1
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2024:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Li GS, Huang ZG, He RQ, Zhang W, Tang YX, Liu ZS, Gan XY, Tang D, Li DM, Tang YL, Zhan YT, Dang YW, Zhou HF, Zheng JH, Jin MH, Tian J, Chen G. ITGB4 Serves as an Identification and Prognosis Marker Associated with Immune Infiltration in Small Cell Lung Carcinoma. Mol Biotechnol 2024; 66:2956-2971. [PMID: 37847361 DOI: 10.1007/s12033-023-00912-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Integrin beta 4 (ITGB4) is a vital factor for numerous cancers. However, no reports regarding ITGB4 in small cell lung carcinoma (SCLC) have been found in the existing literature. This study systematically investigated the expression and clinical value of ITGB4 in SCLC using multi-center and large-sample (n = 963) data. The ITGB4 expression levels between SCLC and control tissues were compared using standardized mean difference and Wilcoxon rank-sum test. The clinical significance of the gene in SCLC was observed using Cox regression and Kaplan-Meier curves. ITGB4 is overexpressed in multiple cancers and represents significant value in distinguishing among cancer samples (AUC = 0.91) and predicting the prognoses (p < 0.05) of patients with different cancers. In contrast, decreased ITGB4 mRNA expression was determined in SCLC (SMD < 0), and this finding was further confirmed at protein levels using in-house specimens (p < 0.05). This decrease in expression may be attributed to the regulatory role of estrogen receptor 1. ITGB4 may participate in the progression of SCLC by affecting several signaling pathways (e.g., tumor necrosis factor signaling pathway) and a series of immune cells (e.g., dendritic cells) (p < 0.05). The gene may serve as a potential marker for predicting the disease status (AUC = 0.97) and prognoses (p < 0.05) of patients with SCLC. Collectively, ITGB4 was identified as an identification and prognosis marker associated with immune infiltration in SCLC.
Collapse
Affiliation(s)
- Guo-Sheng Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Wei Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yu-Xing Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Zhi-Su Liu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xiang-Yu Gan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Deng Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Dong-Ming Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yu-Lu Tang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yan-Ting Zhan
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Hua-Fu Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Jin-Hua Zheng
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, People's Republic of China
| | - Mei-Hua Jin
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, People's Republic of China
| | - Jia Tian
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China.
| |
Collapse
|
3
|
Mezentsev A, Durymanov M, Makarov VA. A Comprehensive Review of Protein Biomarkers for Invasive Lung Cancer. Curr Oncol 2024; 31:4818-4854. [PMID: 39329988 PMCID: PMC11431409 DOI: 10.3390/curroncol31090360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Invasion and metastasis are important hallmarks of lung cancer, and affect patients' survival. Early diagnostics of metastatic potential are important for treatment management. Recent findings suggest that the transition to an invasive phenotype causes changes in the expression of 700-800 genes. In this context, the biomarkers restricted to the specific type of cancer, like lung cancer, are often overlooked. Some well-known protein biomarkers correlate with the progression of the disease and the immunogenicity of the tumor. Most of these biomarkers are not exclusive to lung cancer because of their significant role in tumorigenesis. The dysregulation of others does not necessarily indicate cell invasiveness, as they play an active role in cell division. Clinical studies of lung cancer use protein biomarkers to assess the invasiveness of cancer cells for therapeutic purposes. However, there is still a need to discover new biomarkers for lung cancer. In the future, minimally invasive techniques, such as blood or saliva analyses, may be sufficient for this purpose. Many researchers suggest unconventional biomarkers, like circulating nucleic acids, exosomal proteins, and autoantibodies. This review paper aims to discuss the advantages and limitations of protein biomarkers of invasiveness in lung cancer, to assess their prognostic value, and propose novel biomarker candidates.
Collapse
Affiliation(s)
- Alexandre Mezentsev
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
- Center for Theoretical Problems of Physicochemical Pharmacology, 109029 Moscow, Russia
| | - Mikhail Durymanov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| | - Vladimir A. Makarov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, 173003 Veliky Novgorod, Russia; (M.D.); (V.A.M.)
| |
Collapse
|
4
|
Schmitz T, Freuer D, Goßlau Y, Warm TD, Hyhlik-Dürr A, Linseisen J, Meisinger C, Kirchberger I. Can inflammatory plasma proteins predict Long COVID or Fatigue severity after SARS-CoV-2 infection? Virus Res 2024; 344:199363. [PMID: 38508399 PMCID: PMC10979265 DOI: 10.1016/j.virusres.2024.199363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE To investigate whether specific immune response plasma proteins can predict an elevated risk of developing Long COVID symptoms or fatigue severity after SARS-CoV-2 infection. METHODS This study was based on 257 outpatients with test-confirmed SARS-CoV-2 infection between February 2020 and January 2021. At least 12 weeks after the acute infection, 92 plasma proteins were measured using the Olink Target 96 immune response panel (median time between acute infection and venous blood sampling was 38.8 [IQR: 24.0-48.0] weeks). The presence of Long COVID symptoms and fatigue severity was assessed 115.8 [92.5-118.6] weeks after the acute infection by a follow-up postal survey. Long COVID (yes/no) was defined as having one or more of the following symptoms: fatigue, shortness of breath, concentration or memory problems. The severity of fatigue was assessed using the Fatigue Assessment Scale (FAS). In multivariable-adjusted logistic and linear regression models the associations between each plasma protein (exposure) and Long COVID (yes/no) or severity of fatigue were investigated. RESULTS Nine plasma proteins were significantly associated with Long COVID before, but not after adjusting for multiple testing (FDR-adjustment): DFFA, TRIM5, TRIM21, HEXIM1, SRPK2, PRDX5, PIK3AP1, IFNLR1 and HCLS1. Moreover, a total of 10 proteins were significantly associated with severity of fatigue before FDR-adjustment: SRPK2, ITGA6, CLEC4G, HEXIM1, PPP1R9B, PLXNA4, PRDX5, DAPP1, STC1 and HCLS1. Only SRPK2 and ITGA6 remained significantly associated after FDR-adjustment. CONCLUSIONS This study demonstrates that certain immune response plasma proteins might play an important role in the pathophysiology of Long COVID and severity of fatigue after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Timo Schmitz
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany.
| | - Dennis Freuer
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Yvonne Goßlau
- Vascular Surgery, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Tobias Dominik Warm
- Vascular Surgery, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Alexander Hyhlik-Dürr
- Vascular Surgery, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Jakob Linseisen
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Christa Meisinger
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Inge Kirchberger
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
5
|
Jia MH, Zhang SL, Liu TB, Jue YF, Liu XL, Liu JB. Systematic review and meta-analysis of relationship between p53 protein expression and lymph node metastasis, vascular invasion, and perineural invasion in pancreatic cancer. WORLD CHINESE JOURNAL OF DIGESTOLOGY 2024; 32:376-386. [DOI: 10.11569/wcjd.v32.i5.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
|
6
|
Cheng S, Li M, Zheng W, Li C, Hao Z, Dai Y, Wang J, Zhuo J, Zhang L. ING3 inhibits the malignant progression of lung adenocarcinoma by negatively regulating ITGB4 expression to inactivate Src/FAK signaling. Cell Signal 2024; 117:111066. [PMID: 38281617 DOI: 10.1016/j.cellsig.2024.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
Lung adenocarcinoma (LUAD) is the most commonly diagnosed subtype of lung cancer worldwide. Inhibitor of growth 3 (ING3) serves as a tumor suppressor in many cancers. This study aimed to elucidate the role of ING3 in the progression of LUAD and investigate the underlying mechanism related to integrin β4 (ITGB4) and Src/focal adhesion kinase (FAK) signaling. ING3 expression in LUAD tissues and the correlation between ING3 expression and prognosis were analyzed by bioinformatics databases. After evaluating ING3 expression in LUAD cells, ING3 was overexpressed to assess the proliferation, cell cycle arrest, migration and invasion of LUAD cells. Then, ITGB4 was upregulated to observe the changes of malignant activities in ING3-overexpressed LUAD cells. The transplantation tumor model of NCI-H1975 cells in nude mice was established to analyze the antineoplastic effect of ING3 upregulation in vivo. Downregulated ING3 expression was observed in LUAD tissues and cells and lower ING3 expression predicated the poor prognosis. ING3 upregulation restrained the proliferation, migration, invasion and induced the cell cycle arrest of NCI-H1975 cells. Additionally, ITGB4 expression was negatively correlated with ING3 expression in LUAD tissue. ING3 led to reduced expression of ITGB4, Src and p-FAK. Moreover, ITGB4 overexpression alleviated the effects of ING3 upregulation on the malignant biological properties of LUAD cells. It could be also found that ING3 upregulation limited the tumor volume, decreased the expression of ITGB4, Src and p-FAK, which was restored by ITGB4 overexpression. Collectively, ING3 inhibited the malignant progression of LUAD by negatively regulating ITGB4 expression to inactivate Src/FAK signaling.
Collapse
Affiliation(s)
- Shiliang Cheng
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China.
| | - Meng Li
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China.
| | - Wen Zheng
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China
| | - Chunguang Li
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China
| | - Zhihao Hao
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China
| | - Yonggang Dai
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China
| | - Jue Wang
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China
| | - Jinhua Zhuo
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China
| | - Lu Zhang
- Shandong Provincial Third Hospital Medical Laboratory, Shandong University, Jinan City, Shandong Province 250031, China
| |
Collapse
|
7
|
Ying X, Huang Y, Liu B, Hu W, Ji D, Chen C, Zhang H, Liang Y, Lv Y, Ji W. Targeted m 6A demethylation of ITGA6 mRNA by a multisite dCasRx-m 6A editor inhibits bladder cancer development. J Adv Res 2024; 56:57-68. [PMID: 37003532 PMCID: PMC10834799 DOI: 10.1016/j.jare.2023.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/22/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
INTRODUCTION N6-methyladenosine (m6A) modification contributes to the pathogenesis and development of various cancers, including bladder cancer (BCa). In particular, integrin α6 (ITGA6) promotes BCa progression by cooperatively regulating multisite m6A modification. However, the therapeutic effect of targeting ITGA6 multisite m6A modifications in BCa remains unknown. OBJECTIVES We aim to develop a multisite dCasRx- m6A editor for assessing the effects of the multisite dCasRx-m6A editor targeted m6A demethylation of ITGA6 mRNA in BC growth and progression. METHODS The multisite dCasRx- m6A editor was generated by cloning. m6A-methylated RNA immunoprecipitation (meRIP), luciferase reporter, a single-base T3 ligase-based qPCR-amplification, Polysome profiling and meRIP-seq experiments were performed to determine the targeting specificity of the multisite dCasRx-m6A editor. We performed cell phenotype analysis and used in vivo mouse xenograft models to assess the effects of the multisite dCasRx-m6A editor in BC growth and progression. RESULTS We designed a targeted ITGA6 multi-locus guide (g)RNA and established a bidirectional deactivated RfxCas13d (dCasRx)-based m6A-editing platform, comprising a nucleus-localized dCasRx fused with the catalytic domains of methyltransferase-like 3 (METTL3-CD) or α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5-CD), to simultaneously manipulate the methylation of ITGA6 mRNA at four m6A sites. The results confirmed the dCasRx-m6A editor modified m6A at multiple sites in ITGA6 mRNA, with low off-target effects. Moreover, targeted m6A demethylation of ITGA6 mRNA by the multisite dCasRx-m6A editor significantly reduced BCa cell proliferation and migration in vitro and in vivo. Furthermore, the dCasRx-ALKBH5-CD and ITGA6 multi-site gRNA delivered to 5-week-old BALB/cJNju-Foxn1nu/Nju nude mice via adeno-associated viral vectors significantly inhibited BCa cell growth. CONCLUSION Our study proposes a novel therapeutic tool for the treatment of BC by applying the multisite dCasRx-m6A editor while highlighting its potential efficacy for treating other diseases associated with abnormal m6A modifications.
