1
|
Liu L, Fan XH, Tang XD. Revolutionizing Gastric Cancer Prevention: Novel Insights on Gastric Mucosal Inflammation-Cancer Transformation and Chinese Medicine. Chin J Integr Med 2024:10.1007/s11655-024-3806-5. [PMID: 38676828 DOI: 10.1007/s11655-024-3806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 04/29/2024]
Abstract
The progression from gastric mucosal inflammation to cancer signifies a pivotal event in the trajectory of gastric cancer (GC) development. Chinese medicine (CM) exhibits unique advantages and holds significant promise in inhibiting carcinogenesis of the gastric mucosa. This review intricately examines the critical pathological events during the transition from gastric mucosal inflammation-cancer transformation (GMICT), with a particular focus on pathological evolution mechanisms of spasmolytic polypeptide-expressing metaplasia (SPEM). Moreover, it investigates the pioneering applications and advancements of CM in intervening within the medical research domain of precancerous transformations leading to GC. Furthermore, the analysis extends to major shortcomings and challenges confronted by current research in gastric precancerous lesions, and innovative studies related to CM are presented. We offer a highly succinct yet optimistic outlook on future developmental trends. This paper endeavors to foster a profound understanding of forefront dynamics in GMICT research and scientific implications of modernizing CM. It also introduces a novel perspective for establishing a collaborative secondary prevention system for GC that integrates both Western and Chinese medicines.
Collapse
Affiliation(s)
- Lin Liu
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiao-Hui Fan
- School of Pharmacy, Zhejiang University, Hangzhou, 310058, China
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang Province, 314100, China
| | - Xu-Dong Tang
- Institute of Digestive Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
2
|
Xie D, Wu C, Wang D, Nisma Lena BA, Liu N, Ye G, Sun M. Wei-fu-chun tablet halted gastric intestinal metaplasia and dysplasia associated with inflammation by regulating the NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117020. [PMID: 37567428 DOI: 10.1016/j.jep.2023.117020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chi006Eese herbal medicine Weifuchun Tablets (WFC) approved by the State Food and Drug Administration in 1982 has been widely used in treating a variety of chronic stomach disorders including Chronic atrophic gastritis (CAG) and Gastric precancerous lesions in China clinically. This study aimed to investigate the efficacy and potential mechanism of WFC in treating Gastric intestinal metaplasia (GIM) and Gastric dysplasia (GDys). MATERIALS AND METHODS Rat GIM and GDys established by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) combined with hot paste, ethanol injury, and intermittent fasting were intervened by WFC. Body weight, histopathology, pH of gastric acid, pepsin activity, intestinal metaplasia index and inflammation were detected. Rat bone marrow derived macrophages (BMDMs) pretreated with WFC were stimulated by LPS. Inflammatory factors and the nuclear factor-kappa B (NF-κB) pathway were assessed. GES-1 cells pretreated by WFC were stimulated by MNNG and TNF-α, intestinal metaplasia index, the NF-κB pathway and interaction between P65 and CDX2 were detected. RESULTS WFC improved rat body weight, histopathology, pH value of gastric acid, activity of gastric pepsin, intestinal metaplasia (CDX2), inflammation (IL-1β, IL-6 and TNF-α), macrophage aggregation (CD68) in gastric mucosa in rat GIM and GDys. WFC inhibited inflammation (IL-1β and TNF-α) by inactivating the NF-κB pathway. WFC reduced the expression of CDX2 by inhibiting the binding of CDX2 promoter TSS upstream region with p65. CONCLUSION WFC blocked GIM and GDys associated with inflammation by regulating the NF-κB pathway.
Collapse
Affiliation(s)
- Dong Xie
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chao Wu
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dan Wang
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bahaji Azami Nisma Lena
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ningning Liu
- Department of Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China.
