1
|
van der Weyden L, Del Castillo Velasco-Herrera M, Cheema S, Wong K, Boccacino JM, Offord V, Droop A, Jones DRA, Vermes I, Anderson E, Hardy C, de Saint Aubain N, Ferguson PM, Clarke EL, Merchant W, Mogler C, Frew D, Harms PW, Monteagudo C, Billings SD, Arends MJ, Ferreira I, Brenn T, Adams DJ. Comprehensive mutational profiling identifies new driver events in cutaneous leiomyosarcoma. Br J Dermatol 2025; 192:335-343. [PMID: 39392932 PMCID: PMC11758588 DOI: 10.1093/bjd/ljae386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Cutaneous leiomyosarcoma (cLMS) is a rare soft-tissue neoplasm, showing smooth muscle differentiation, that arises from the mesenchymal cells of the dermis. To date, genetic investigation of these tumours has involved studies with small sample sizes and limited analyses that identified recurrent somatic mutations in RB1 and TP53, copy number gain of MYOCD and IGF1R, and copy number loss of PTEN. OBJECTIVES To better understand the molecular pathogenesis of cLMS, we comprehensively explored the mutational landscape of these rare tumours to identify candidate driver events. METHODS In this retrospective, multi-institutional study, we performed whole-exome sequencing and RNA sequencing in 38 cases of cLMS. RESULTS TP53 and RB1 were identified as significantly mutated and thus represent validated driver genes of cLMS. COSMIC mutational signatures SBS7a/b and DBS1 were recurrent; thus, ultraviolet light exposure may be an aetiological factor driving cLMS. Analysis of significantly recurrent somatic copy number alterations, which represent candidate driver events, found focal (< 10 Mb) deletions encompassing TP53 and KDM6B, and amplifications encompassing ZMYM2, MYOCD, MAP2K4 and NCOR1. A larger (24 Mb) recurrent deletion encompassing CYLD was also identified as significant. Significantly recurrent broad copy number alterations, involving at least half of a chromosome arm, included deletions of 6p/q, 10p/q, 11q, 12q, 13q and 16p/q, and amplification of 15q. Notably PTEN is located on 10q, RB1 on 13q and IGFR1 on 15q. Fusion gene analysis identified recurrent CRTC1/CRTC3::MAML2 fusions, as well as many novel fusions in individual samples. CONCLUSIONS Our analysis of the largest number of cases of cLMS to date highlights the importance of large cohort sizes and exploration beyond small targeted gene panels when performing molecular analyses, as it allowed a comprehensive exploration of the mutational landscape of these tumours and identification of novel candidate driver events. It also uniquely afforded the opportunity to compare the molecular phenotype of cLMS with LMS of other tissue types, such as uterine and soft-tissue LMS. Given that molecular profiling has resulted in the development of novel targeted treatment approaches for uterine and soft-tissue LMS, our study now allows the same opportunities to become available for patients with cLMS.
