1
|
Mohanty SK, Lobo A, Williamson SR, Shah RB, Trpkov K, Varma M, Sirohi D, Aron M, Kandukari SR, Balzer BL, Luthringer DL, Ro J, Osunkoya AO, Desai S, Menon S, Nigam LK, Sardana R, Roy P, Kaushal S, Midha D, Swain M, Ambekar A, Mitra S, Rao V, Soni S, Jain K, Diwaker P, Pattnaik N, Sharma S, Chakrabarti I, Sable M, Jain E, Jain D, Samra S, Vankalakunti M, Mohanty S, Parwani AV, Sancheti S, Kumari N, Jha S, Dixit M, Malik V, Arora S, Munjal G, Gopalan A, Magi-Galluzzi C, Dhillon J. Reporting Trends, Practices, and Resource Utilization in Neuroendocrine Tumors of the Prostate Gland: A Survey among Thirty-Nine Genitourinary Pathologists. Int J Surg Pathol 2023; 31:993-1005. [PMID: 35946087 DOI: 10.1177/10668969221116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Neuroendocrine differentiation in the prostate gland ranges from clinically insignificant neuroendocrine differentiation detected with markers in an otherwise conventional prostatic adenocarcinoma to a lethal high-grade small/large cell neuroendocrine carcinoma. The concept of neuroendocrine differentiation in prostatic adenocarcinoma has gained considerable importance due to its prognostic and therapeutic ramifications and pathologists play a pivotal role in its recognition. However, its awareness, reporting, and resource utilization practice patterns among pathologists are largely unknown. Methods. Representative examples of different spectrums of neuroendocrine differentiation along with a detailed questionnaire were shared among 39 urologic pathologists using the survey monkey software. Participants were specifically questioned about the use and awareness of the 2016 WHO classification of neuroendocrine tumors of the prostate, understanding of the clinical significance of each entity, and use of different immunohistochemical (IHC) markers. De-identified respondent data were analyzed. Results. A vast majority (90%) of the participants utilize IHC markers to confirm the diagnosis of small cell neuroendocrine carcinoma. A majority (87%) of the respondents were in agreement regarding the utilization of type of IHC markers for small cell neuroendocrine carcinoma for which 85% of the pathologists agreed that determination of the site of origin of a high-grade neuroendocrine carcinoma is not critical, as these are treated similarly. In the setting of mixed carcinomas, 62% of respondents indicated that they provide quantification and grading of the acinar component. There were varied responses regarding the prognostic implication of focal neuroendocrine cells in an otherwise conventional acinar adenocarcinoma and for Paneth cell-like differentiation. The classification of large cell neuroendocrine carcinoma was highly varied, with only 38% agreement in the illustrated case. Finally, despite the recommendation not to perform neuroendocrine markers in the absence of morphologic evidence of neuroendocrine differentiation, 62% would routinely utilize IHC in the work-up of a Gleason score 5 + 5 = 10 acinar adenocarcinoma and its differentiation from high-grade neuroendocrine carcinoma. Conclusion. There is a disparity in the practice utilization patterns among the urologic pathologists with regard to diagnosing high-grade neuroendocrine carcinoma and in understanding the clinical significance of focal neuroendocrine cells in an otherwise conventional acinar adenocarcinoma and Paneth cell-like neuroendocrine differentiation. There seems to have a trend towards overutilization of IHC to determine neuroendocrine differentiation in the absence of neuroendocrine features on morphology. The survey results suggest a need for further refinement and development of standardized guidelines for the classification and reporting of neuroendocrine differentiation in the prostate gland.