| | - Mingyu Sun
- Shuguang Hospital, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Huang X, Zhang M, Zhang Z. The Role of LMP1 in Epstein-Barr Virus-associated Gastric Cancer. Curr Cancer Drug Targets 2024; 24:127-141. [PMID: 37183458 DOI: 10.2174/1568009623666230512153741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
EBV promotes many cancers such as lymphoma, nasopharyngeal carcinoma, and gastric; Latent Membrane Protein 1 (LMP1) is considered to be a major oncogenic protein encoded by Epstein- Barr virus (EBV). LMP1 functions as a carcinogen in lymphoma and nasopharyngeal carcinoma, and LMP1 may also promote gastric cancer. The expression level of LMP1 in host cells is a key determinant in tumorigenesis and maintenance of virus specificity. By promoting cell immortalization and cell transformation, promoting cell proliferation, affecting immunity, and regulating cell apoptosis, LMP1 plays a crucial tumorigenic role in epithelial cancers. However, very little is currently known about LMP1 in Epstein-Barr virus-associated gastric cancer (EBVaGC); the main reason is that the expression level of LMP1 in EBVaGC is comparatively lower than other EBV-encoded proteins, such as The Latent Membrane Protein 2A (LMP2A), Epstein-Barr nuclear antigen 1 (EBNA1) and BamHI-A rightward frame 1 (BARF1), to date, there are few studies related to LMP1 in EBVaGC. Recent studies have demonstrated that LMP1 promotes EBVaGC by affecting The phosphatidylinositol 3-kinase- Akt (PI3K-Akt), Nuclear factor-kappa B (NF-κB), and other signaling pathways to regulate many downstream targets such as Forkhead box class O (FOXO), C-X-C-motif chemokine receptor (CXCR), COX-2 (Cyclooxygenase-2); moreover, the gene methylation induced by LMP1 in EBVaGC has become one of the characteristics that distinguish this gastric cancer (GC) from other types of gastric cancer and LMP1 also promotes the formation of the tumor microenvironment (TME) of EBVaGC in several ways. This review synthesizes previous relevant literature, aiming to highlight the latest findings on the mechanism of action of LMP1 in EBVaGC, summarize the function of LMP1 in EBVaGC, lay the theoretical foundation for subsequent new research on LMP1 in EBVaGC, and contribute to the development of novel LMP1-targeted drugs.
Collapse
Affiliation(s)
- Xinqi Huang
- Department of Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Meilan Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
4
|
Up-regulation of Aquaporin 5 Defines Spasmolytic Polypeptide-Expressing Metaplasia and Progression to Incomplete Intestinal Metaplasia. Cell Mol Gastroenterol Hepatol 2021; 13:199-217. [PMID: 34455107 PMCID: PMC8593616 DOI: 10.1016/j.jcmgh.2021.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Metaplasia in the stomach is highly associated with development of intestinal-type gastric cancer. Two types of metaplasias, spasmolytic polypeptide-expressing metaplasia (SPEM) and intestinal metaplasia (IM), are considered precancerous lesions. However, it remains unclear how SPEM and IM are related. Here we investigated a new lineage-specific marker for SPEM cells, aquaporin 5 (AQP5), to assist in the identification of these 2 metaplasias. METHODS Drug- or Helicobacter felis (H felis) infection-induced mouse models were used to identify the expression pattern of AQP5 in acute or chronic SPEM. Gene-manipulated mice treated with or without drug were used to investigate how AQP5 expression is regulated in metaplastic lesions. Metaplastic samples from transgenic mice and human gastric cancer patients were evaluated for AQP5 expression. Immunostaining with lineage-specific markers was used to differentiate metaplastic gland characteristics. RESULTS Our results revealed that AQP5 is a novel lineage-specific marker for SPEM cells that are localized at the base of metaplastic glands initially and expand to dominate glands after chronic H felis infection. In addition, AQP5 expression was up-regulated early in chief cell reprogramming and was promoted by interleukin 13. In humans, metaplastic corpus showed highly branched structures with AQP5-positive SPEM. Human SPEM cells strongly expressing AQP5 were present at the bases of incomplete IM glands marked by TROP2 but were absent from complete IM glands. CONCLUSIONS AQP5-expressing SPEM cells are present in pyloric metaplasia and TROP2-positive incomplete IM and may be an important component of metaplasia that can predict a higher risk for gastric cancer development.
