; and CIBER de Enfermedades Raras (CIBERER)-U724, Madrid 28029, Spain
| | - Brian P Brooks
- Unit on Pediatric, Developmental, and Genetic Eye Disease, National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Valerie Maduro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Bruno Dallapiccola
- Department of Medical Genetics, Bambino Gesù Children's Hospital, IRCCS, Rome 00165, Italy
| | - Feliciano J Ramos
- Unidad de Genética Médica, Servicio de Pediatría, GCV-CIBERER Hospital Clínico Universitario "Lozano Blesa," Facultad de Medicina, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Hon-Yin Brian Chung
- Department of Paediatrics and Adolescent Medicine, Centre for Genomic Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Cédric Le Caignec
- Service de genetique medicale, CHU Nantes, 44093 Nantes, France and Inserm, UMR957, Faculté de Médecine, 44093 Nantes, France
| | - Fabiana Martins
- Special Care Dentistry Center, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-070, Brazil
| | - Witold K Jacyk
- Department of Dermatology, University of Pretoria, Pretoria 0028, Republic of South Africa
| | - Laura Mazzanti
- Department of Pediatrics, S. Orsola-Malpighi Hospital University of Bologna, 40138 Bologna, Italy
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Clinical Genetics, Maastricht University Medical Center, PO Box 5800, 6202AZ Maastricht, the Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Centre Utrecht, 3584 CT Utrecht, the Netherlands
| | - Shuo Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - May Christine V Malicdan
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Office of the Clinical Director, National Human Genome Research Institute/NIH, Bethesda, MD 20892, USA.
| | - Cornelius F Boerkoel
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Office of the Clinical Director, National Human Genome Research Institute/NIH, Bethesda, MD 20892, USA.
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Mieke M van Haelst
- Department of Medical Genetics, University Medical Center Utrecht, 3508 AB Utrecht, the Netherlands
| | - Martin Zenker
- Medizinische Fakultät und Universitätsklinikum Magdeburg, Institute of Human Genetics, 39120 Magdeburg, Germany
| | - Thomas C Markello
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, NIH and National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Lei P, Ding D, Xie J, Wang L, Liao Q, Hu Y. Expression profile of Twist, vascular endothelial growth factor and CD34 in patients with different phases of osteosarcoma. Oncol Lett 2015; 10:417-421. [PMID: 26171042 DOI: 10.3892/ol.2015.3246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/29/2015] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to investigate the clinical significance of Twist, vascular endothelial growth factor (VEGF) and CD34 expression in osteosarcoma (OS) in order to elucidate potential therapeutic targets for the treatment of OS. Immunohistochemistry was performed to detect the protein expression of Twist, VEGF and CD34 in OS and osteochondroma (OC) tissues. The ratio of the protein expression of Twist and VEGF in OS and OC tissues as well as at different phases of OS was compared using chi-squared tests. Microvessel density (MVD), as determined by CD34 labeling, in OS and OC tissue as well as at different phases of OS was compared using the Student's t-test. In addition, associations between Twist, VEGF and MVD were assessed using the Spearman's rank correlation test. The results revealed that out of the 32 OS tissues examined, 56.25% exhibited Twist positive expression, 71.88% exhibited VEGF positive expression and the MVD was increased compared with that of the OC tissue. The positive rate of Twist and VEGF expression in phase III OS tissues was significantly increased compared with that in phase I/II OS tissues (Twist: χ2=5.732, P=0.018; VEGF: χ2=7.513, P=0.006). The MVD in phase III OS tissues (31.08±3.36 per field) was significantly higher compared with that of the phase I/II OS tissues (41.2±4.17 per field; t=7.536, P<0.001). Spearman's rank correlation analysis revealed that Twist expression was positively associated with VEGF expression (r=0.371, P=0.002) and with MVD (r=0.393, P=0.001) in OS; in addition, VEGF expression was found to have a positive correlation with MVD (r=0.469, P=0.001). In conclusion, the results of the present study demonstrated that OS tissues exhibited elevated Twist and VEGF expression as well as MVD compared with OC tissue. In addition, metastatic OS (phase III) exhibited an increased positive rate of Twist and VEGF expression as well as MVD values compared with non-metastatic OS (phase I/II). Furthermore associations were detected between Twist and VEGF expression as well as VEGF and MVD. Therefore, inhibition of Twist expression may have potential therapeutic use for the treatment of OS.
Collapse
Affiliation(s)
- Pengfei Lei
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Dengfeng Ding
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Qiande Liao
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
24
|
Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, Willbanks A, Sarkar S. EMT and tumor metastasis. Clin Transl Med 2015; 4:6. [PMID: 25852822 PMCID: PMC4385028 DOI: 10.1186/s40169-015-0048-3] [Citation(s) in RCA: 543] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 01/26/2015] [Indexed: 02/07/2023] Open
Abstract
EMT and MET comprise the processes by which cells transit between epithelial and mesenchymal states, and they play integral roles in both normal development and cancer metastasis. This article reviews these processes and the molecular pathways that contribute to them. First, we compare embryogenesis and development with cancer metastasis. We then discuss the signaling pathways and the differential expression and down-regulation of receptors in both tumor cells and stromal cells, which play a role in EMT and metastasis. We further delve into the clinical implications of EMT and MET in several types of tumors, and lastly, we discuss the role of epigenetic events that regulate EMT/MET processes. We hypothesize that reversible epigenetic events regulate both EMT and MET, and thus, also regulate the development of different types of metastatic cancers.
Collapse
Affiliation(s)
- Sarah Heerboth
- />Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA USA
| | - Genevieve Housman
- />School of Human Evolution and Social Change, Arizona State University, Tempe, AZ USA
| | - Meghan Leary
- />Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA USA
| | | | - Shannon Byler
- />Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA USA
| | - Karolina Lapinska
- />Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA USA
| | - Amber Willbanks
- />Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA USA
| | - Sibaji Sarkar
- />Cancer Center, Department of Medicine, Boston University School of Medicine, Boston, MA USA
| |
Collapse
|
25
|
Qureshi R, Arora H, Rizvi M. EMT in cervical cancer: Its role in tumour progression and response to therapy. Cancer Lett 2015; 356:321-31. [DOI: 10.1016/j.canlet.2014.09.021] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/07/2014] [Accepted: 09/10/2014] [Indexed: 12/22/2022]
|