Collapse
Affiliation(s)
- Xiaoling Ying
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yapeng Huang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Bixia Liu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - WenYu Hu
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ding Ji
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Cong Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Haiqing Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yaomin Liang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yifan Lv
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou 510230, China
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
8
|
Tang J, Gao E, Huang X, Liu Y, Shao W. Non B Cell-Derived Immunoglobulins in Lung Epithelial Cells and Lung Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:157-168. [PMID: 38967758 DOI: 10.1007/978-981-97-0511-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
As the locus for air exchange, lung tissue is perpetually exposed to a significant quantity of foreign pathogens. Consequently, lung has developed a refined and intricate immune system. Beyond their physical and chemical barrier roles, lung epithelial cells can contribute to immune defence through the expression of Toll-like receptors (TLRs) and other pattern recognition receptors, along with the secretion of cytokines. Emerging evidence demonstrates that lung epithelial cells can generate and secrete immunoglobulins (Igs), including IgM, IgA, or IgG, thus performing antibody function. Moreover, malignantly transformed lung epithelial cells have been discovered to produce high levels of Ig, predominantly IgG, which do not fulfill the role of antibodies, but instead carries out tumour-promoting activity. Structural analysis has indicated that the biological activity of IgG produced by lung cancer cells differs from that of Igs produced by normal lung epithelial cells due to the unique glycosylation modification. Specifically, the sialylated IgG (SIA-IgG), characterised by a non-traditional N-glycosylation modification at the Asn162 site of Igγ CH1, is highly expressed in tumour stem cells. It has been demonstrated that SIA-IgG relies on this unique sialylation modification to promote tumorigenesis, metastasis, and immune evasion. Current results have proven that the Ig produced by lung epithelial cells has multifaceted biological activities, including immune defence functions under physiological conditions, while acquiring tumour-promoting activity during malignant transformation. These insights possess potential for the diagnosis and treatment of lung cancer as novel biomarkers and targets.
Collapse
Affiliation(s)
- Jingshu Tang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Erya Gao
- People's Medical Publishing House Co., Ltd, Beijing, China
| | - Xinmei Huang
- Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Liu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Wang XM, Chen G, Dang YW, Li J, Li P, Li ZY. A comprehensive investigation regarding the clinical significance of ITGB4 in oral squamous cell carcinoma combining immunohistochemistry, RNA-seq, and microarray data. Comput Biol Chem 2023; 104:107846. [PMID: 36934520 DOI: 10.1016/j.compbiolchem.2023.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/05/2022] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
OBJECTIVE Integrin subunit beta 4 (ITGB4), a receptor for laminins, was an oncoprotein in several malignancies. However, its clinical role in oral squamous cell carcinoma (OSCC) remains unclear. MATERIALS AND METHODS Firstly, 99 OSCC and 13 normal oral epithelium samples were employed for immunohistochemistry (IHC) for detecting the expression level of ITGB4 protein in OSCC. Subsequently, 971 OSCC and 281 non-cancerous specimens from RNA-seq and 18 microarrays were applied for investigating the expression of ITGB4 mRNA. Furthermore, to explore the potential mechanism of ITGB4 in OSCC, the co-expressed genes of ITGB4 were initially screened using all available datasets, and were further utilized for the gene enrichment analysis. RESULTS First, IHC showed a distinctively higher expression level of the ITGB4 protein in the OSCC group than that in the normal controls. Second, expression profile from RNA-seq and microarrays reflected that ITGB4 mRNA was dramatically overexpressed in OSCC tissues compared with non-tumor tissues. Third, standardized mean difference (SMD) with the area under the summary receiver operating characteristic (sROC) curve combining all incorporated data revealed that ITGB4 was consistently significantly upregulated in OSCC tissues, with the SMD value being 1.31 and the area under the sROC curve being 0.82. Lastly, 184 upregulated and 179 downregulated co-expressed genes of ITGB4 were utilized for enrichment analysis, which demonstrated that ITGB4 might influence the pathogenesis of OSCC through cell cycle, ECM-receptor interaction and focal adhesion pathways. CONCLUSIONS ITGB4 might play a pivotal role in the tumorigenesis and progression of OSCC, making it a promising biomarker of OSCC.
Collapse
Affiliation(s)
- Xiang-Ming Wang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jing Li
- Department of Stomatology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ping Li
- Department of Pathology, Stomatology Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zu-Yun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
10
|
Chen CY, Wu PY, Van Scoyk M, Simko SA, Chou CF, Winn RA. KCNF1 promotes lung cancer by modulating ITGB4 expression. Cancer Gene Ther 2023; 30:414-423. [PMID: 36385523 PMCID: PMC10014577 DOI: 10.1038/s41417-022-00560-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
Lung cancer continues to be the leading cause of cancer death in the United States. Despite recent advances, the five-year survival rate for lung cancer compared to other cancers still remains fairly low. The discovery of molecular targets for lung cancer is key to the development of new approaches and therapies. Electrically silent voltage-gated potassium channel (KvS) subfamilies, which are unable to form functional homotetramers, are implicated in cell-cycle progression, cell proliferation and tumorigenesis. Here, we analyzed the expression of KvS subfamilies in human lung tumors and identified that potassium voltage-gated channel subfamily F member 1 (KCNF1) was up-regulated in non-small cell lung cancer (NSCLC). Silencing of KCNF1 in NSCLC cell lines reduced cell proliferation and tumor progression in mouse xenografts, re-established the integrity of the basement membrane, and enhanced cisplatin sensitivity. KCNF1 was predominately localized in the nucleoplasm and likely mediated its functions in an ion-independent manner. We identified integrin β4 subunit (ITGB4) as a downstream target for KCNF1. Our findings suggest that KCNF1 promotes lung cancer by enhancing ITGB4 signaling and implicate KCNF1 as a novel therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Ching-Yi Chen
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Pei-Ying Wu
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Michelle Van Scoyk
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Stephanie A Simko
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Chu-Fang Chou
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Robert A Winn
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
11
|
Gao Q, Sun Z, Fang D. Integrins in human hepatocellular carcinoma tumorigenesis and therapy. Chin Med J (Engl) 2023; 136:253-268. [PMID: 36848180 PMCID: PMC10106235 DOI: 10.1097/cm9.0000000000002459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 03/01/2023] Open
Abstract
ABSTRACT Integrins are a family of transmembrane receptors that connect the extracellular matrix and actin skeleton, which mediate cell adhesion, migration, signal transduction, and gene transcription. As a bi-directional signaling molecule, integrins can modulate many aspects of tumorigenesis, including tumor growth, invasion, angiogenesis, metastasis, and therapeutic resistance. Therefore, integrins have a great potential as antitumor therapeutic targets. In this review, we summarize the recent reports of integrins in human hepatocellular carcinoma (HCC), focusing on the abnormal expression, activation, and signaling of integrins in cancer cells as well as their roles in other cells in the tumor microenvironment. We also discuss the regulation and functions of integrins in hepatitis B virus-related HCC. Finally, we update the clinical and preclinical studies of integrin-related drugs in the treatment of HCC.
Collapse
Affiliation(s)
- Qiong Gao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Zhaolin Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Wang Q, Sun N, Zhang M. Identification and Validation of Anoikis-Related Signatures for Predicting Prognosis in Lung Adenocarcinoma with Machine Learning. Int J Gen Med 2023; 16:1833-1844. [PMID: 37213475 PMCID: PMC10199682 DOI: 10.2147/ijgm.s409006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is an aggressive cancer that has an extremely poor prognosis. As well as facilitating the detachment of cancer cells from the primary tumor site, anoikis plays an important role in cancer metastasis. Few studies to date, however, have examined the role of anoikis in LUAD, in patient prognosis. Methods A total of 316 anoikis-related genes (ANRGs) integrated from Genecards and Harmonizome portals. LUAD transcriptome data were retrieved from the Genotype-Tissue Expression Project (GEO) and The Cancer Genome Atlas (TCGA). Anoikis-related prognostic genes (ANRGs) were primarily screened by univariate Cox regression. All ANRGs were included in the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression model to construct the powerful prognostic signature. This signature was validated and assessed using the Kaplan-Meier method as well as univariate and multivariate Cox regression analyses. Anoikis-related regulators of risk score were identified using a XG-boost machine learning model. The expression of ITGB4 protein was examined in a ZhengZhou University (ZZU) tissue cohort by immunohistochemistry, and the potential mechanisms of action of ITGB4 in LUAD were explored by GO, KEGG, and ingenuity pathway analyses and by GSEA. Results A risk score signature was constructed based on eight ANRGs, with high risk scores found to closely correlate with unfavorable clinical features. ITGB4 expression may be associated with 5-year over survival, with immunohistochemistry showed that the expression of ITGB4 was higher in LUAD than in nontumor tissues. Enrichment analysis suggested that ITGB4 may promote LUAD development by targeting E2F, MYC, and oxidative phosphorylation signaling pathways. Conclusion Our anoikis-related signature from RNA-seq data may be a novel prognostic biomarker in patients with LUAD. It may help physicians develop personalized LUAD treatments in clinical practice. Moreover, ITGB4 may affect the development of LUAD through the oxidative phosphorylation pathway.
Collapse
Affiliation(s)
- Qilong Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
- The Academy of Medical Science of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Nannan Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
- Correspondence: Mingzhi Zhang, Department of Oncology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, Henan, 450052, People’s Republic of China, Email
| |
Collapse
|
13
|
Li CH, Chan MH, Chang YC, Hsiao M. The CHST11 gene is linked to lung cancer and pulmonary fibrosis. J Gene Med 2022; 24:e3451. [PMID: 36181245 DOI: 10.1002/jgm.3451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/18/2022] [Accepted: 09/25/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The abnormal modification of chondroitin sulfate is one of the leading causes of disease, including cancer progression. During chondroitin sulfate biosynthesis, the CHST11 enzyme plays a vital role in its modification, but its role in cancer is not fully understood. Therefore, understanding the relationship between CHST11 and pulmonary-related diseases through clinically relevant information may be useful for diagnosis or treatment. METHODS A variety of pulmonary fibrosis clinical gene expression omnibus (GEO) datasets were used to assess the association between CHST11-related manifestations and fibrosis. Multiple lung cancer-related databases, including The Cancer Genome Atlas, GEO datasets, UCSC Xena, GEPIA2, Cbioportal and ingenuity pathway analysis were used to evaluate the clinical correlation between CHST11 and lung cancer and potential molecular mechanisms. For drug repurposing prediction, the molecules that correlated with CHST11 were subjected to the LINCS L1000 algorithm. A variety of in vitro assays were performed to evaluate the in-silico models, including RNA and protein expression, proliferation, migration and invasion. RESULTS Clinical analyses indicate that the levels of CHST11 are significantly elevated in cases of pulmonary-related diseases, including fibrosis and lung cancer. According to multiple lung cancer cohorts, CHST11 is the only member of the carbohydrate sulfotransferase family associated with overall survival for lung adenocarcinomas, and it is highly related to smoking-induced lung cancer patients. Based on the results of in vitro experiments, CHST11 expression contributes to tumor malignancy and promotes multiple fibrotic activators. Correlation-based ingenuity pathway analysis indicated that CHST11-related molecules contributed to pulmonary fibrosis or lung adenocarcinomas via similar upstream stimulators. Based on known molecular regulatory relationships, CHST11 has been associated with the regulation of TGF-β and INFγ as important molecules contributing to fibrosis and cancer progression. Interestingly, WordCloud analysis revealed that CHST11-related molecules are involved in regulation primarily by integrin signaling, and these relationships were consistently reflected in the analysis of cell lines and the clinical correlation. A CHST11 signature-based drug repurposing analysis demonstrated that the CHST11/integrin axis could be targeted by AG-1478 (Tyrphostin AG 1478), brefeldin A, geldanamycin and importazole. CONCLUSIONS This study provides the first demonstration that CHST11 may be used as a biomarker for pulmonary fibrosis or lung cancer, and the levels of CHST11 were increased by TGF-β and INFγ. The molecular simulation analyses demonstrate that the CHST11/integrin axis is a potential therapeutic target for treating lung cancer.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Ning J, Cui X, Li N, Li N, Zhao B, Miao J, Lin Z. Activation of GRP78 ATPase suppresses A549 lung cancer cell migration by promoting ITGB4 degradation. Cell Adh Migr 2022; 16:107-114. [PMID: 36203272 PMCID: PMC9542429 DOI: 10.1080/19336918.2022.2130415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Hypochlorous acid (HOCl) is an essential signal molecule in cancer cells. Activated GRP78 ATPase by a HOCl probe named ZBM-H inhibits lung cancer cell growth. However, the role and underlying mechanism of GRP78 ATPase in lung cancer cell migration have not been established. Here, we reported that activation of GRP78 ATPase by ZBM-H suppressed A549 cell migration and inhibited EMT process. Notably, ZBM-H time-dependently decreased the protein level of integrin β4 (ITGB4) in A549 cells. Combinatorial treatment of 3BDO (an autophagy inhibitor) and ZBM-H partially rescued the protein level of ITGB4. Consistently, 3BDO partially reversed ZBM-H-inhibited cell migration. Furthermore, ZBM-H promoted the interaction between ANXA7 and Hsc70, which participated in the regulation of selective autophagy and degradation of ITGB4.