Collapse
|
5
|
Pyo JS, Kim NY, Kang DW. Clinicopathological Significance of EBV-Infected Gastric Carcinomas: A Meta-Analysis. ACTA ACUST UNITED AC 2020; 56:medicina56070345. [PMID: 32668573 PMCID: PMC7404405 DOI: 10.3390/medicina56070345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023]
Abstract
Background and objectives: The present study aims to elucidate the clinicopathologic significance of Epstein-Barr virus (EBV) infection in gastric carcinomas (GCs) through a meta-analysis. Materials and Methods: Sixty-one eligible studies were included in the present meta-analysis. The included patients, with and without EBV infection, were 2063 and 17,684, respectively. We investigated the clinicopathologic characteristics and various biomarkers, including programmed death-ligand 1 (PD-L1) expression and tumor-infiltrating lymphocytes (TILs). Results: The estimated EBV-infected rate of GCs was 0.113 (95% confidence interval (CI): 0.088-0.143). The EBV infection rates in GC cells were 0.138 (95% CI: 0.096-0.194), 0.103 (95% CI: 0.077-0.137), 0.080 (95% CI: 0.061-0.106), and 0.042 (95% CI: 0.016-0.106) in the population of Asia, America, Europe, and Africa, respectively. There was a significant difference between EBV-infected and noninfected GCs in the male: female ratio, but not other clinicopathological characteristics. EBV infection rates were higher in GC with lymphoid stroma (0.573, 95% CI: 0.428-0.706) than other histologic types of GCs. There were significant differences in high AT-rich interactive domain-containing protein 1A (ARID1A) and PD-L1 expressions, and high CD8+ TILs between EBV-infected and noninfected GCs. Conclusions: Our results showed that EBV infection of GCs was frequently found in male patients and GCs with lymphoid stroma. EBV infection was significantly correlated with ARID1A and PD-L1 expressions and CD8+ TILs in GCs.
Collapse
Affiliation(s)
- Jung-Soo Pyo
- Department of Pathology, Daejeon Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, Korea;
| | - Nae-Yu Kim
- Department of Internal Medicine, Daejeon Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, Korea;
| | - Dong-Wook Kang
- Department of Pathology, Chungnam National University Sejong Hospital, 20 Bodeum 7-ro, Sejong 30099, Korea
- Department of Pathology, Chungnam National University School of Medicine, 266 Munhwa Street, Daejeon 35015, Korea
- Correspondence: ; Tel.: +82-10-8561-9895
| |
Collapse
|
6
|
Lima SR, Barbosa JMDS, Saracchini PGV, Padilha FGF, Leite JDS, Ferreira AMR. Gastric lesions in free-living sea turtles: An underestimated disease that reflects the health of the ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:133970. [PMID: 31476501 DOI: 10.1016/j.scitotenv.2019.133970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/25/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Free-living marine turtles are constantly exposed to aggression factors and the gastrointestinal tract is one of the main gateways of entry. The objective of this study was to identify, and describe the anatomopathological alterations in the stomach of free-living marine turtles found dead on the beaches of the Microrregião dos Lagos, Rio de Janeiro, Brazil. Twenty-two sea turtles were necropsied, and stomach fragments were collected, fixed, and processed routinely. The presence of gastritis, parasitism, and adaptative morphological alteration of the cells were evaluated in a microscopic analysis. Descriptive statistics and Fisher's exact test were performed. Of the samples, 59.1% had stomach hyperemia. Microscopically, gastritis was found in 86.4% of cases, parasitism in 72.7%, and adaptive morphological alteration in 59.1%. There was an association between the presence of cellular adaptive morphological alteration and chronic inflammation. This the first report to describe the adaptive morphological changes observed in the stomach cells. The chronicity of the lesions was due to continuous aggressions to the tissue, with parasitism, garbage ingestion, and environmental pollutants as possible causes. The results obtained in this study demonstrate that the chronicity of the stomach lesions is due to continuous aggressions to this tissue, and the irritating factors have environmental origin, such as parasites, garbage, and toxic pollutants, including heavy metals, which are ingested by free-living sea turtles. This article demonstrates that stomach injuries in free-living marine turtles are frequent, severe, and possibly underdiagnosed; these lesions reflect the diseased ecosystem in which those animals live.