Collapse
Affiliation(s)
| | | | - Saamin Cheema
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Kim Wong
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Alastair Droop
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - David R A Jones
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ian Vermes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Claire Hardy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nicolas de Saint Aubain
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Peter M Ferguson
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Emily L Clarke
- Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Division of Pathology and Data Analytics, University of Leeds, Leeds, UK
| | - William Merchant
- Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Carolin Mogler
- Institute of Pathology, School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Derek Frew
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paul W Harms
- Departments of Pathology and Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Carlos Monteagudo
- Department of Pathology, University Clinic Hospital, Valencia – INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Pathology, University of Valencia, Valencia, Spain
| | - Steven D Billings
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mark J Arends
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General Hospital, Edinburgh, UK
| | - Ingrid Ferreira
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Thomas Brenn
- Departments of Pathology and Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
2
|
Klein JC, Wang L, Strand D, Lastufka C, Hosler GA, Hon GC. Single-cell and spatial transcriptomics identify COL6A3 as a prognostic biomarker in undifferentiated pleomorphic sarcoma. Mol Cancer 2024; 23:257. [PMID: 39548577 PMCID: PMC11566467 DOI: 10.1186/s12943-024-02168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Undifferentiated pleomorphic sarcoma (UPS) and related tumors are the most common type of soft tissue sarcoma. However, this spectrum of tumors has different etiologies with varying rates of metastasis and survival. Two dermal-based neoplasms in this class of pleomorphic sarcomas, atypical fibroxanthoma (AFX) and pleomorphic dermal sarcoma (PDS), are challenging to differentiate at initial biopsy but vary significantly in prognosis. We performed single-cell transcriptomics on five AFX and PDS biopsy specimens as well as both single-cell and spatial transcriptomics on one PDS excision specimen to better characterize these tumors. The top differential genes between AFX and PDS were predictive of overall survival in 17 other cancers included in the Human Protein Atlas. Of these genes, COL6A3 and BGN predicted overall survival and metastasis-free survival in independent cohorts of 46 and 38 UPS tumors, respectively. COL6A3 was most predictive of overall survival in UPS patients and outperformed an established sarcoma prognostic gene panel at predicting metastasis in UPS.
Collapse
Affiliation(s)
- Jason C Klein
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10021, USA.
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX75390, USA.
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Douglas Strand
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Gregory A Hosler
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX75390, USA
- ProPath/Sonic Healthcare, Dallas, TX, 75390, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Harms PW, Runge M, Chan MP, Liu CJ, Qin Z, Worden F, Robinson DR, Chinnaiyan AM, Mclean SA, Harms KL, Fullen DR, Patel RM, Andea AA, Udager AM. Squamoid Eccrine Ductal Carcinoma Displays Ultraviolet Mutations and Intermediate Gene Expression Relative to Squamous Cell Carcinoma, Microcystic Adnexal Carcinoma, and Porocarcinoma. Mod Pathol 2024; 37:100592. [PMID: 39154783 PMCID: PMC11585436 DOI: 10.1016/j.modpat.2024.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
Squamoid eccrine ductal carcinoma is a rare infiltrative tumor with morphologic features intermediate between squamous cell carcinoma (SCC) and sweat gland carcinomas such as microcystic adnexal carcinoma. Although currently classified as a sweat gland carcinoma, it has been debated whether squamoid eccrine ductal carcinoma is better classified as a variant of SCC. Furthermore, therapeutic options for patients with advanced disease are lacking. Here, we describe clinicopathologic features of a cohort of 15 squamoid eccrine ductal carcinomas from 14 unique patients, with next-generation sequencing DNA profiling for 12 cases. UV signature mutations were the dominant signature in the majority of cases. TP53 mutations were the most highly recurrent specific gene alteration, followed by mutations in NOTCH genes. Recurrent mutations in driver oncogenes were not identified. By unsupervised comparison of global transcriptome profiles in squamoid eccrine ductal carcinoma (n = 7) to SCC (n = 10), porocarcinoma (n = 4), and microcystic adnexal carcinoma (n = 4), squamoid eccrine ductal carcinomas displayed an intermediate phenotype between SCC and sweat gland tumors. Squamoid eccrine ductal carcinoma displayed significantly higher expression of 364 genes (including certain eccrine markers) and significantly lower expression of 525 genes compared with other groups. Our findings support the classification of squamoid eccrine ductal carcinoma as a carcinoma with intermediate features between SCC and sweat gland carcinoma.