Collapse
Affiliation(s)
- Junya Ning
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China,Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Key Laboratory of Cellular Physiology of Shanxi Province, and the Department of Physiology, Shanxi Medical University, Taiyuan, P.R. China
| | - Xiaoling Cui
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Nan Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Na Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Baoxiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P.R. China
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China,CONTACT Junying Miao Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, 266237, P.R. China
| | - Zhaomin Lin
- Central Research Laboratory, the Second Hospital, Shandong University, Jinan, P.R. China,Zhaomin Lin Central Research Laboratory, the Second Hospital, Shandong University, Jinan, P.R. China
| |
Collapse
|
15
|
Wu J, Wang W, Li Z, Ye X. The prognostic and immune infiltration role of ITGB superfamily members in non-small cell lung cancer. Am J Transl Res 2022; 14:6445-6466. [PMID: 36247270 PMCID: PMC9556481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE We aimed to explore the prognostic value of integrin-β superfamily members (ITGBs) and their role in immune cell infiltration in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS Study cases were acquired from The Cancer Genome Atlas database and The Human Protein Atlas. We then used R package and several online tools to analyze and visualize the roles of ITGBs in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). RESULTS We found that ITGBs were differentially expressed in NSCLC. In LUAD, high expression of ITGB1 and ITGB4 was an independent risk factor for poor prognosis, and ITGB7 was an independent protective factor for overall survival; in LUSC, high expression of ITGB1, 3, 5, and 6 was associated with poor prognosis, and ITGB8 was an independent protective factor for disease-specific survival. Protein-protein interaction networks for the most associated co-expressed genes revealed the following target genes of ITGBs: PTPRC, ITGAM, and ITGB2 in LUAD and FN1, PTPRC, and ITGB2 in LUSC. Gene ontology analysis revealed that functions related to adhesion, junction, and binding were highly enriched in LUAD and LUSC. ITGBs were significantly associated with immune cell infiltration and the expression of immunomodulation-related genes in LUAD and LUSC. CONCLUSION ITGBs were differentially expressed in NSCLC. ITGB1, 4, and 7 and ITGB1, 3, 5, 6, and 8 were found as prognostic markers in LUAD and LUSC, respectively. ITGBs were significantly associated with immune cell infiltration and the expression of immunomodulation-related genes.
Collapse
Affiliation(s)
- Juan Wu
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Wenjun Wang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Zhouhua Li
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| | - Xiaoqun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University Nanchang 330006, Jiangxi, China
| |
Collapse
|
16
|
Seguin L, Durandy M, Feral CC. Lung Adenocarcinoma Tumor Origin: A Guide for Personalized Medicine. Cancers (Basel) 2022; 14:cancers14071759. [PMID: 35406531 PMCID: PMC8996976 DOI: 10.3390/cancers14071759] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Lung cancer is the leading cause of cancer-related death worldwide, with an average 5-year survival rate of approximately 15%. Among the multiple histological type of lung cancer, adenocarcinoma is the most common. Adenocarcinoma is characterized by a high degree of heterogeneity at many levels, including histological, cellular, and molecular. Understanding the cell of origin of adenocarcinoma, and the molecular changes during tumor progression, will allow better therapeutic strategies. Abstract Lung adenocarcinoma, the major form of lung cancer, is the deadliest cancer worldwide, due to its late diagnosis and its high heterogeneity. Indeed, lung adenocarcinoma exhibits pronounced inter- and intra-tumor heterogeneity cofounding precision medicine. Tumor heterogeneity is a clinical challenge driving tumor progression and drug resistance. Several key pieces of evidence demonstrated that lung adenocarcinoma results from the transformation of progenitor cells that accumulate genetic abnormalities. Thus, a better understanding of the cell of origin of lung adenocarcinoma represents an opportunity to unveil new therapeutic alternatives and stratify patient tumors. While the lung is remarkably quiescent during homeostasis, it presents an extensive ability to respond to injury and regenerate lost or damaged cells. As the lung is constantly exposed to potential insult, its regenerative potential is assured by several stem and progenitor cells. These can be induced to proliferate in response to injury as well as differentiate into multiple cell types. A better understanding of how genetic alterations and perturbed microenvironments impact progenitor-mediated tumorigenesis and treatment response is of the utmost importance to develop new therapeutic opportunities.
Collapse
|
17
|
Banerjee S, Lo WC, Majumder P, Roy D, Ghorai M, Shaikh NK, Kant N, Shekhawat MS, Gadekar VS, Ghosh S, Bursal E, Alrumaihi F, Dubey NK, Kumar S, Iqbal D, Alturaiki W, Upadhye VJ, Jha NK, Dey A, Gundamaraju R. Multiple roles for basement membrane proteins in cancer progression and EMT. Eur J Cell Biol 2022; 101:151220. [PMID: 35366585 DOI: 10.1016/j.ejcb.2022.151220] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
Metastasis or the progression of malignancy poses a major challenge in cancer therapy and is the principal reason for increased mortality. The epithelial-Mesenchymal transition (EMT) of the Basement Membrane (BM) allows cells of epithelial phenotype to transform into a mesenchymal-like (quasi-mesenchymal) phenotype and metastasize via the lymphovascular system through a metastatic cascade by intravasation and extravasation. This helps in the progression of carcinoma from the primary site to distant organs. Collagen, laminin, and integrin are the prime components of BM and help in tumor cell metastasis, which makes them ideal cancer drug targets. Further, recent studies have shown that collagen, laminin, and integrin can be used as a biomarker for metastatic cells. In this review, we have summarized the current knowledge of such therapeutics, which are either currently in preclinical or clinical stages and could be promising cancer therapeutics. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
| | - Wen-Cheng Lo
- Department of Surgery, Division of Neurosurgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei 11031, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Debleena Roy
- PG Department of Botany, Lady Brabourne College, Kolkata, West Bengal, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Nusrat K Shaikh
- Smt. N. M. Padalia Pharmacy College, Ahmedabad, Gujarat, India
| | - Nishi Kant
- Department of Biotechnology, ARKA Jain University, Jamshedpur 831005, India
| | - Mahipal S Shekhawat
- Plant Biotechnology Unit, KM Government Institute for Postgraduate Studies and Research, Puducherry, India
| | | | | | - Ercan Bursal
- Department of Biochemistry, Mus Alparslan University, Turkey
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Navneet Kumar Dubey
- Victory Biotechnology Co., Ltd., Taipei 114757, Taiwan; ShiNeo Technology Co., Ltd., New Taipei City 24262, Taiwan
| | - Sanjay Kumar
- Department of Life Science, School of Basic Science and Research, Sharda University, Knowledge Park-III, Greater Noida, UP 201310, India
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Vijay Jagdish Upadhye
- Center of Research for Development (CR4D), Parul Institute of Applied Sciences (PIAS), PO Limda, Tal Waghodia 391760, Vadodara, Gujarat, India
| | - Niraj Kumar Jha
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia; Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| | - Rohit Gundamaraju
- ER stress and Mucosal immunology lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania 7248, Australia.
| |
Collapse
|
18
|
Rademaker E, Bastiaannet E, Oosting J, Dekker-Ensink NG, Kuppen PJK, de Miranda NFCC, Liefers GJ. Revising the Role of Integrin Subunit β4 Expression in Colon Cancer Progression and Survival. J Gastrointest Cancer 2022; 54:147-154. [PMID: 35112314 PMCID: PMC10182939 DOI: 10.1007/s12029-021-00787-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Integrin subunit β4 (β4) has been proposed to play an important role in colon cancer progression through its involvement in hemidesmosome disassembly processes and tumor cell migration. However, the association between β4 expression and clinicopathological outcomes in colon cancer remains unclear. METHODS Expression of β4 was assessed by immunohistochemistry in a large cohort of 651 colon cancer patients, the largest colon cancer cohort so far. Chi-squared tests were used to study the association between β4 expression and clinicopathological features. Overall and disease-free survival were assessed by Cox proportional hazard models. RESULTS Loss of β4 expression was associated with local tumor invasion. Only 17.9% of the pT1 tumors displayed weak β4 expression level versus 28.1% of pT4 tumors, and 25.0% of the pT1 tumors had a high expression level versus 8.6% of the pT4 tumors (p = 0.012). No association between β4 expression and overall (p = 0.845) or disease-free survival (p = 0.767) was encountered, which disputes the role of β4 as a biomarker of malignant behavior in colon cancer. CONCLUSION Contradictory reports have suggested opposite roles for β4 expression in (colon) cancer progression. In the present large cohort of colon cancer patients, we found that β4 expression was not associated with worse clinical prognosis, but decreased with advanced pathological tumor stage. Future studies should establish whether loss of β4 expression promotes invasive characteristics of colon cancer cells.
Collapse
Affiliation(s)
- Eva Rademaker
- Department of Surgical Oncology, Leiden University Medical Center, P.O. Box 9600, Leiden, 2300 RC, The Netherlands. .,Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Esther Bastiaannet
- Department of Surgical Oncology, Leiden University Medical Center, P.O. Box 9600, Leiden, 2300 RC, The Netherlands
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Neeltje G Dekker-Ensink
- Department of Surgical Oncology, Leiden University Medical Center, P.O. Box 9600, Leiden, 2300 RC, The Netherlands
| | - Peter J K Kuppen
- Department of Surgical Oncology, Leiden University Medical Center, P.O. Box 9600, Leiden, 2300 RC, The Netherlands
| | | | - Gerrit J Liefers
- Department of Surgical Oncology, Leiden University Medical Center, P.O. Box 9600, Leiden, 2300 RC, The Netherlands
| |
Collapse
|
19
|
Hassanein SS, Abdel-Mawgood AL, Ibrahim SA. EGFR-Dependent Extracellular Matrix Protein Interactions Might Light a Candle in Cell Behavior of Non-Small Cell Lung Cancer. Front Oncol 2021; 11:766659. [PMID: 34976811 PMCID: PMC8714827 DOI: 10.3389/fonc.2021.766659] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death and is associated with a poor prognosis. Lung cancer is divided into 2 main types: the major in incidence is non-small cell lung cancer (NSCLC) and the minor is small cell lung cancer (SCLC). Although NSCLC progression depends on driver mutations, it is also affected by the extracellular matrix (ECM) interactions that activate their corresponding signaling molecules in concert with integrins and matrix metalloproteinases (MMPs). These signaling molecules include cytoplasmic kinases, small GTPases, adapter proteins, and receptor tyrosine kinases (RTKs), particularly the epidermal growth factor receptor (EGFR). In NSCLC, the interplay between ECM and EGFR regulates ECM stiffness, angiogenesis, survival, adhesion, migration, and metastasis. Furthermore, some tumor-promoting ECM components (e.g., glycoproteins and proteoglycans) enhance activation of EGFR and loss of PTEN. On the other hand, other tumor-suppressing glycoproteins and -proteoglycans can inhibit EGFR activation, suppressing cell invasion and migration. Therefore, deciphering the molecular mechanisms underlying EGFR and ECM interactions might provide a better understanding of disease pathobiology and aid in developing therapeutic strategies. This review critically discusses the crosstalk between EGFR and ECM affecting cell behavior of NSCLC, as well as the involvement of ECM components in developing resistance to EGFR inhibition.