Collapse
Affiliation(s)
- Samara Rosolem Lima
- Programa de Pós graduação em Medicina Veterinária (área de Clínica e Reprodução Animal), Faculdade de Medicina Veterinária, Universidade Federal Fluminense, Niterói, RJ 24230-340, Brazil.
| | - João Marcos da Silva Barbosa
- Programa de Pós graduação em Medicina Veterinária (área de Clínica e Reprodução Animal), Faculdade de Medicina Veterinária, Universidade Federal Fluminense, Niterói, RJ 24230-340, Brazil
| | - Paula Gabrielle Veiga Saracchini
- Programa de Pós graduação em Medicina Veterinária (área de Clínica e Reprodução Animal), Faculdade de Medicina Veterinária, Universidade Federal Fluminense, Niterói, RJ 24230-340, Brazil
| | - Felipe Gomes Ferreira Padilha
- Programa de Pós graduação em Medicina Veterinária (área de Clínica e Reprodução Animal), Faculdade de Medicina Veterinária, Universidade Federal Fluminense, Niterói, RJ 24230-340, Brazil
| | - Juliana da Silva Leite
- Programa de Pós graduação em Medicina Veterinária (área de Clínica e Reprodução Animal), Faculdade de Medicina Veterinária, Universidade Federal Fluminense, Niterói, RJ 24230-340, Brazil; Departamento de Patologia e Clínica Veterinária, Faculdade de Medicina Veterinária, Universidade Federal Fluminense, Niterói, RJ 24230-340, Brazil
| | - Ana Maria Reis Ferreira
- Programa de Pós graduação em Medicina Veterinária (área de Clínica e Reprodução Animal), Faculdade de Medicina Veterinária, Universidade Federal Fluminense, Niterói, RJ 24230-340, Brazil; Departamento de Patologia e Clínica Veterinária, Faculdade de Medicina Veterinária, Universidade Federal Fluminense, Niterói, RJ 24230-340, Brazil.
| |
Collapse
|
7
|
Sugimoto K, Ito T, Hulbert A, Chen C, Orita H, Maeda M, Moro H, Fukagawa T, Ushijima T, Katai H, Wada R, Sato K, Sakamoto K, Yu W, Considine M, Cope L, Brock MV. DNA methylation genome-wide analysis in remnant and primary gastric cancers. Gastric Cancer 2019; 22:1109-1120. [PMID: 30863929 DOI: 10.1007/s10120-019-00949-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although primary (PGC) and remnant gastric cancers (RGC) both originate from the same gastrointestinal organ, they have very distinct clinicopathological behaviors. We hypothesized that there would be distinct differences in DNA methylation patterns that would occur during carcinogenesis of RGC and PGC, and that the differences in methylation patterns may help identify the primary factor contributing to chronic inflammation in patients with RGC. METHODS We investigated the genome-wide DNA methylation patterns of PGC and RGC tissues from 48 patients using the Infinium HumanMethylation450 Beadchip assay. The results were validated by quantitative methylation-specific PCR (qMSP) in separate, independent cohorts. RESULTS We found that in our training cohort of 48 patients, the most variable genes from the gastric cancer tissues identified by the Infinium HumanMethylation450 Beadchip clustered the resultant heatmap into high and low methylation groups. On multivariate analysis, PGCs contributed significantly to the high methylation group (p = 0.004, OR 12.33), which suggested that the promoter methylation status in PGC is higher than that in RGC. Supporting this conclusion was the finding that in a separate qMSP analysis in a test cohort, the EPB41L3 gene, chosen because of its high β value on microarray analysis in the gastric cancer tissues, had significantly higher DNA promoter methylation in cancer tissues in the validation PGC tissues than in RGC. CONCLUSIONS This study demonstrated that promoter methylation status in PGC is higher than in RGC. This result may reflect the effects of the absence of Helicobacter pylori on the reduced DNA methylation in the remnant stomach.
Collapse
Affiliation(s)
- Kiichi Sugimoto
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Blalock 240, Baltimore, MD, 21287, USA. .,Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan.