Collapse
Affiliation(s)
- Paul W Harms
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan; Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Mason Runge
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - May P Chan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Chia-Jen Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Zhaoping Qin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Francis Worden
- Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dan R Robinson
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan; Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Scott A Mclean
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Kelly L Harms
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Douglas R Fullen
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rajiv M Patel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan; Cutaneous Pathology, WCP Laboratories, Inc, Maryland Heights, Missouri
| | - Aleodor A Andea
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan; Roswell Park Comprehensive Cancer Center, Buffalo, New York, New York
| | - Aaron M Udager
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan; Rogel Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan; Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
4
|
Drexler K, Bollmann L, Karrer S, Berneburg M, Haferkamp S, Niebel D. Retrospective Single-Center Case Study of Clinical Variables and the Degree of Actinic Elastosis Associated with Rare Skin Cancers. BIOLOGY 2024; 13:529. [PMID: 39056721 PMCID: PMC11274094 DOI: 10.3390/biology13070529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
(1) Background: Rare skin cancers include epithelial, neuroendocrine, and hematopoietic neoplasias as well as cutaneous sarcomas. Ultraviolet (UV) radiation and sunburns are important drivers for the incidence of certain cutaneous sarcomas; however, the pathogenetic role of UV light is less clear in rare skin cancers compared to keratinocyte cancer and melanoma. In this study, we compared the degree of actinic elastosis (AE) as a surrogate for lifetime UV exposure among selected rare skin cancers (atypical fibroxanthoma [AFX], pleomorphic dermal sarcoma [PDS], dermatofibrosarcoma protuberans [DFSP], Kaposi sarcoma [KS], Merkel cell carcinoma [MCC], and leiomyosarcoma [LMS]) while taking into account relevant clinical variables (age, sex, and body site). (2) Methods: We newly established a semi-quantitative score for the degree of AE ranging from 0 = none to 3 = total loss of elastic fibers (basophilic degeneration) and multiplied it by the perilesional vertical extent (depth), measured histometrically (tumor-associated elastosis grade (TEG)). We matched the TEG of n = 210 rare skin cancers from 210 patients with their clinical variables. (3) Results: TEG values were correlated with age and whether tumors arose on UV-exposed body sites. TEG values were significantly higher in AFX and PDS cases compared to all other analyzed rare skin cancer types. As expected, TEG values were low in DFSP and KS, while MCC cases exhibited intermediate TEG values. (4) Conclusions: High cumulative UV exposure is more strongly associated with AFX/PDS and MCC than with other rare skin cancers. These important results expand the available data associated with rare skin cancers while also offering insight into the value of differentiating among these tumor types based on their relationship with sun exposure, potentially informing preventative, diagnostic and/or therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | - Dennis Niebel
- Department of Dermatology, University Medical Center Regensburg, 93053 Regensburg, Germany; (K.D.)
| |
Collapse
|
5
|
Pimentel PAB, Giuliano A, Bęczkowski PM, Horta RDS. Molecular Profile of Canine Hemangiosarcoma and Potential Novel Therapeutic Targets. Vet Sci 2023; 10:387. [PMID: 37368773 DOI: 10.3390/vetsci10060387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Canine hemangiosarcoma (HSA) is a relatively common neoplasia, occurring mainly in the skin, spleen, liver and right atrium. Despite the numerous studies investigating the treatment of canine HSA, no significant improvement in survival has been achieved in the last 20 years. Advancements in genetic and molecular profiling presented molecular similarities between canine HSA and human angiosarcoma. It could therefore serve as a valuable model for investigating new and more effective treatments in people and dogs. The most common genetic abnormalities in canine HSA have been found in the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) and neuroblastoma RAS viral oncogene homolog (NRAS) pathways. Mutations are also found in tumor protein p53 (TP53), phosphatase and tensin homolog (PTEN) and cyclin dependent kinase inhibitor 2A (CDKN2A). Known abnormal protein expression could be exploited to trial new target treatments that could be beneficial for both canine and human patients. Despite the high expression of vascular endothelial growth factor (VEGF) and its receptor (VEGFR), no correlation with overall survival time has ever been found. In this review, we explore the most recent developments in molecular profiling in canine HSA and discuss their possible applications in the prognosis and treatment of this fatal disease.