Collapse
Affiliation(s)
- Sarah Sayed Hassanein
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Lotfy Abdel-Mawgood
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | | |
Collapse
|
20
|
Miller DB, Robison R, Piccolo SR. Toward a methodology for evaluating DNA variants in nuclear families. PLoS One 2021; 16:e0258375. [PMID: 34624066 PMCID: PMC8500447 DOI: 10.1371/journal.pone.0258375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
The genetic underpinnings of most pediatric-cancer cases are unknown. Population-based studies use large sample sizes but have accounted for only a small proportion of the estimated heritability of pediatric cancers. Pedigree-based studies are infeasible for most human populations. One alternative is to collect genetic data from a single nuclear family and use inheritance patterns within the family to filter candidate variants. This approach can be applied to common and rare variants, including those that are private to a given family or to an affected individual. We evaluated this approach using genetic data from three nuclear families with 5, 4, and 7 children, respectively. Only one child in each nuclear family had been diagnosed with cancer, and neither parent had been affected. Diagnoses for the affected children were benign low-grade astrocytoma, Wilms tumor (stage 2), and Burkitt's lymphoma, respectively. We used whole-genome sequencing to profile normal cells from each family member and a linked-read technology for genomic phasing. For initial variant filtering, we used global minor allele frequencies, deleteriousness scores, and functional-impact annotations. Next, we used genetic variation in the unaffected siblings as a guide to filter the remaining variants. As a way to evaluate our ability to detect variant(s) that may be relevant to disease status, the corresponding author blinded the primary author to affected status; the primary author then assigned a risk score to each child. Based on this evidence, the primary author predicted which child had been affected in each family. The primary author's prediction was correct for the child who had been diagnosed with a Wilms tumor; the child with Burkitt's lymphoma had the second-highest risk score among the seven children in that family. This study demonstrates a methodology for filtering and evaluating candidate genomic variants and genes within nuclear families that may merit further exploration.
Collapse
Affiliation(s)
- Dustin B. Miller
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| | - Reid Robison
- Department of Biology, Brigham Young University, Provo, UT, United States of America
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States of America
| | - Stephen R. Piccolo
- Department of Biology, Brigham Young University, Provo, UT, United States of America
| |
Collapse
|
21
|
Yang H, Xu Z, Peng Y, Wang J, Xiang Y. Integrin β4 as a Potential Diagnostic and Therapeutic Tumor Marker. Biomolecules 2021; 11:biom11081197. [PMID: 34439865 PMCID: PMC8394641 DOI: 10.3390/biom11081197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/05/2022] Open
Abstract
Integrin β4 (ITGβ4) is a class of transmembrane adhesion molecules composed of hemidesmosomes (HDs). Its unique long intracellular domain provides intricate signal transduction functions. These signal transduction effects are especially prominent in tumors. Many recent studies have shown that integrin β4 is differentially expressed in various tumors, and it plays a vital role in tumor invasion, proliferation, epithelial–mesenchymal transition, and angiogenesis. Therefore, we categorize the research related to integrin β4, starting from its structure and function in tumor tissues, and provide a basic description. Based on its structure and function, we believe that integrin β4 can be used as a tumor marker. In clinical practice, it is described as a diagnostic marker for the targeted treatment of cancer and will be helpful in the clinical diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Haoyu Yang
- School of Basic Medical Science, Central South University, Changsha 410013, China; (H.Y.); (Z.X.); (Y.P.)
| | - Zixuan Xu
- School of Basic Medical Science, Central South University, Changsha 410013, China; (H.Y.); (Z.X.); (Y.P.)
| | - Yuqian Peng
- School of Basic Medical Science, Central South University, Changsha 410013, China; (H.Y.); (Z.X.); (Y.P.)
| | - Jiali Wang
- Xiang Ya School of Medicine, Central South University, Changsha 410013, China;
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013, China
- Correspondence: ; Tel.:+86-139-7312-8943
| |
Collapse
|
22
|
Islam K, Thummarati P, Kaewkong P, Sripa B, Suthiphongchai T. Role of laminin and cognate receptors in cholangiocarcinoma cell migration. Cell Adh Migr 2021; 15:152-165. [PMID: 34014802 PMCID: PMC8143218 DOI: 10.1080/19336918.2021.1924422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Extensive desmoplasia in cholangiocarcinoma (CCA) is associated with tumor aggressiveness, indicating a need for further understanding of CCA cell-matrix interaction. This study demonstrated laminin as the most potent attractant for CCA cell migration and the vast elevation of its receptor integrin β4 (ITGB4) in CCA cell lines. Besides, their high expressions in CCA tissues were correlated with lymphatic invasion and the presence of ITGB4 was also associated with short survival time. ITGB4 silencing revealed it as the receptor for laminin-induced HuCCA-1 migration, but KKU-213 utilized 37/67-kDa laminin receptor (LAMR) instead. These findings highlight the role of ITGB4 and LAMR in transducing laminin induction of CCA cell migration and the potential of ITGB4 as diagnostic and prognostic biomarkers for CCA.
Collapse
Affiliation(s)
- Kittiya Islam
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Parichut Thummarati
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pakkanun Kaewkong
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, and the Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, Thailand
| | | |
Collapse
|
23
|
Herreros-Pomares A, Zhou X, Calabuig-Fariñas S, Lee SJ, Torres S, Esworthy T, Hann SY, Jantus-Lewintre E, Camps C, Zhang LG. 3D printing novel in vitro cancer cell culture model systems for lung cancer stem cell study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111914. [PMID: 33641907 DOI: 10.1016/j.msec.2021.111914] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
Two-dimensional (2D) in vitro cell cultures and laboratory animals have been used traditionally as the gold-standard preclinical cancer model systems. However, for cancer stem cell (CSC) studies, they exhibit notable limitations on simulating native environment, which depreciate their translatability for clinical development purposes. In this study, different three-dimensional (3D) printing platforms were used to establish novel 3D cell cultures enriched in CSCs from non-small cell lung cancer (NSCLC) patients and cell lines. Rigid scaffolds with an elevated compressive modulus and uniform pores and channels were produced using different filaments. Hydrogel-based scaffolds were printed with a more irregular distribution of pores and a lower compressive modulus. As a 3D model of reference, suspension spheroid cultures were established. Therein, cancer cell lines exhibited enhanced proliferation profiles on rigid scaffolds compared to the same cells grown on either hydrogel scaffolds or tumor spheres. Meanwhile, primary cancer cells grew considerably better on hydrogel scaffolds or in tumor sphere culture, compared to cells grown on rigid scaffolds. Gene expression analysis confirmed that tumor spheres and cells seeded on hydrogel scaffolds significantly overexpress most of stemness and invasion promoters tested compared to control cells grown in 2D culture. A different phenomenon was observed within cells growing on the rigid scaffolds, where fewer significant variations in gene expression were detected. Our findings provide strong evidence for the advantageous usage of 3D printed models, especially those which use GelMA-PEGDA hydrogels as the primary scaffold material, for studying lung CSCs. The results demonstrated that the 3D printed scaffolds were better to mimic tumor complexity and regulate cancer cell behavior than in vivo 2D culture models.
Collapse
Affiliation(s)
- Alejandro Herreros-Pomares
- Mixed Unit TRIAL, Fundación Investigacíón Hospital General Universitario de Valencia & Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBERONC, Valencia, Spain
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, United States
| | - Silvia Calabuig-Fariñas
- Mixed Unit TRIAL, Fundación Investigacíón Hospital General Universitario de Valencia & Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBERONC, Valencia, Spain; Department of Pathology, Universitat de València, Valencia, Spain
| | - Se-Jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, United States
| | - Susana Torres
- Mixed Unit TRIAL, Fundación Investigacíón Hospital General Universitario de Valencia & Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBERONC, Valencia, Spain
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, United States
| | - Sung Yun Hann
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, United States
| | - Eloísa Jantus-Lewintre
- Mixed Unit TRIAL, Fundación Investigacíón Hospital General Universitario de Valencia & Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBERONC, Valencia, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Carlos Camps
- Mixed Unit TRIAL, Fundación Investigacíón Hospital General Universitario de Valencia & Centro de Investigación Príncipe Felipe, Valencia, Spain; CIBERONC, Valencia, Spain; Department of Medical Oncology, Hospital General Universitario de Valencia, Valencia, Spain; Department of Medicine, Universitat de València, Valencia, Spain.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, United States; Department of Biomedical Engineering, The George Washington University, Washington, DC, United States; Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, United States; Department of Medicine, The George Washington University, Washington, DC, United States.
| |
Collapse
|
24
|
Zhu T, Bao X, Chen M, Lin R, Zhuyan J, Zhen T, Xing K, Zhou W, Zhu S. Mechanisms and Future of Non-Small Cell Lung Cancer Metastasis. Front Oncol 2020; 10:585284. [PMID: 33262947 PMCID: PMC7686569 DOI: 10.3389/fonc.2020.585284] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer, renowned for its fast progression and metastatic potency, is rising to become a leading cause of death globally. It has been long observed that lung cancer is particularly ept in spawning distant metastasis at its early stages, and it can readily colonize virtually any human organ. In recent years, cancer research has shed light on why lung cancer is endowed with its exceptional ability to metastasize. In this review, we will take a comprehensive look at the current research on lung cancer metastasis, including molecular pathways, anatomical features and genetic traits that make lung cancer intrinsically metastatic, as we go from lung cancer’s general metastatic potential to the particular metastasis mechanisms in multiple organs. We highly concerned about the advanced discovery and development of lung cancer metastasis, indicating the importance of lung cancer specific gene mutations, heterogeneity or biomarker discovery, and discussing potential opportunities and challenges. We will also introduce some current treatments that targets certain metastatic strategies of non-small cell lung cancer (NSCLC). Advances made in these regards could be critical to our current knowledge base of lung cancer metastasis.