Collapse
Affiliation(s)
- Sambit K Mohanty
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, India
| | - Anandi Lobo
- Department of Pathology and Laboratory Medicine, Kapoor Urology Center and Pathology Laboratory, Raipur, India
| | | | - Rajal B Shah
- Department of Pathology, UT Southwestern University, Dallas, TX, USA
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Murali Varma
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, UK
| | - Deepika Sirohi
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Manju Aron
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Shivani R Kandukari
- Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Bonnie L Balzer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel L Luthringer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jae Ro
- Department of Pathology and Genomic Medicine, Methodist Hospital, Houston, TX, USA
| | - Adeboye O Osunkoya
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sangeeta Desai
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | - Santosh Menon
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | - Lovelesh K Nigam
- Department of Pathology and Division of Renal and Urologic Pathology, Lal Pathology Laboratory, New Delhi, India
| | - Rohan Sardana
- Department of Pathology, Ampath Pathological Laboratory, Hyderabad, India
| | - Paromita Roy
- Department of Oncopathology, Tata Medical Center, Kolkata, India
| | - Seema Kaushal
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Divya Midha
- Department of Oncopathology, Tata Medical Center, Kolkata, India
| | - Minakshi Swain
- Department of Pathology and Laboratory Medicine, Apollo Hospital, Hyderabad, India
| | - Asawari Ambekar
- Department of Pathology and Laboratory Medicine, Apollo Hospital, Mumbai, India
| | - Suvradeep Mitra
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Vishal Rao
- Department of Pathology and Laboratory Medicine, Basavatarakam Indo American Cancer Hospital and Research Institute, Hyderabad, India
| | - Shailesh Soni
- Department of Pathology and Laboratory Medicine, Muljibhai Patel Urological Hospital, Gujarat, India
| | - Kavita Jain
- Department of Pathology and Laboratory Medicine, Max Superspeciality Hospital, New Delhi, India
| | - Preeti Diwaker
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Niharika Pattnaik
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, India
| | - Shivani Sharma
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | | | - Mukund Sable
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Ekta Jain
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Deepika Jain
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Spinder Samra
- Department of Pathology, Dubbo Base Hospital, Dubbo, NSW, Australia
| | - Mahesha Vankalakunti
- Department of Pathology and Laboratory Medicine, Manipal Hospital, Bangalore, India
| | - Subhashis Mohanty
- Department of Histopathology, SUM Ultimate Medicare, Bhubaneswar, India
| | - Anil V Parwani
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, USA
| | - Sankalp Sancheti
- Department of Pathology and Laboratory Medicine, Homi Bhabha Cancer Hospital & Research Centre, Punjab (A Unit of Tata Memorial Centre, Mumbai), India
| | - Niraj Kumari
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Raebareli, India
| | - Shilpy Jha
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, India
| | - Mallika Dixit
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Vipra Malik
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Samriti Arora
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Gauri Munjal
- Department of Pathology and Laboratory Medicine, CORE Diagnostics, Gurgaon, India
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer, New York, NY, USA
| | | | | |
Collapse
|
2
|
Abdulfatah E, Fine SW, Lotan TL, Mehra R. Reprint of: de novo neuroendocrine features in prostate cancer. Hum Pathol 2023; 133:115-125. [PMID: 36894369 DOI: 10.1016/j.humpath.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 03/09/2023]
Abstract
Neuroendocrine tumors of the prostate are rare and encompass a group of entities that are classified based on a combination of morphological and immunohistochemical features. Despite the 2016 World Health Organization classification of prostatic neuroendocrine tumors, variants have been reported that do not fit well in the categorization scheme. While the majority of these tumors arise in the setting of castration-resistant prostate cancer (postandrogen deprivation therapy), de novo cases may occur. In this review, we highlight the most significant pathological and immunohistochemical features, emerging biomarkers, and molecular features of such tumors.
Collapse
Affiliation(s)
- Eman Abdulfatah
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21211, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA; Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, 48109, USA; Michigan Center for Translational Pathology, Ann Arbor, MI, 48104, USA.
| |
Collapse
|
3
|
Abstract
The Gleason scoring system and Grade Group systems facilitate accurate grading and reporting of prostate cancer, which are essential tasks for surgical pathologists. Gleason Pattern 4 is critical to recognize because it signifies a risk for more aggressive behavior than Gleason Pattern 3 carcinoma. Prostatic adenocarcinoma with radiation or androgen therapy effect, with aberrant P63 expression, or with Paneth cell-like differentiation represent pitfalls in prostate cancer grading because although they display architecture associated with aggressive behavior in usual prostatic adenocarcinoma, they do not behave aggressively and using conventional Gleason scoring in these tumors would significantly overstate their biologic potential.
Collapse
Affiliation(s)
- Ezra Baraban
- Department of Pathology, Johns Hopkins Medical Institutions, 401 North Broadway, Weinberg Building, Room 2242, Baltimore, MD 21287, USA.
| | - Jonathan Epstein
- Department of Pathology, Johns Hopkins Medical Institutions, 401 North Broadway, Weinberg Building, Room 2242, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins Medical Institutions, 401 North Broadway, Weinberg Building, Room 2242, Baltimore, MD 21287, USA; Department of Oncology, Johns Hopkins Medical Institutions, 401 North Broadway, Weinberg Building, Room 2242, Baltimore, MD 21287, USA.
| |
Collapse
|
4
|
Abdulfatah E, Fine SW, Lotan T, Mehra R. De Novo Neuroendocrine Features in Prostate Cancer. Hum Pathol 2022; 127:112-122. [PMID: 35810832 DOI: 10.1016/j.humpath.2022.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 12/22/2022]
Abstract
Neuroendocrine tumors of the prostate are rare and encompass a group of entities that are classified based on a combination of morphological and immunohistochemical features. Despite the 2016 World Health Organization classification of prostatic neuroendocrine tumors, variants have been reported that do not fit well in the categorization scheme. While the majority of these tumors arise in the setting of castration-resistant prostate cancer (postandrogen deprivation therapy), de novo cases may occur. In this review, we highlight the most significant pathological and immunohistochemical features, emerging biomarkers, and molecular features of such tumors.