Collapse
Affiliation(s)
| | - Antonio Giuliano
- Department of Veterinary Clinical Science, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Hong Kong, China
- Veterinary Medical Centre, City University of Hong Kong, Hong Kong, China
| | - Paweł Marek Bęczkowski
- Department of Veterinary Clinical Science, Jockey Club College of Veterinary Medicine, City University of Hong Kong, Hong Kong, China
| | - Rodrigo Dos Santos Horta
- Department of Veterinary Clinic and Surgery, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
6
|
Pan M, Jiang C, Zhang Z, Achacoso N, Solorzano-Pinto AV, Tse P, Chung E, Suga JM, Thomas S, Habel LA. Sex- and Co-Mutation-Dependent Prognosis in Patients with SMARCA4-Mutated Malignancies. Cancers (Basel) 2023; 15:2665. [PMID: 37345003 DOI: 10.3390/cancers15102665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Whether sex and co-mutations impact prognosis of patients with SMARCA4-mutated (mutSMARCA4) malignancies is not clear. METHODS This cohort included patients from Northern California Kaiser Permanente with next-generation sequencing (NGS) performed from August 2020 to October 2022. We used Cox regression modeling to examine the association between sex and overall survival (OS), adjusting for demographics, performance status, Charlson comorbidity index, receipt of treatment, tumor mutation burden (TMB), and TP53, KRAS, CDKN2A, STK11, and Keap1 co-mutations. RESULTS Out of 9221 cases with NGS performed, 125 cases (1.4%) had a mutSMARCA4. The most common malignancies with a mutSMARCA4 were non-small cell lung cancer (NSCLC, 35.2%), esophageal and stomach adenocarcinoma (12.8%), and cancer of unknown primary (11.2%). The most common co-mutations were p53 (mutp53, 59.2%), KRAS (mutKRAS, 28.8%), CDKN2A (mutCDKN2A, 31.2%), STK11 (mutSTK11, 12.8%), and Keap1 (mutKeap1, 8.8%) mutations. Male patients had substantially worse OS than female patients both among the entire mutSMARCA4 cohort (HR = 1.71, [95% CI 0.92-3.18]) with a median OS of 3.0 versus 43.3 months (p < 0.001), and among the NSCLC subgroup (HR = 14.2, [95% CI 2.76-73.4]) with a median OS of 2.75 months versus un-estimable (p = 0.02). Among all patients with mutSMARCA4, mutp53 versus wtp53 (HR = 2.12, [95% CI 1.04-4.29]) and mutSTK11 versus wtSTK11 (HR = 2.59, [95% CI 0.87-7.73]) were associated with worse OS. Among the NSCLC subgroup, mutp53 versus wtp53 (HR = 0.35, [0.06-1.97]) and mutKRAS versus wtKRAS (HR = 0.04, [0.003-.45]) were associated with better OS, while mutCDKN2A versus wtCDKN2A (HR = 5.04, [1.12-22.32]), mutSTK11 versus wtSTK11 (HR = 13.10, [95% CI 1.16-148.26]), and mutKeap1 versus wtKeap1 (HR = 5.06, [95% CI 0.89-26.61}) were associated with worse OS. CONCLUSION In our cohort of patients with mutSMARCA4, males had substantially worse prognosis than females, while mutTP53, mutKRAS, mutCDKN2A, mutSTK11 and mutKeap1were differentially associated with prognosis among all patients and among the NSCLC subgroup. Our results, if confirmed, could suggest potentially unidentified mechanisms that underly this sex and co-mutation-dependent prognostic disparity among patients whose tumor bears a mutSMARCA4.