Collapse
Affiliation(s)
- Tianhao Zhu
- School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Starriver Bilingual School, Shanghai, China
| | | | - Mingyu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai, China
| | - Rui Lin
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University Medical School, Shanghai, China
| | - Jianan Zhuyan
- Shanghai Starriver Bilingual School, Shanghai, China
| | | | | | - Wei Zhou
- Department of Emergency, Souths Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Feng C, Jin X, Han Y, Guo R, Zou J, Li Y, Wang Y. Expression and Prognostic Analyses of ITGA3, ITGA5, and ITGA6 in Head and Neck Squamous Cell Carcinoma. Med Sci Monit 2020; 26:e926800. [PMID: 33099569 PMCID: PMC7594586 DOI: 10.12659/msm.926800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The landscape of head and neck cancers has changed with improvements in standard therapy; however, it is necessary to exploit advanced genomic approaches to identify novel diagnostic and prognostic biomarkers for head and neck squamous cell carcinoma (HNSC). ITGA3, ITGA5, and ITGA6, members of the integrin family of proteins, play active roles in cytoskeletal organization and cell migration, proliferation, and survival. However, the expression patterns and prognostic values of ITGA3, ITGA5, and ITGA6 in head and neck squamous cell carcinoma remain unclear. MATERIAL AND METHODS Different expression patterns and prognostic values of ITGA3, ITGA5, and ITGA6 were analyzed in patients with HNSC using various databases, including ONCOMINE, GEPIA, TIMER, HPA, Kaplan-Meier Plotter, GEO, and TCGA. RESULTS Expression levels of ITGA3, ITGA5, and ITGA6 were substantially increased in patients with HNSC. Additionally, higher expression levels of ITGA3, ITGA5, and ITGA6 were associated with worse overall survival in patients with HNSC, and higher levels of ITGA3 correlated with a worse relapse-free survival. CONCLUSIONS ITGA3, ITGA5, and ITGA6 are potential diagnostic and prognostic biomarkers for HNSC. In particular, IGTA5 might be used as a significant independent prognostic factor in this cancer.
Collapse
Affiliation(s)
- Chen Feng
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland).,NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China (mainland)
| | - Xiaoxue Jin
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland).,NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China (mainland)
| | - Yingying Han
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland).,NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China (mainland)
| | - Ruixiang Guo
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland).,NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China (mainland)
| | - Juanjuan Zou
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland).,NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China (mainland)
| | - Yanzhong Li
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland).,NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China (mainland)
| | - Yan Wang
- Department of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China (mainland).,NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China (mainland)
| |
Collapse
|
26
|
Bladder Cancer Metastasis Induced by Chronic Everolimus Application Can Be Counteracted by Sulforaphane In Vitro. Int J Mol Sci 2020; 21:ijms21155582. [PMID: 32759798 PMCID: PMC7432076 DOI: 10.3390/ijms21155582] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic treatment with the mTOR inhibitor, everolimus, fails long-term in preventing tumor growth and dissemination in cancer patients. Thus, patients experiencing treatment resistance seek complementary measures, hoping to improve therapeutic efficacy. This study investigated metastatic characteristics of bladder carcinoma cells exposed to everolimus combined with the isothiocyanate sulforaphane (SFN), which has been shown to exert cancer inhibiting properties. RT112, UMUC3, or TCCSUP bladder carcinoma cells were exposed short- (24 h) or long-term (8 weeks) to everolimus (0.5 nM) or SFN (2.5 µM), alone or in combination. Adhesion and chemotaxis along with profiling details of CD44 receptor variants (v) and integrin α and β subtypes were evaluated. The functional impact of CD44 and integrins was explored by blocking studies and siRNA knock-down. Long-term exposure to everolimus enhanced chemotactic activity, whereas long-term exposure to SFN or the SFN-everolimus combination diminished chemotaxis. CD44v4 and v7 increased on RT112 cells following exposure to SFN or SFN-everolimus. Up-regulation of the integrins α6, αV, and β1 and down-regulation of β4 that was present with everolimus alone could be prevented by combining SFN and everolimus. Down-regulation of αV, β1, and β4 reduced chemotactic activity, whereas knock-down of CD44 correlated with enhanced chemotaxis. SFN could, therefore, inhibit resistance-related tumor dissemination during everolimus-based bladder cancer treatment.
Collapse
|
27
|
Label-free platform on pH-responsive chitosan: Adhesive heterogeneity for cancer stem-like cell isolation from A549 cells via integrin β4. Carbohydr Polym 2020; 239:116168. [PMID: 32414450 DOI: 10.1016/j.carbpol.2020.116168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022]
Abstract
Great efforts have been paid to develop methodologies for cancer stem-like cell (CSLC) isolation in anti-cancer research. The major obstacle lies in the lack of generic biomarkers for different cancer types and the requirement of complicated immuno-labeling procedures. The purpose of this study is to establish a label-free platform for CSLC isolation using pH-responsive chitosan. Based on the adhesive heterogeneity, 15.7 ± 1.9 % of human non-small cell lung cancer (NSCLC) cell line A549 detached from the chitosan substrate following medium pH elevation from 6.99 to 7.65 within 1 h. As a result, this subpopulation of cells with low adhesiveness exhibited superior CSLC hallmarks, including self-renewal, invasive and metastatic potential, therapeutic-resistance, colony formation in vitro, as well as nude mice xenograft in vivo for tumorigenesis, in comparison with their high-adhesive counterpart. Furthermore, integrin β4 is decisive in controlling CSLC detachment of NSCLC. Conclusively, this pH-dependent isolation provides new insights into biomaterial-based CSLC isolation.
Collapse
|
28
|
Zhong F, Lu HP, Chen G, Dang YW, Li GS, Chen XY, Qin YY, Yao YX, Zhang XG, Liang Y, Li MX, Mo M, Zhang KL, Ding H, Huang ZG, Wei ZX. The clinical significance and potential molecular mechanism of integrin subunit beta 4 in laryngeal squamous cell carcinoma. Pathol Res Pract 2019; 216:152785. [PMID: 31889588 DOI: 10.1016/j.prp.2019.152785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023]
Abstract
The relationship between integrin beta 4 (ITGB4) expression and laryngeal squamous cell carcinoma (LSCC) remains unclarified. The object of the present study was to explore the clinical significance and potential molecular mechanism of ITGB4 in LSCC. The protein level of ITGB4 was significantly higher in 46 LSCC patients than in 26 non-LSCC tissues detected by in-house immunohistochemistry. Consistently, ITGB4 mRNA level was also greatly upregulated based on microarray and RNA-seq data (standard mean difference, SMD = 1.62, 95 % CI: 1.23-2.00). And the area under curves (AUC) of summary receiver operator characteristic (SROC) was 0.87 (95 % CI: 0.84-0.90) based on 172 cases of LSCC and 59 cases of non-cancerous controls. Ninety genes were intersected by the ITGB4 related genes and LSCC differential expressed genes (DEGs) from all available microarray and RNA-seq datasets. Based on Gene Ontology (GO) analysis, the top terms of biological process (BP), cellular component (CC) and molecular function (MF) for the 90 ITGB4 related DEGs were extracellular matrix organization, basement membrane and extracellular matrix structural constituent, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that ITGB4 related DEGs mainly participated in the pathways of ECM-receptor interaction, Focal adhesion and Small cell lung cancer. Moreover, the Protein-Protein Interaction (PPI) network indicated that ITGA3, ITGA5, ITGB4, MET, LAMA3, and COL4A1 might be the core genes of LSCC development related to ITGB4. In conclusion, high ITGB4 expression may lead to the occurrence and development of LSCC via various signaling pathways.
Collapse
Affiliation(s)
- Feng Zhong
- Department of Pathology, Hengxian People's Hospital, 141 Jiaoyu Road, Hengxian County of Nanning 530300, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guo-Sheng Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yong-Ying Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yu-Xuan Yao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Guohui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yao Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ming-Xuan Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Miao Mo
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Kai-Lang Zhang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hua Ding
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Zhu-Xin Wei
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
29
|
Hinton JP, Dvorak K, Roberts E, French WJ, Grubbs JC, Cress AE, Tiwari HA, Nagle RB. A Method to Reuse Archived H&E Stained Histology Slides for a Multiplex Protein Biomarker Analysis. Methods Protoc 2019; 2:mps2040086. [PMID: 31731599 PMCID: PMC6960855 DOI: 10.3390/mps2040086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Archived Hematoxylin and Eosin (H&E) stained pathology slides are routinely stored to index formalin-fixed paraffin-embedded (FFPE) sample tissue blocks. FFPE blocks are clinically annotated human tumor specimens that can be valuable in studies decades after the tissue is collected. If stored properly, they have the potential to yield a valuable number of serial sectioned slides for diagnostic or research purposes. However, some retrospective studies are limited in scope because the tissue samples have been depleted or not enough material is available in stored blocks for serial sections. The goal of these studies was to determine if archived H&E-stained slides can be directly reutilized by optimizing methods to de-stain and then re-stain the H&E stained slides to allow the detection of several biomarkers of interest using a conjugated antibody with chromogen multiplex immunohistochemistry procedure. This simple but innovative procedure, combined with image analysis techniques, demonstrates the ability to perform precise detection of relevant markers correlated to disease progression in initially identified tumor regions in tissue. This may add clinical value in retaining H&E slides for further use.
Collapse
Affiliation(s)
- James P. Hinton
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ 85724, USA;
- Ventana/Roche Tissue Diagnostics, Tucson, AZ 85755, USA; (K.D.); (E.R.); (W.J.F.); (J.C.G.)
| | - Katerina Dvorak
- Ventana/Roche Tissue Diagnostics, Tucson, AZ 85755, USA; (K.D.); (E.R.); (W.J.F.); (J.C.G.)
| | - Esteban Roberts
- Ventana/Roche Tissue Diagnostics, Tucson, AZ 85755, USA; (K.D.); (E.R.); (W.J.F.); (J.C.G.)
| | - Wendy J. French
- Ventana/Roche Tissue Diagnostics, Tucson, AZ 85755, USA; (K.D.); (E.R.); (W.J.F.); (J.C.G.)
| | - Jon C. Grubbs
- Ventana/Roche Tissue Diagnostics, Tucson, AZ 85755, USA; (K.D.); (E.R.); (W.J.F.); (J.C.G.)
| | - Anne E. Cress
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ 85724, USA;
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
- Correspondence: ; Tel.: +1-520-626-7553
| | - Hina A. Tiwari
- Department of Medical Imaging, College of Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | - Raymond B. Nagle
- Department of Pathology, College of Medicine, the University of Arizona, Tucson, AZ 85724, USA;
| |
Collapse
|
30
|
Chen GY, Ruan L. Downregulation Of microRNA-133b And Its Clinical Value In Non-Small Cell Lung Cancer. Onco Targets Ther 2019; 12:9421-9434. [PMID: 31807021 PMCID: PMC6844227 DOI: 10.2147/ott.s231312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/25/2019] [Indexed: 01/28/2023] Open
Abstract
Background Previous studies have investigated the expression of miR-133b in non-small cell lung cancer (NSCLC); however, its underlying mechanism in relation to the pathogenesis of NSCLC remains unclear. Methods The aim of this study was to investigate the correlation between miR-133b expression and clinical parameters based on the Cancer Genome Atlas (TCGA) and real-time quantitative real-time PCR (RT-qPCR) data. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify the biological function of miR-133b. A protein-protein interaction (PPI) network was constructed to screen for hub genes. The Gene Expression Profiling Interaction Analysis (GEPIA) and the Human Protein Atlas databases (HPAD) were employed to validate the hub genes. The cBioPortal database was used to identify neighboring genes with alteration frequencies greater than 20% gene alterations. Results miR-133b was downregulated in NSCLC tissues, and expression was correlated with lymph node metastasis (P < 0.05). A total of 362 genes were considered as the potential targets of miR-133b in NSCLC. These candidate target genes highly enriched in various key pathways such as the PI3K-Akt pathways, P53 signal pathways, and ECM-receptor interaction. PPI revealed 10 genes as hub genes with node degrees ≥10. Conclusion The study validated that miR-133b is downregulated in NSCLC. In addition, miR-133b might function as a biomarker for the diagnosis and prognosis of NSCLC. Bioinformatics analysis revealed that miR-133b could be involved in NSCLC metastasis.