Collapse
Affiliation(s)
- Eman Abdulfatah
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tamara Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Gopalan A, Al-Ahmadie H, Chen YB, Sarungbam J, Sirintrapun SJ, Tickoo SK, Reuter VE, Fine SW. Neuroendocrine Differentiation in the Setting of Prostatic Carcinoma: Contemporary Assessment of a Consecutive Series. Histopathology 2022; 81:246-254. [PMID: 35758203 PMCID: PMC9327588 DOI: 10.1111/his.14707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 11/28/2022]
Abstract
AIM Clinicopathologic characterization of contemporary series of neuroendocrine (NE) differentiation in the setting of prostatic carcinoma (PCa). METHODS & RESULTS We reviewed institutional databases for in-house cases with history of PCa and histopathologic evidence of NE differentiation during the disease course. 79 cases identified: 32 primary and 47 metastases. Metastatic lesions were in liver [n=15], lymph node [n=9], bone [n=6], lung [n=3], brain [n=1], other sites [n=13]. 63 of 76 (82%) cases with NE differentiation and available history were post-therapy: 6 post-radiation therapy (RT), 24 post- androgen-deprivation therapy (ADT) and 33 post-RT+ADT. Morphologic assessment [n=79]: a. 23 pure small cell/high-grade NE carcinoma (HGNEC): 20/23 metastatic; b. 10 combined high-grade PCa and small cell/HGNEC: 9/10 primary; c. 15 PCa with diffuse NE immunohistochemistry (IHC) marker positivity/differentiation, associated with nested to sheet-like growth of cells with abundant cytoplasm and prominent nucleoli, yet diffuse positivity for at least one prostatic and one NE IHC marker: all metastatic; d. 11 PCa with patchy NE differentiation, displaying more than single cell positivity for NE IHC: 5 primary / 6 metastatic; e. 9 PCa with focal NE marker positive cells: 4 primary / 5 metastatic; f. 11 PCa with 'Paneth cell-like' change: all primary. CONCLUSIONS In this contemporary series, the majority of NE differentiation in the setting of PCa was seen post-therapy. We highlight tendencies of small cell/HGNEC and PCa with diffuse NE differentiation by IHC to occur in metastatic settings, while morphologically combined high grade PCa+small cell/HGNEC and 'Paneth cell-like' change occur in primary disease.
Collapse
Affiliation(s)
- Anuradha Gopalan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hikmat Al-Ahmadie
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ying-Bei Chen
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Judy Sarungbam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - S Joseph Sirintrapun
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Satish K Tickoo
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Victor E Reuter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samson W Fine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
6
|
Zheng Z, Qiu K, Huang W. Long Non-Coding RNA (lncRNA) RAMS11 Promotes Metastatis and Cell Growth of Prostate Cancer by CBX4 Complex Binding to Top2α. Cancer Manag Res 2021; 13:913-923. [PMID: 33564266 PMCID: PMC7866953 DOI: 10.2147/cmar.s270144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Studies have confirmed that parts of the non-coding genes in the human genome play an important role in the pathogenesis and metastasis of prostate cancer. Among them, long non-coding RNAs (lncRNAs) are vitally involved in the biological regulation of prostate cancer. In addition, lncRNAs are closely associated with the recurrence, metastasis and prognosis of prostate cancer. However, the molecular pathogenesis of lncRNAs in regulating cell growth and metastasis of prostate cancer remains unclear. Therefore, this study was designed to explore the function and mechanism of lncRNA RAMS11 in cell growth and metastasis of prostate cancer. Methods Prostate cancer and para-carcinoma tissue samples were obtained from 42 patients who were diagnosed from March 2013 to September 2014 at Quanzhou First Hospital Affiliated to Fujian Medical University. Microarray experiments and real-time polymerase chain reaction (PCR) measured the expression of lncRNA. RWPE-2, LNCap, PC3 and DU145 cells were used for an in vitro model. Results The expression of lncRNA RAMS11 was up-regulated in prostate cancer tissue samples. LncRNA RAMS11 promoted cell growth and metastasis of prostate cancer cells. Down-regulation of lncRNA RAMS11 attenuated cell growth and metastasis of prostate cancer cells. We also demonstrated that lncRNA RAMS11 bound to CBX4 to activate expression of Top2α. LncRNA RAMS11 promoted tumor growth of prostate cancer in the mouse model. The inhibition of CBX4 attenuated the pro-cancer effects of lncRNA AMS11 in prostate cancer cells, while the activation of Top2α attenuated the anti-cancer effects of si-lncRNA RAMS11 in prostate cancer cells. Discussion Our results indicated that lncRNA RAMS11 promoted cell growth and metastasis of prostate cancer by CBX4 complex via binding to Top2α, and might be developed for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Zhixiong Zheng
- Urology Department, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Kaiyan Qiu
- Urology Department, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Weiwen Huang
- Urology Department, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| |
Collapse
|