Collapse
Affiliation(s)
- Minggui Pan
- Department of Oncology and Hematology, Kaiser Permanente, Santa Clara, CA 94051, USA
- Division of Research, Kaiser Permanente, Oakland, CA 94612, USA
- Division of Oncology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Chen Jiang
- Division of Research, Kaiser Permanente, Oakland, CA 94612, USA
| | - Zheyang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, and National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, China
| | - Ninah Achacoso
- Division of Research, Kaiser Permanente, Oakland, CA 94612, USA
| | | | - Pam Tse
- Division of Research, Kaiser Permanente, Oakland, CA 94612, USA
| | - Elaine Chung
- Division of Research, Kaiser Permanente, Oakland, CA 94612, USA
| | - Jennifer Marie Suga
- Department of Oncology and Hematology, Kaiser Permanente, Vallejo, CA 94589, USA
| | - Sachdev Thomas
- Department of Oncology and Hematology, Kaiser Permanente, Vallejo, CA 94589, USA
| | - Laurel A Habel
- Division of Research, Kaiser Permanente, Oakland, CA 94612, USA
| |
Collapse
|
7
|
Pan M, Jiang C, Zhang Z, Achacoso N, Alexeeff S, Solorzano AV, Tse P, Chung E, Sundaresan T, Suga JM, Thomas S, Habel LA. TP53 Gain-of-Function and Non-Gain-of-Function Mutations Are Associated With Differential Prognosis in Advanced Pancreatic Ductal Adenocarcinoma. JCO Precis Oncol 2023; 7:e2200570. [PMID: 37163715 DOI: 10.1200/po.22.00570] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
PURPOSE To examine the impact of TP53 gain-of-function (GOF) and non-GOF mutations on prognosis of advanced pancreatic ductal adenocarcinoma (PDAC) among patients with KRAS, CDKN2A, and SMAD4 comutations. METHODS This cohort included patients with locally advanced, recurrent, and de novo metastatic PDAC with next-generation sequencing performed from November 2017 to May 2022. We defined R175H, R248W, R248Q, R249S, R273H, R273L, and R282W as GOF and all other p53 mutations (mutp53) as non-GOF. We used Cox regression modeling to examine the association between GOF and non-GOF mutp53 and overall survival (OS), adjusting for demographics, performance status, Charlson comorbidity index, receipt of chemotherapy, and KRAS, CDKN2A, and SMAD4 comutations. RESULTS Of 893 total eligible patients, 68.5% had tumors with mutp53, 90.1% had KRAS mutations (mutKRAS), 44.7% had CDKN2A mutations (mutCDKN2A), and 17.0% had SMAD4 mutations. Among patients with mutp53, 121 had GOF and 491 had non-GOF. GOF mutp53 was associated with worse OS than non-GOF mutp53 (hazard ratio [HR], 1.27; 95% CI, 1.02 to 1.59) and wild-type p53 (wtp53; HR, 1.24; 95% CI, 0.98 to 1.57), whereas non-GOF was not associated with worse OS than wtp53 (HR, 0.95; 95% CI, 0.80 to 1.13). In addition, mutKRAS was associated with worse OS than wild-type KRAS in patients with mutCDKN2A (HR, 1.57; 95% CI, 0.88 to 2.80) but not in patients with wild-type CDKN2A (HR, 1.03; 95% CI, 0.76 to 1.39). CONCLUSION GOF and non-GOF mutp53 were associated with differential prognosis in advanced PDAC. The adverse effect of mutKRAS on OS appeared to be primarily driven by patients with mutCDKN2A. Our results provide new insight that could be helpful for prognostic stratification in clinical practice and for aiding future clinical trial designs.