Collapse
Affiliation(s)
- Guan-Yu Chen
- Departments of Anesthesiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Lin Ruan
- Departments of Anesthesiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
31
|
Li J, Luo M, Ou H, Liu X, Kang X, Yin W. Integrin β4 promotes invasion and anoikis resistance of papillary thyroid carcinoma and is consistently overexpressed in lymphovascular tumor thrombus. J Cancer 2019; 10:6635-6648. [PMID: 31777592 PMCID: PMC6856897 DOI: 10.7150/jca.36125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Although the majority of papillary thyroid cancers (PTC) are indolent, a subset of PTCs behaves aggressively due to extensive invasion and distant metastasis. Integrin β4, a member of the integrin family, has been shown to enhance the progression in some malignancies; however, its role in PTC remains unclear. Here, we demonstrated that β4 overexpression was associated with extrathyroid extension, lymph node metastasis, high TNM stage, and poor overall survival based on The Cancer Genome Atlas cohort. Immunohistochemistry showed that β4 expression was significantly upregulated in the tumors with infiltrating growth pattern, as well as those with positive lymphovascular invasion. Moreover, β4 was invariably overexpressed in the lymphovascular tumor thrombi, which has not been reported before. After shRNA-induced knockdown of β4 in vitro, the migration, invasion and scratch repair ability of the tumor cells were significantly reduced. Furthermore, β4 reduction decreased anchorage-independent growth and increased anoikis. The bioinformatics analysis revealed that approximately 70 pathways were significantly dysregulated in the high β4 expression group. The MAPK pathway and propanoate metabolism were located in the network center of those pathways. Taken together, our results suggest that β4 could promote the tumor's aggressiveness by enhancing invasion and antagonizing anoikis. The upregulated expression of β4 in the tumor thrombi is intrinsically linked to its role in strengthening the anoikis resistance.
Collapse
Affiliation(s)
- Jian Li
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518036, China.,State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong Province, 518055, China
| | - Minghua Luo
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518036, China
| | - Huiting Ou
- Department of Endocrinology, Shenzhen Second People's Hospital, Guangdong Province, 518035, China
| | - Xiaoling Liu
- Department of Thyroid and Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518036, China
| | - Xueling Kang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518036, China
| | - Weihua Yin
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, 518036, China
| |
Collapse
|
32
|
Lung tumorspheres reveal cancer stem cell-like properties and a score with prognostic impact in resected non-small-cell lung cancer. Cell Death Dis 2019; 10:660. [PMID: 31506430 PMCID: PMC6737160 DOI: 10.1038/s41419-019-1898-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/22/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
The high resistance against current therapies found in non-small-cell lung cancer (NSCLC) has been associated to cancer stem-like cells (CSCs), a population for which the identification of targets and biomarkers is still under development. In this study, primary cultures from early-stage NSCLC patients were established, using sphere-forming assays for CSC enrichment and adherent conditions for the control counterparts. Patient-derived tumorspheres showed self-renewal and unlimited exponential growth potentials, resistance against chemotherapeutic agents, invasion and differentiation capacities in vitro, and superior tumorigenic potential in vivo. Using quantitative PCR, gene expression profiles were analyzed and NANOG, NOTCH3, CD44, CDKN1A, SNAI1, and ITGA6 were selected to distinguish tumorspheres from adherent cells. Immunoblot and immunofluorescence analyses confirmed that proteins encoded by these genes were consistently increased in tumorspheres from adenocarcinoma patients and showed differential localization and expression patterns. The prognostic role of genes significantly overexpressed in tumorspheres was evaluated in a NSCLC cohort (N = 661) from The Cancer Genome Atlas. Based on a Cox regression analysis, CDKN1A, SNAI1, and ITGA6 were found to be associated with prognosis and used to calculate a gene expression score, named CSC score. Kaplan–Meier survival analysis showed that patients with high CSC score have shorter overall survival (OS) in the entire cohort [37.7 vs. 60.4 months (mo), p = 0.001] and the adenocarcinoma subcohort [36.6 vs. 53.5 mo, p = 0.003], but not in the squamous cell carcinoma one. Multivariate analysis indicated that this gene expression score is an independent biomarker of prognosis for OS in both the entire cohort [hazard ratio (HR): 1.498; 95% confidence interval (CI), 1.167–1.922; p = 0.001] and the adenocarcinoma subcohort [HR: 1.869; 95% CI, 1.275–2.738; p = 0.001]. This score was also analyzed in an independent cohort of 114 adenocarcinoma patients, confirming its prognostic value [42.90 vs. not reached (NR) mo, p = 0.020]. In conclusion, our findings provide relevant prognostic information for lung adenocarcinoma patients and the basis for developing novel therapies. Further studies are required to identify suitable markers and targets for lung squamous cell carcinoma patients.
Collapse
|
33
|
Jin H, Ying X, Que B, Wang X, Chao Y, Zhang H, Yuan Z, Qi D, Lin S, Min W, Yang M, Ji W. N 6-methyladenosine modification of ITGA6 mRNA promotes the development and progression of bladder cancer. EBioMedicine 2019; 47:195-207. [PMID: 31409574 PMCID: PMC6796523 DOI: 10.1016/j.ebiom.2019.07.068] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/21/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
Background Accumulating evidence has revealed the critical roles of N6-methyladenosine (m6A) modification of mRNA in various cancers. However, the biological function and regulation of m6A in bladder cancer (BC) are not yet fully understood. Methods We performed cell phenotype analysis and established in vivo mouse xenograft models to assess the effects of m6A-modified ITGA6 on BC growth and progression. Methylated RNA immunoprecipitation (MeRIP), RNA immunoprecipitation and luciferase reporter and mutagenesis assays were used to define the mechanism of m6A-modified ITGA6. Immunohistochemical analysis was performed to assess the correlation between METTL3 and ITGA6 expression in bladder cancer patients. Findings We show that the m6A writer METTL3 and eraser ALKBH5 altered cell adhesion by regulating ITGA6 expression in bladder cancer cells. Moreover, upregulation of ITGA6 is correlated with the increase in METTL3 expression in human BC tissues, and higher expression of ITGA6 in patients indicates a lower survival rate. Mechanistically, m6A is highly enriched within the ITGA6 transcripts, and increased m6A methylations of the ITGA6 mRNA 3’UTR promotes the translation of ITGA6 mRNA via binding of the m6A readers YTHDF1 and YTHDF3. Inhibition of ITGA6 results in decreased growth and progression of bladder cancer cells in vitro and in vivo. Furthermore, overexpression of ITGA6 in METTL3-depleted cells partially restores the BC adhesion, migration and invasion phenotypes. Interpretation Our results demonstrate an oncogenic role of m6A-modified ITGA6 and show its regulatory mechanisms in BC development and progression, thus identifying a potential therapeutic target for BC. Fund This work was supported by National Natural Science Foundation of China (81772699, 81472999).
Collapse
Affiliation(s)
- Huan Jin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China; Department of Physiology, Zunyi Medical College, Guizhou 563000, China
| | - Xiaoling Ying
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Biao Que
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou 510230, China
| | - Xiaoxue Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, China
| | - Yinghui Chao
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Haiqing Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Zusen Yuan
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou 510230, China
| | - Defeng Qi
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou 510230, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Wang Min
- Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Mei Yang
- Department of Breast Surgery, Guangdong Provincial People's Hospital, Guangzhou 510080, China.
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China.
| |
Collapse
|
34
|
Gerashchenko TS, Novikov NM, Krakhmal NV, Zolotaryova SY, Zavyalova MV, Cherdyntseva NV, Denisov EV, Perelmuter VM. Markers of Cancer Cell Invasion: Are They Good Enough? J Clin Med 2019; 8:E1092. [PMID: 31344926 PMCID: PMC6723901 DOI: 10.3390/jcm8081092] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Invasion, or directed migration of tumor cells into adjacent tissues, is one of the hallmarks of cancer and the first step towards metastasis. Penetrating to adjacent tissues, tumor cells form the so-called invasive front/edge. The cellular plasticity afforded by different kinds of phenotypic transitions (epithelial-mesenchymal, collective-amoeboid, mesenchymal-amoeboid, and vice versa) significantly contributes to the diversity of cancer cell invasion patterns and mechanisms. Nevertheless, despite the advances in the understanding of invasion, it is problematic to identify tumor cells with the motile phenotype in cancer tissue specimens due to the absence of reliable and acceptable molecular markers. In this review, we summarize the current information about molecules such as extracellular matrix components, factors of epithelial-mesenchymal transition, proteases, cell adhesion, and actin cytoskeleton proteins involved in cell migration and invasion that could be used as invasive markers and discuss their advantages and limitations. Based on the reviewed data, we conclude that future studies focused on the identification of specific invasive markers should use new models one of which may be the intratumor morphological heterogeneity in breast cancer reflecting different patterns of cancer cell invasion.
Collapse
Affiliation(s)
- Tatiana S Gerashchenko
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia.
| | - Nikita M Novikov
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
- Department of Cytology and Genetics, Tomsk State University, 634050 Tomsk, Russia
| | - Nadezhda V Krakhmal
- Department of Pathological Anatomy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Sofia Y Zolotaryova
- Department of Cytology and Genetics, Tomsk State University, 634050 Tomsk, Russia
| | - Marina V Zavyalova
- Department of Pathological Anatomy, Siberian State Medical University, 634050 Tomsk, Russia
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
| | - Nadezhda V Cherdyntseva
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050 Tomsk, Russia
| | - Evgeny V Denisov
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
- Department of Organic Chemistry, Tomsk State University, 634050 Tomsk, Russia
| | - Vladimir M Perelmuter
- Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
| |
Collapse
|
35
|
Shen J, Xu J, Chen B, Ma D, Chen Z, Li JC, Zhu C. Elevated integrin α6 expression is involved in the occurrence and development of lung adenocarcinoma, and predicts a poor prognosis: a study based on immunohistochemical analysis and bioinformatics. J Cancer Res Clin Oncol 2019; 145:1681-1693. [DOI: 10.1007/s00432-019-02907-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/22/2019] [Indexed: 01/04/2023]
|
36
|
Ma B, Zhang L, Zou Y, He R, Wu Q, Han C, Zhang B. Reciprocal regulation of integrin β4 and KLF4 promotes gliomagenesis through maintaining cancer stem cell traits. J Exp Clin Cancer Res 2019; 38:23. [PMID: 30658712 PMCID: PMC6339386 DOI: 10.1186/s13046-019-1034-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/09/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The dismal prognosis of patients with glioma is largely attributed to cancer stem cells that display pivotal roles in tumour initiation, progression, metastasis, resistance to therapy, and relapse. Therefore, understanding how these populations of cells maintain their stem-like properties is critical in developing effective glioma therapeutics. METHODS RNA sequencing analysis was used to identify genes potentially involved in regulating glioma stem cells (GSCs). Integrin β4 (ITGB4) expression was validated by quantitative real-time PCR (qRT-PCR) and immunohistochemical (IHC) staining. The role of ITGB4 was investigated by flow cytometry, mammosphere formation, transwell, colony formation, and in vivo tumorigenesis assays. The reciprocal regulation between Integrin β4 and KLF4 was investigated by chromatin immunoprecipitation (ChIP), dual-luciferase reporter assay, immunoprecipitation, and in vivo ubiquitylation assays. RESULTS In this study, we found that ITGB4 expression was increased in GSCs and human glioma tissues. Upregulation of ITGB4 was correlated with glioma grades. Inhibition of ITGB4 in glioma cells decreased the self-renewal abilities of GSCs and suppressed the malignant behaviours of glioma cells in vitro and in vivo. Further mechanistic studies revealed that KLF4, an important transcription factor, directly binds to the promoter of ITGB4, facilitating its transcription and contributing to increased ITGB4 expression in glioma. Interestingly, this increased expression enabled ITGB4 to bind KLF4, thus attenuating its interaction with its E3 ligase, the von Hippel-Lindau (VHL) protein, which subsequently decreases KLF4 ubiquitination and leads to its accumulation. CONCLUSIONS Collectively, our data indicate the existence of a positive feedback loop between KLF4 and ITGB4 that promotes GSC self-renewal and gliomagenesis, suggesting that ITGB4 may be a valuable therapeutic target for glioma.