| | - Tomoaki Ito
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Blalock 240, Baltimore, MD, 21287, USA.,Department of Surgery, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Alicia Hulbert
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Blalock 240, Baltimore, MD, 21287, USA
| | - Chen Chen
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Blalock 240, Baltimore, MD, 21287, USA
| | - Hajime Orita
- Department of Surgery, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Masahiro Maeda
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroshi Moro
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Takeo Fukagawa
- Gastric Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Katai
- Gastric Surgery Division, National Cancer Center Hospital, Tokyo, Japan
| | - Ryo Wada
- Department of Pathology, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Koichi Sato
- Department of Surgery, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Kazuhiro Sakamoto
- Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Wayne Yu
- Microarray Core Facility, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Considine
- Experimental and Computational Genomics Core, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Leslie Cope
- Experimental and Computational Genomics Core, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Malcolm V Brock
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Blalock 240, Baltimore, MD, 21287, USA
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This review integrates the new thinking about relationships between gastric cancer and intestinal metaplasia/pseudopyloric metaplasia (SPEM). We address whether recent studies have closed or widened the knowledge gap regarding gastric cancer pathogenesis in mice or humans. RECENT FINDINGS Recent studies in mouse models have provided a variety of new insights into the cellular origin and progression of events resulting in gastric cancer. Many suggest a direct transformation from intestinal metaplasia/pseudopyloric metaplasia/SPEM to gastric cancer. However, results from different investigator and models are conflicting and often describe events not present in studies in humans. SUMMARY Both Helicobacter pylori-associated and autoimmune gastritis may produce gastric atrophy with extensive intestinal metaplasia and an abnormal gastric microbiome. However, only H. pylori gastritis carries a risk for adenocarcinoma. The differences reported with mouse models can best be explained as the results of different models of regeneration and repair rather than as models of gastric cancer. Overall, the data remains consistent with the original hypothesis that gastric cancer results from increased genetic instability of gastric stem cells rather than a direct transition from metaplasia to cancer. Intestinal metaplasia, pseudopyloric metaplasia, and SPEM have all been falsely accused based on guilt by association.
Collapse
|
9
|
Waddingham W, Graham D, Banks M, Jansen M. The evolving role of endoscopy in the diagnosis of premalignant gastric lesions. F1000Res 2018; 7. [PMID: 29946429 PMCID: PMC5998031 DOI: 10.12688/f1000research.12087.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
Gastric adenocarcinoma is a disease that is often detected late, at a stage when curative treatment is unachievable. This must be addressed through changes in our approach to the identification of patients at increased risk by improving the detection and risk assessment of premalignant changes in the stomach, including chronic atrophic gastritis and intestinal metaplasia. Current guidelines recommend utilising random biopsies in a pathology-led approach in order to stage the extent and severity of gastritis and intestinal metaplasia. This random method is poorly reproducible and prone to sampling error and fails to acknowledge recent advances in our understanding of the progression to gastric cancer as a non-linear, branching evolutionary model. Data suggest that recent advances in endoscopic imaging modalities, such as narrow band imaging, can achieve a high degree of accuracy in the stomach for the diagnosis of these premalignant changes. In this review, we outline recent data to support a paradigm shift towards an endoscopy-led approach to diagnosis and staging of premalignant changes in the stomach. High-quality endoscopic interrogation of the chronically inflamed stomach mucosa, supported by targeted biopsies, will lead to more accurate risk assessment, with reduced rates of under or missed diagnoses.
Collapse
Affiliation(s)
- William Waddingham
- Department of Endoscopy, University College London Hospital, London, UK.,UCL Cancer Institute, University College London, London, UK
| | - David Graham
- Department of Endoscopy, University College London Hospital, London, UK
| | - Matthew Banks
- Department of Endoscopy, University College London Hospital, London, UK
| | - Marnix Jansen
- UCL Cancer Institute, University College London, London, UK.,Department of Pathology, University College London, London, UK
| |
Collapse
|
10
|
Sáenz JB, Mills JC. Acid and the basis for cellular plasticity and reprogramming in gastric repair and cancer. Nat Rev Gastroenterol Hepatol 2018; 15:257-273. [PMID: 29463907 PMCID: PMC6016373 DOI: 10.1038/nrgastro.2018.5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Subjected to countless daily injuries, the stomach still functions as a remarkably efficient digestive organ and microbial filter. In this Review, we follow the lead of the earliest gastroenterologists who were fascinated by the antiseptic and digestive powers of gastric secretions. We propose that it is easiest to understand how the stomach responds to injury by stressing the central role of the most important gastric secretion, acid. The stomach follows two basic patterns of adaptation. The superficial response is a pattern whereby the surface epithelial cells migrate and rapidly proliferate to repair erosions induced by acid or other irritants. The stomach can also adapt through a glandular response when the source of acid is lost or compromised (that is, the process of oxyntic atrophy). We primarily review the mechanisms governing the glandular response, which is characterized by a metaplastic change in cellular differentiation known as spasmolytic polypeptide-expressing metaplasia (SPEM). We propose that the stomach, like other organs, exhibits marked cellular plasticity: the glandular response involves reprogramming mature cells to serve as auxiliary stem cells that replace lost cells. Unfortunately, such plasticity might mean that the gastric epithelium undergoes cycles of differentiation and de-differentiation that increase the risk of accumulating cancer-predisposing mutations.