Collapse
Affiliation(s)
- Minggui Pan
- Department of Oncology and Hematology, Kaiser Permanente, Santa Clara, CA
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Chen Jiang
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Zheyang Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, China
| | | | | | | | - Pam Tse
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Elaine Chung
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Tilak Sundaresan
- Department of Oncology and Hematology, Kaiser Permanente, San Francisco, CA
| | | | - Sachdev Thomas
- Department of Oncology and Hematology, Kaiser Permanente, Santa Clara, CA
| | | |
Collapse
|
8
|
Szczepanski JM, Siddiqui J, Patel RM, Harms PW, Hrycaj SM, Chan MP. Expression of SATB2 in primary cutaneous sarcomatoid neoplasms: a potential diagnostic pitfall. Pathology 2023; 55:350-354. [PMID: 36732203 DOI: 10.1016/j.pathol.2022.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 01/12/2023]
Abstract
SATB2 can be used as an immunohistochemical marker for osteoblastic differentiation. The differential diagnosis of a cutaneous sarcomatoid neoplasm sometimes includes osteosarcoma when the tumour concomitantly involves the skin, soft tissue, and bone, or when there is a past medical history of osteosarcoma. As the utility of SATB2 immunohistochemistry in these scenarios was unclear, we aimed to determine the frequency and the pattern of SATB2 expression in a variety of cutaneous sarcomatoid neoplasms. SATB2 expression by immunohistochemistry was evaluated by intensity (0-3) and extent (0-100%) of staining to generate an h-score for each case. Expression levels were classified into high-positive (h-score ≥100), low-positive (20-99), and negative (<20) groups. Positive SATB2 expression was observed in 18/23 (78%) atypical fibroxanthomas (AFX), 10/19 (53%) pleomorphic dermal sarcomas, 9/20 (45%) cutaneous sarcomatoid squamous cell carcinomas, 14/39 (36%) sarcomatoid melanomas, 2/13 (15%) poorly differentiated cutaneous angiosarcomas, 10/17 (59%) high-grade cutaneous leiomyosarcomas, and 7/8 (88%) osteosarcoma controls. With the exception of AFX, all cutaneous neoplasms showed significantly lower average h-scores than osteosarcoma. AFX gave the highest average h-score (71) and percentage of high-positive cases (48%) among all examined cutaneous neoplasms. Only two (1.5%) of all cutaneous cases showed strong intensity of staining. Common SATB2 expression in various cutaneous sarcomatoid neoplasms poses a potential diagnostic pitfall when the differential diagnosis includes osteosarcoma. Requirement of strong staining and a high-positive h-score improves the specificity of SATB2 in differentiating these tumours from osteosarcoma.
Collapse
Affiliation(s)
| | - Javed Siddiqui
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rajiv M Patel
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Paul W Harms
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Steven M Hrycaj
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - May P Chan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Dermatology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Hrycaj SM, Szczepanski JM, Zhao L, Siddiqui J, Thomas DG, Lucas DR, Patel RM, Harms PW, Bresler SC, Chan MP. PRAME expression in spindle cell melanoma, malignant peripheral nerve sheath tumour, and other cutaneous sarcomatoid neoplasms: a comparative analysis. Histopathology 2022; 81:818-825. [PMID: 36102613 PMCID: PMC9828653 DOI: 10.1111/his.14797] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 01/12/2023]
Abstract
Diagnosis of spindle cell/sarcomatoid melanoma may be challenging due to frequent loss of expression of melanocytic marker(s) and histomorphologic resemblance to various mesenchymal tumours, particularly malignant peripheral nerve sheath tumour (MPNST). Overexpression of PReferentially expressed Antigen in MElanoma (PRAME) supports a diagnosis of melanoma when evaluating challenging melanocytic tumours. PRAME expression in MPNST and other cutaneous sarcomatoid neoplasms, however, has not been well characterised. We aimed to determine the utility of PRAME immunostain in distinguishing spindle cell melanoma from MPNST and other sarcomatoid mimics. PRAME expression was scored by extent (0 to 4+) and intensity (0 to 3) of staining. A strong positive correlation was observed between the extent and intensity scores (r = 0.84). An extent score of 4+, defined by staining in 76-100% of tumour cells, was seen in 56% (23/41) of spindle cell melanomas, 18% (7/38) of MPNSTs, 15% (4/27) of cutaneous sarcomatoid squamous cell carcinomas (SCCs), 33% (5/15) of poorly differentiated cutaneous angiosarcomas, 12% (4/33) of atypical fibroxanthomas (AFXs), 4% (1/25) of pleomorphic dermal sarcomas (PDSs), and none (0/16) of the high-grade cutaneous leiomyosarcomas. A significant difference was found between spindle cell melanoma and all other examined sarcomatoid neoplasms except angiosarcoma. While diffuse (and often strong) PRAME expression is more frequently observed in spindle cell melanoma than MPNST, sarcomatoid SCC, AFX, PDS, and high-grade leiomyosarcoma, its limited sensitivity and specificity caution against its use as a standalone diagnostic marker. PRAME may complement other epigenetic or lineage-specific markers and should only be used as part of an immunohistochemical panel when evaluating these sarcomatoid neoplasms.