Collapse
Affiliation(s)
- Binbin Ma
- Department of Neurosurgery, Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116027 China
| | - Li Zhang
- Laboratory of Pathogenic Biology, College of Basic Medical Science, Dalian Medical University, Dalian, 116027 China
| | - Yujie Zou
- Nursing Department, First Affiliated Hospital, Dalian Medical University, Dalian, 116011 China
| | - Ruiping He
- Department of Neurosurgery, Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116027 China
| | - Qiong Wu
- Department of Neurology of Dalian Municipal Central Hospital Affiliated, Dalian Medical University, Dalian, 116033 China
| | - Chuanchun Han
- Department of Neurosurgery, Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116027 China
| | - Bo Zhang
- Department of Neurosurgery, Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116027 China
| |
Collapse
|
37
|
Li L, Huang Y, Gao Y, Shi T, Xu Y, Li H, Hyytiäinen M, Keski-Oja J, Jiang Q, Hu Y, Du Z. EGF/EGFR upregulates and cooperates with Netrin-4 to protect glioblastoma cells from DNA damage-induced senescence. BMC Cancer 2018; 18:1215. [PMID: 30514230 PMCID: PMC6280426 DOI: 10.1186/s12885-018-5056-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most malignant central nervous system tumor. Alkylating agent, temozolomide (TMZ), is currently the first-line chemotherapeutic agent for GBM. However, the sensitivity of GBM cells to TMZ is affected by many factors. And, several clinic trials, including co-administration of TMZ with other drugs, have failed in successful treatment of GBM. We have previously reported that Netrin-4 (NTN4), a laminin-like axon guidance protein, plays a protective role in GBM cell senescence upon TMZ-triggered DNA damage. However, the master regulator of NTN4 needs further elucidation. Epidermal growth factor/Epidermal growth factor receptor (EGF/EGFR) can modulate the expression of various extracellular matrix related molecules, and prevent DNA damage in GBM cells. In this study, we investigated the relationship between EGF/EGFR signaling and NTN4, and explored their effect on therapeutic efficacy in GBM cells upon TMZ treatment. METHODS Co-expression analysis were performed by using the RNA sequencing data from NIH 934 cell lines and from single cell RNA sequencing data of GBM tumor. The co-expressing genes were used for GO enrichment and signaling pathway enrichment. mRNA expression of the target genes were quantified by qPCR, and cell senescence were investigated by Senescence-Associated Beta-Galactosidase Staining. Protein phosphorylation were observed and analyzed by immunoblotting. The RNA sequencing data and clinical information of TMZ treated patients were extracted from TCGA-glioblastoma project, and then used for Kaplan-Meier survival analysis. RESULTS Analysis of RNA sequencing data revealed a potential co-expression relationship between NTN4 and EGFR. GO enrichment of EGFR-correlated genes indicated that EGFR regulates GBM cells in a manner similar to that in central nervous system development and neural cell differentiation. Pathway analysis suggested that EGFR and its related genes contribute to cell adhesion, extracellular matrix (ECM) organization and caspase related signaling. We also show that EGF stimulates NTN4 expression in GBM cells and cooperates with NTN4 to attenuate GBM cell senescence induced by DNA damage, possibly via AKT and ERK. Clinical analysis showed that co-expression of EGFR and NTN4 significantly predicts poor survival in TMZ-treated GBM patients. CONCLUSIONS This study indicates that EGF/EGFR regulates and cooperates with NTN4 in DNA damage resistance in GBM. Therefore, our findings provide a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, the Second Clinical College, Harbin Medical University, Harbin, People's Republic of China
| | - Yulun Huang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuge Gao
- Department of Oncology, the Second Clinical College, Harbin Medical University, Harbin, People's Republic of China
| | - Tengfei Shi
- Department of Oncology, the Second Clinical College, Harbin Medical University, Harbin, People's Republic of China
| | - Yunyun Xu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, China
| | - Huini Li
- Departments of Virology and Pathology, Faculty of Medicine, the Haartman Institute, Translational Cancer Biology Research Program and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Marko Hyytiäinen
- Departments of Virology and Pathology, Faculty of Medicine, the Haartman Institute, Translational Cancer Biology Research Program and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jorma Keski-Oja
- Departments of Virology and Pathology, Faculty of Medicine, the Haartman Institute, Translational Cancer Biology Research Program and Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Qiuying Jiang
- Department of Oncology, the Second Clinical College, Harbin Medical University, Harbin, People's Republic of China.
| | - Yizhou Hu
- Departments of Virology and Pathology, Faculty of Medicine, the Haartman Institute, Translational Cancer Biology Research Program and Helsinki University Hospital, University of Helsinki, Helsinki, Finland.
- Present address: Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Zhimin Du
- Department of pharmacy, the Second Clinical College, Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
38
|
Götte M, Kovalszky I. Extracellular matrix functions in lung cancer. Matrix Biol 2018; 73:105-121. [DOI: 10.1016/j.matbio.2018.02.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/08/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
|
39
|
Deletion of TMEM268 inhibits growth of gastric cancer cells by downregulating the ITGB4 signaling pathway. Cell Death Differ 2018; 26:1453-1466. [PMID: 30361615 PMCID: PMC6748091 DOI: 10.1038/s41418-018-0223-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/23/2018] [Accepted: 10/08/2018] [Indexed: 12/30/2022] Open
Abstract
Transmembrane protein 268 (TMEM268) encodes a novel human protein of previously unknown function. This study analyzed the biological activities and molecular mechanisms of TMEM268 in vivo and in vitro. We found that TMEM268 deletion decreases cell viability, proliferation, and cell adhesion as well as causing S-phase cell cycle arrest and disrupts cytoskeleton remolding. Xenograft tumor mouse model studies showed that TMEM268 deletion inhibits the tumorigenesis of BGC823 gastric cancer cells. In addition, TMEM268-deleted BGC823 cells failed to colonize the lungs after intravenous injection and to form metastatic engraftment in the peritoneum. Molecular mechanism studies showed a C-terminal interaction between TMEM268 and integrin subunit β4 (ITGB4). TMEM268 knockout promotes ITGB4 ubiquitin-mediated degradation, increasing the instability of ITGB4 and filamin A (FLNA). The reduced ITGB4 protein levels result in the disassociation of the ITGB4/PLEC complex and cytoskeleton remodeling. This study for the first time demonstrates that TMEM268 plays a positive role in the regulation of ITGB4 homeostasis. The above results may provide a new perspective that targeting the TMEM268/ITGB4 signaling axis for the treatment of gastric cancer, which deserves further investigation in the future.
Collapse
|
40
|
Colburn ZT, Jones JCR. Complexes of α6β4 integrin and vimentin act as signaling hubs to regulate epithelial cell migration. J Cell Sci 2018; 131:jcs214593. [PMID: 29976561 PMCID: PMC6080603 DOI: 10.1242/jcs.214593] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/26/2018] [Indexed: 12/27/2022] Open
Abstract
We find that clusters of β4 integrin, organized into distinct puncta, localize along vimentin filaments within lamellipodia at the cell edge of A549 cells, as assessed by interferometric photoactivated localization microscopy. Moreover, puncta and vimentin filaments exhibit a dynamic interplay in live cells, as viewed by structured-illumination microscopy, with β4 integrin puncta that associate with vimentin persisting for longer than those that do not. Interestingly, in A549 cells β4 integrin regulates vimentin cytoskeleton organization. When β4 integrin is knocked down there is a loss of vimentin filaments from lamellipodia. However, in these conditions, vimentin filaments instead concentrate around the nucleus. Although β4 integrin organization is unaffected in vimentin-deficient A549 cells, such cells move in a less-directed fashion and exhibit reduced Rac1 activity, mimicking the phenotype of β4 integrin-deficient A549 cells. Moreover, in vimentin-deficient cells, Rac1 fails to cluster at sites enriched in α6β4 integrin heterodimers. The aberrant motility of both β4 integrin and vimentin-deficient cells is rescued by expression of active Rac1, leading us to propose that complexes of β4 integrin and vimentin act as signaling hubs, regulating cell motility behavior.
Collapse
Affiliation(s)
- Zachary T Colburn
- School of Molecular Biosciences, Washington State University, BLS 202F, 1770 NE Stadium Way, Pullman, WA 99164, USA
| | - Jonathan C R Jones
- School of Molecular Biosciences, Washington State University, BLS 202F, 1770 NE Stadium Way, Pullman, WA 99164, USA
| |
Collapse
|
41
|
Tang J, Zhang J, Liu Y, Liao Q, Huang J, Geng Z, Xu W, Sheng Z, Lee G, Zhang Y, Chen J, Zhang L, Qiu X. Lung squamous cell carcinoma cells express non-canonically glycosylated IgG that activates integrin-FAK signaling. Cancer Lett 2018; 430:148-159. [PMID: 29778566 DOI: 10.1016/j.canlet.2018.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022]
Abstract
It is increasingly recognized that many human carcinomas express immunoglobulin (Ig) molecules that are distinct from B-cell-derived Ig and play important roles in cancer initiation, progression, and metastasis. However, the molecular mechanisms underlying the functions of cancer-derived Ig remain elusive. Here, we report that lung squamous cell carcinoma (LSCC) cells frequently express high levels of cancer IgG (CIgG) that is specifically recognized by a monoclonal antibody RP215. RP215 recognizes CIgG via a novel epitope that involves an N-glycan modification at a non-consensus site within the CH1 domain. We demonstrate that RP215 recognized CIgG (RP215-CIgG) promotes survival, migration and in vivo growth of LSCC cells, and these oncogenic activities are strongly inhibited by RP215. Mechanistically, RP215-CIgG executes its oncogenic function through interacting with the integrin α6β4 complex and activating the FAK and Src pathways. Notably, the CIgG-integrin-FAK signaling depends on the N-glycan epitope, which is inhibited by RP215. Together, our studies identified a novel CIgG molecule that activates the oncogenic integrin-FAK signaling in LSCC cells. In addition, the activity of CIgG is inhibited by RP215, providing an attractive target for antibody-based therapy of LSCC.
Collapse
Affiliation(s)
- Jingshu Tang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Jingxuan Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Yang Liu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Qinyuan Liao
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Zihan Geng
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Weiyan Xu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Peking University Center for Human Disease Genomics, Beijing, 100191, China
| | - Zhengzuo Sheng
- Department of Urology, Second Clinical Medical College of Peking University, Peking University People's Hospital, Beijing, 100044, China
| | - Gregory Lee
- Andrology Lab, University of British Columbia Centre for Reproductive Health, Vancouver, BC, V5Z 4H4, Canada
| | - Youhui Zhang
- Department of Immunology, Cancer Institute & Hospital, Chinese Academy of Medical Science, Beijing, 100021, China
| | - Jinfeng Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Liang Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, 999077, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China.