Collapse
Affiliation(s)
- José B. Sáenz
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine
| | - Jason C. Mills
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine
- Department of Developmental Biology, Washington University School of Medicine
- Department of Pathology and Immunology, Washington University School of Medicine
| |
Collapse
|
11
|
Meyer AR, Goldenring JR. Injury, repair, inflammation and metaplasia in the stomach. J Physiol 2018; 596:3861-3867. [PMID: 29427515 DOI: 10.1113/jp275512] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/15/2018] [Indexed: 12/16/2022] Open
Abstract
The development of intestinal-type gastric cancer is preceded by the emergence of metaplastic cell lineages in the gastric mucosa. In particular, intestinal metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM) have been associated with the pathological progression to intestinal-type gastric cancer. The development of SPEM represents a physiological response to damage that recruits reparative cells to sites of mucosal injury. Metaplastic cell lineages are characterized by mucus secretion, adding a protective barrier to the epithelium. Increasing evidence indicates that the influence of alarmins and cytokines is required to initiate the process of metaplasia development. In particular, IL-33 derived from epithelial cells stimulates IL-13 production by specialized innate immune cells to induce chief cell transdifferentiation into SPEM following the loss of parietal cells from the corpus of the stomach. While SPEM represents a physiological healing response to acute injury, persistent injury and chronic inflammation can perpetuate a recurring pattern of reprogramming and metaplasia that is a risk factor for gastric cancer development. The transdifferentiation of zymogen secreting cells into mucous cell metaplasia may represent both a general repair mechanism in response to mucosal injury in many epithelia as well as a common pre-neoplastic pathway associated with chronic injury and inflammation.
Collapse
Affiliation(s)
- Anne R Meyer
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,The Epithelial Biology Center, Vanderbilt University, Nashville, TN, USA
| | - James R Goldenring
- Nashville VA Medical Center, Vanderbilt University, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Department of Surgery, Vanderbilt University, Nashville, TN, USA.,The Epithelial Biology Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
12
|
The cytoprotective protein clusterin is overexpressed in hypergastrinemic rodent models of oxyntic preneoplasia and promotes gastric cancer cell survival. PLoS One 2017; 12:e0184514. [PMID: 28902909 PMCID: PMC5597207 DOI: 10.1371/journal.pone.0184514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/27/2017] [Indexed: 02/07/2023] Open
Abstract
The cytoprotective protein clusterin is often dysregulated during tumorigenesis, and in the stomach, upregulation of clusterin marks emergence of the oxyntic atrophy (loss of acid-producing parietal cells)-associated spasmolytic polypeptide-expressing metaplasia (SPEM). The hormone gastrin is important for normal function and maturation of the gastric oxyntic mucosa and hypergastrinemia might be involved in gastric carcinogenesis. Gastrin induces expression of clusterin in adenocarcinoma cells. In the present study, we examined the expression patterns and gastrin-mediated regulation of clusterin in gastric tissue from: humans; rats treated with proton pump (H+/K+-ATPase) inhibitors and/or a gastrin receptor (CCK2R) antagonist; H+/K+-ATPase β-subunit knockout (H/K-β KO) mice; and Mongolian gerbils infected with Helicobacter pylori and given a CCK2R antagonist. Biological function of secretory clusterin was studied in human gastric cancer cells. Clusterin was highly expressed in neuroendocrine cells in normal oxyntic mucosa of humans and rodents. In response to hypergastrinemia, expression of clusterin increased significantly and its localization shifted to basal groups of proliferative cells in the mucous neck cell-chief cell lineage in all animal models. That shift was partially inhibited by antagonizing the CCK2R in rats and gerbils. The oxyntic mucosa of H/K-β KO mice contained areas with clusterin-positive mucous cells resembling SPEM. In gastric adenocarcinomas, clusterin mRNA expression was higher in diffuse tumors containing signet ring cells compared with diffuse tumors without signet ring cells, and clusterin seemed to be secreted by tumor cells. In gastric cancer cell lines, gastrin increased secretion of clusterin, and both gastrin and secretory clusterin promoted survival after starvation- and chemotherapy-induced stress. Overall, our results indicate that clusterin is overexpressed in hypergastrinemic rodent models of oxyntic preneoplasia and stimulates gastric cancer cell survival.
Collapse
|