Collapse
Affiliation(s)
| | | | - Lili Zhao
- Department of BiostatisticsUniversity of MichiganAnn ArborMIUSA
| | - Javed Siddiqui
- Department of PathologyUniversity of MichiganAnn ArborMIUSA
| | | | - David R Lucas
- Department of PathologyUniversity of MichiganAnn ArborMIUSA
| | - Rajiv M Patel
- Department of PathologyUniversity of MichiganAnn ArborMIUSA,Department of DermatologyUniversity of MichiganAnn ArborMIUSA
| | - Paul W Harms
- Department of PathologyUniversity of MichiganAnn ArborMIUSA,Department of DermatologyUniversity of MichiganAnn ArborMIUSA
| | - Scott C Bresler
- Department of PathologyUniversity of MichiganAnn ArborMIUSA,Department of DermatologyUniversity of MichiganAnn ArborMIUSA
| | - May P Chan
- Department of PathologyUniversity of MichiganAnn ArborMIUSA,Department of DermatologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
10
|
Perez AN, Dashti NK, Cates JMM. Prognostic factors for pleomorphic dermal sarcoma: analysis of 1911 cases from the SEER database. J Clin Pathol 2022; 76:424-428. [DOI: 10.1136/jcp-2022-208570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
Prognostic factors for pleomorphic dermal sarcoma, a rare undifferentiated neoplasm of the skin, are poorly defined, and typical staging systems do not appear to be appropriate for these neoplasms. We; therefore, sought to identify prognostic factors for disease-specific survival and predictors of metastasis.Pleomorphic dermal sarcomas were identified in the Surveillance, Epidemiology and End Results database (N=1911). Multiple imputation was used to overcome inherent limitations in this dataset to assess prognostic factors using multivariable Cox proportional hazard stratified by (neo)adjuvant radiotherapy and logistic regression for presentation with metastasis.Age, tumour size and metastasis were independent prognostic factors for cutaneous sarcoma-specific survival. Only tumour size was associated with increased odds of presentation with metastasis, with tumours >4 cm at highest risk. Metastasis is the most important factor in determining outcomes, with age and size as lesser factors. Only tumour size is predictive of metastasis, with larger tumours at highest risk.
Collapse
|
11
|
Aghighi M, Andea AA, Patel RM, Fullen DR, Bresler SC. Spindle Cell/Pleomorphic Lipoma With Trichodiscoma-like Epithelial Hyperplasia Mimicking Atypical Fibroxanthoma/Pleomorphic Dermal Sarcoma. Am J Dermatopathol 2022; 44:764-767. [PMID: 35503875 DOI: 10.1097/dad.0000000000002206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT A 58-year-old man presented with a lesion on the nose suspicious for basal cell carcinoma. An initial biopsy specimen reviewed at an outside institution showed a cytologically atypical spindle cell proliferation that lacked expression of cytokeratins or melanocytic markers. The resulting differential diagnosis included atypical fibroxanthoma and pleomorphic dermal sarcoma. Histopathologic examination of the excision specimen at our institution revealed an intradermal pleomorphic and spindle cell tumor which extended into underlying skeletal muscle. The tumor was associated with a fibromyxoid stroma, scattered adipocytes, and hyperplastic folliculosebaceous epithelium at the periphery. The pleomorphic tumor cells showed hyperchromatic nuclei with smudgy chromatin, and no mitotic activity was detected. Overall, the cellularity was less than would be expected for atypical fibroxanthoma/pleomorphic dermal sarcoma. Furthermore, the tumor cells were strongly positive for CD34 and showed diffuse loss of retinoblastoma protein by immunohistochemistry. Consequently, a diagnosis of benign CD34-positive pleomorphic spindle cell tumor was rendered, with features overlapping between spindle cell/pleomorphic lipoma and trichodiscoma. Subsequent single-nucleotide pleomorphism array testing revealed heterozygous loss of chromosome 13q in a region that spanned the RB1 locus and copy number loss at 16q, favoring that the proliferation in fact represents a spindle cell/pleomorphic lipoma with trichodiscoma-like epithelial induction. This case highlights an important diagnostic pitfall that may be avoided by recognizing characteristic architectural and cytologic features of this spectrum of lesions.