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China; Peking University Center for Human Disease Genomics, Beijing, 100191, China.
| |
Collapse
|
42
|
Huafeng J, Deqing Z, Yong D, Yulian Z, Ailing H. A cross-talk between integrin β4 and epidermal growth factor receptor induces gefitinib chemoresistance to gastric cancer. Cancer Cell Int 2018; 18:50. [PMID: 29618949 PMCID: PMC5879569 DOI: 10.1186/s12935-018-0548-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/23/2018] [Indexed: 02/01/2023] Open
Abstract
Background Gastric cancer presents a major health burden worldwide. Therefore, many molecular targeting agents have been evaluated for treatment of gastric cancer. Gefitinib has shown anticancer activity against gastric cancer which work through inhibiting epidermal growth factor receptor (EGFR). However, the effect of gefitinib is limited due to its resistance. Therefore, understanding the mechanisms of gefitinib resistance is desperately needed to formulate novel strategies against gastric cancer. Here, we analyzed resistance mechanism from the crosstalk between EGFR and integrin β4. Methods Integrin β4-expression vector or siRNA were used to analyze the functional effects of integrin β4 on chemoresistance of gastric cancer cells to gefitinib. EGFR and integrin β4 expression, proliferation and apoptosis of gastric cancer cells were assayed by indirect immunofluorescence, western blot, MTT and flow cytometry respectively. EGFR and integrin β4 expression were also assayed on patient samples. Results It was found that the integrin β4 expression was increased in gefitinib-resistant gastric cell line. The upregulated integrin β4 expression was identified to promote gefitinib resistance and proliferation, and inhibit apoptosis, while downregulation of integrin β4 was to inhibit gefitinib resistance and proliferation, and induce apoptosis. Moreover, the overexpression of integrin β4 in SGC7901 cells resulted in the down-regulation of p-EGFR protein levels while down-regulation of integrin β4, significantly resulted in overexpression of p-EGFR. The results of western blot from patients also showed there was obvious negative correlation between p-EGFR and integrin β4 in gastric cancer patients. Conclusion Considering the above results, it is concluded that the interaction of EGFR and integrin β4 may change the sensitivity of gefitinib treatment.
Collapse
Affiliation(s)
- Jia Huafeng
- Department of Gastroenterology, Hongze District People's Hospital, Huai'an, 223100 Jiangsu China
| | - Zhang Deqing
- 2Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu China
| | - Ding Yong
- Department of General Surgery, Hongze District People's Hospital, Huai'an, 223100 Jiangsu China
| | - Zhang Yulian
- Department of Gastroenterology, Hongze District People's Hospital, Huai'an, 223100 Jiangsu China
| | - Hu Ailing
- Department of Oncology, Hongze District People's Hospital, 102 Dongfeng Road, Hongze District, Huai'an, 223100 Jiangsu China
| |
Collapse
|
43
|
β4 and β6 Integrin Expression Is Associated with the Subclassification and Clinicopathological Features of Intrahepatic Cholangiocarcinoma. Int J Mol Sci 2018; 19:ijms19041004. [PMID: 29584696 PMCID: PMC5979350 DOI: 10.3390/ijms19041004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/24/2018] [Indexed: 02/08/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a heterogeneous group of cancers of the intrahepatic biliary tract. However, few studies have evaluated integrin expression according to an ICC subgroup. We immunohistochemically investigated α6β4 (β4) and αvβ6 (β6) integrin expressions in 48 ICCs, and evaluated their relationship with clinical and pathological parameters and ligand expression, as well as transforming growth factor (TGF)-β1. β4 and β6 expressions were detected in 46 (96%) and 35 (73%) ICC cases, respectively. We classified ICC into negative, low (β4, 29 cases; β6, 36 cases), or high (β4, 19 cases; β6, 12 cases) integrin expression groups. β4 and β6 integrin levels were higher in the non-peripheral central localization type ICC than in the peripheral localization type; they were also higher in the periductal-infiltrating or intraductal-growth types than in the mass-forming type ICC; lastly, they were higher in the well-differentiated type than in the poorly-differentiated type ICC. High expression was related to bile duct invasion. In addition, β4 and β6 expressions were associated with mucin production and the expression of cytoplasmic epithelial membrane antigen, laminin-5, and tenascin-C. TGF-β1 was correlated with β6 expression and poor overall survival. These results suggest that integrin expression is associated with subclassification and clinicopathological features of ICC through the coincident expression of their ligands and TGF-β1.
Collapse
|
44
|
Distinct mechanisms of regulation of the ITGA6 and ITGB4 genes by RUNX1 in myeloid cells. J Cell Physiol 2017; 233:3439-3453. [DOI: 10.1002/jcp.26197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/14/2017] [Indexed: 01/04/2023]
|
45
|
Li H, Wu H, Zhang H, Li Y, Li S, Hou Q, Wu S, Yang SY. Identification of curcumin-inhibited extracellular matrix receptors in non-small cell lung cancer A549 cells by RNA sequencing. Tumour Biol 2017; 39:1010428317705334. [PMID: 28618934 DOI: 10.1177/1010428317705334] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Curcumin is a potent anti-cancer drug in several types of human cancers. Despite of several preclinical and clinical studies of curcumin, the precise mechanism of curcumin in cancer prevention has remained unclear. In our study, we for the first time investigated whole transcriptome alteration in A549 non-small cell lung cancer (NSCLC) cell lines after treatment with curcumin using RNA sequencing. We found that lots of genes and signaling pathways were significantly altered after curcumin treatment in A549 cells. With bioinformatics approaches (gene ontology, Kyoto Encyclopedia of Genes and Genomes, and STRING), we found that those curcumin altered genes were not only the genes that induce cell death but also those extracellular matrix receptors and mitogen-activated protein kinase signaling pathway genes which regulate cell migration and proliferation. Among those significantly altered genes, eight genes ( COL1A1, COL4A1, COL5A1, LAMA5, ITGA3, ITGA2B, DDIT3, and DUSP1) were further examined by quantitative reverse transcription polymerase chain reaction and western blot analysis in four non-small cell lung cancer cell lines. Both in cell lines and in mouse model, the extracellular matrix receptors including the integrin ( ITGA3 and ITGA2B), collagen ( COL5A1), and laminin ( LAMA5) were significantly inhibited by curcumin at messenger RNA and protein levels. Functional studies confirmed that curcumin not only induced A549 cell death but also repressed cell proliferation and migration by regulating extracellular matrix receptors. Collectively, our study suggests that curcumin may be used as a promising drug candidate for intervening lung cancer in future studies.
Collapse
Affiliation(s)
- Huiping Li
- 1 Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,2 Department of Emergency Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongjin Wu
- 3 Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, China
| | - Hongfang Zhang
- 3 Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, China
| | - Ying Li
- 3 Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, China
| | - Shuang Li
- 3 Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, China
| | - Qiang Hou
- 3 Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, China
| | - Shixiu Wu
- 3 Cancer Research Institute, Hangzhou Cancer Hospital, Hangzhou, China
| | - Shuan-Ying Yang
- 1 Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
46
|
Colburn ZT, Jones JCR. α 6β 4 Integrin Regulates the Collective Migration of Epithelial Cells. Am J Respir Cell Mol Biol 2017; 56:443-452. [PMID: 27922761 DOI: 10.1165/rcmb.2016-0313oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
α6β4 integrin is localized in a unique punctate distribution at the cell-substratum interface along the leading front of single, front-rear-polarized A549 cells. These puncta are interspersed between focal adhesions and lack association with the actin cytoskeleton. Knockdown of β4 integrin in A549 cells inhibits their directed migration, with knockdown cells exhibiting large focal adhesions and reduced actin dynamics. Despite these changes, the speed of knockdown cells is equivalent to control cells. Interestingly, in such cells, α6 integrin retains its punctate distribution. Moreover, in β4 integrin knockdown cells, we observe a loss of β1 integrin from focal adhesions and an enhanced association with α6 integrin. We confirmed the switch in the β integrin binding partner of α6 integrin in the knockdown cells by immunoprecipitation. We next investigated the role of β4 integrin in collective cell migration. Wounded monolayers of β4 integrin knockdown cells exhibit reduced collective migration compared with controls. When we forced expression of β4 integrin in the leader cells of wounded monolayers, collective migration was restored. Similarly, forced expression of β4 integrin in primary rat alveolar epithelial cells also promotes collective cell migration. In addition, we interrogated the pathway by which β4 integrin regulates A549 cell-directed migration. Constitutively active Ras-related C3 botulinum toxin substrate 1 rescues motility defects resulting from β4 integrin deficiency. Together, our results support the hypothesis that α6β4 integrin is a positive regulator of collective cell migration of A549 cells through influence on signal pathways in leader cells.
Collapse
Affiliation(s)
- Zachary T Colburn
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| | - Jonathan C R Jones
- School of Molecular Biosciences, Washington State University, Pullman, Washington
| |
Collapse
|
47
|
A novel chemotherapy drug-free delivery system composed of three therapeutic aptamers for the treatment of prostate and breast cancers in vitro and in vivo. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1933-1940. [PMID: 28414074 DOI: 10.1016/j.nano.2017.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 01/16/2023]
Abstract
In this study, a novel chemotherapy drug-free DNA nanocomplex composed of three therapeutic aptamers (IDA, AS1411 and apMNK2F) was designed for treatment of cancer cells. For MTT assay, PC-3 and 4T1 cells (target cells) and CHO cells (nontarget cells) were treated with apMNK2F-AS1411-IDA complex (DNA nanocomplex), as well as AS1411, IDA and apMNK2F alone. Internalization of apMNK2F-AS1411-IDA complex was analyzed by fluorescence imaging and flow cytometry analysis. In the last step, the presented DNA nanocomplex was applied for prohibition of tumor growth in vivo. The results of internalization assay verified that the developed apMNK2F-AS1411-IDA complex was remarkably internalized into PC-3 and 4T1 cells, but not into CHO cells. The results of internalization assay was confirmed by MTT assay. apMNK2F-AS1411-IDA complex was more cytotoxic in PC-3 and 4T1 cells (target) and less cytotoxic in CHO cells (nontarget). Also, the DNA nanocomplex could effectively suppress the growth of tumors in vivo.
Collapse
|
48
|
Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc Natl Acad Sci U S A 2017; 114:E2337-E2346. [PMID: 28270621 DOI: 10.1073/pnas.1618298114] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Neoplastic cells within individual carcinomas often exhibit considerable phenotypic heterogeneity in their epithelial versus mesenchymal-like cell states. Because carcinoma cells with mesenchymal features are often more resistant to therapy and may serve as a source of relapse, we sought to determine whether such cells could be further stratified into functionally distinct subtypes. Indeed, we find that a basal epithelial marker, integrin-β4 (ITGB4), can be used to enable stratification of mesenchymal-like triple-negative breast cancer (TNBC) cells that differ from one another in their relative tumorigenic abilities. Notably, we demonstrate that ITGB4+ cancer stem cell (CSC)-enriched mesenchymal cells reside in an intermediate epithelial/mesenchymal phenotypic state. Among patients with TNBC who received chemotherapy, elevated ITGB4 expression was associated with a worse 5-year probability of relapse-free survival. Mechanistically, we find that the ZEB1 (zinc finger E-box binding homeobox 1) transcription factor activity in highly mesenchymal SUM159 TNBC cells can repress expression of the epithelial transcription factor TAp63α (tumor protein 63 isoform 1), a protein that promotes ITGB4 expression. In addition, we demonstrate that ZEB1 and ITGB4 are important in modulating the histopathological phenotypes of tumors derived from mesenchymal TNBC cells. Hence, mesenchymal carcinoma cell populations are internally heterogeneous, and ITGB4 is a mechanistically driven prognostic biomarker that can be used to identify the more aggressive subtypes of mesenchymal carcinoma cells in TNBC. The ability to rapidly isolate and mechanistically interrogate the CSC-enriched, partially mesenchymal carcinoma cells should further enable identification of novel therapeutic opportunities to improve the prognosis for high-risk patients with TNBC.
Collapse
|
49
|
Integrin β4 is a controversial target for non-small cell lung cancer-reply. Hum Pathol 2016; 61:223-224. [PMID: 27816722 DOI: 10.1016/j.humpath.2016.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 09/01/2016] [Indexed: 11/20/2022]
|
50
|
Cao L, Xu J. Integrin β4 is a controversial target for non-small cell lung cancer. Hum Pathol 2016; 61:222-223. [PMID: 27816719 DOI: 10.1016/j.humpath.2016.09.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/01/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Lu Cao
- Children's Hospital of Nanjing Medical University, Nanjing, 210008 China
| | - Jing Xu
- Children's Hospital of Nanjing Medical University, Nanjing, 210008 China.
| |
Collapse
|