Collapse
Affiliation(s)
- Maryam Aghighi
- Department of Pathology, Rutgers Health-St. Barnabas Medical Center, Livingston, NJ
| | - Aleodor A Andea
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI; and.,Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Rajiv M Patel
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI; and.,Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Douglas R Fullen
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI; and.,Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Scott C Bresler
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI; and.,Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
12
|
Genomic evidence suggests that cutaneous neuroendocrine carcinomas can arise from squamous dysplastic precursors. Mod Pathol 2022; 35:506-514. [PMID: 34593967 PMCID: PMC8964828 DOI: 10.1038/s41379-021-00928-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023]
Abstract
Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma without a known dysplastic precursor. In some cases, MCC is associated with SCCIS in the overlying epidermis; however, the MCC and SCCIS populations display strikingly different morphologies, and thus far a relationship between these components has not been demonstrated. To better understand the relationship between these distinct tumor cell populations, we evaluated 7 pairs of MCC-SCCIS for overlapping genomic alterations by cancer profiling panel. A subset was further characterized by transcriptional profiling and immunohistochemistry. In 6 of 7 MCC-SCCIS pairs there was highly significant mutational overlap including shared TP53 and/or RB1 mutations. In some cases, oncogenic events previously implicated in MCC (MYCL gain, MDM4 gain, HRAS mutation) were detected in both components. Although FBXW7 mutations were enriched in MCC, no gene mutation was unique to the MCC component across all cases. Transcriptome analysis identified 2736 differentially expressed genes between MCC and SCCIS. Genes upregulated in the MCC component included Polycomb repressive complex targets; downregulated transcripts included epidermal markers, and immune genes such as HLA-A. Immunohistochemical studies revealed increased expression of SOX2 in the MCC component, with diminished H3K27Me3, Rb, and HLA-A expression. In summary, MCC-SCCIS pairs demonstrate clonal relatedness. The shift to neuroendocrine phenotype is associated with loss of Rb protein expression, decrease in global H3K27Me3, and increased expression of Merkel cell genes such as SOX2. Our findings suggest an epidermal origin of MCC in this setting, and to our knowledge provide the first molecular evidence that intraepithelial squamous dysplasia may represent a direct precursor for small cell carcinoma.
Collapse
|
13
|
Weisman P, Park K, Xu J. FIGO Grade 3 Endometrioid Adenocarcinomas With Diffusely Aberrant β-Catenin Expression: An Aggressive Subset Resembling Cutaneous Pilomatrix Carcinomas. Int J Gynecol Pathol 2022; 41:126-131. [PMID: 33811207 PMCID: PMC8484367 DOI: 10.1097/pgp.0000000000000775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Uterine endometrioid adenocarcinomas are known for their morphologic plasticity. In addition to a multiplicity of metaplasias, uterine endometrioid adenocarcinomas may also undergo high-grade divergent differentiation in the form of high-grade neuroendocrine carcinoma, neuroectodermal differentiation or carcinosarcoma; others may dedifferentiate completely. Here we describe 5 cases of uterine endometrioid adenocarcinomas with high-grade divergent differentiation showing a striking morphologic and immunophenotypic resemblance to cutaneous pilomatrix carcinoma. Specifically, the high-grade component in all cases exhibited solid, basaloid morphology with conspicuous tumor cell necrosis and the presence of shadow cells, accompanied by diffusely aberrant (nuclear and cytoplasmic) β-catenin expression as well as variably diffuse CDX2 expression. In addition, the high-grade component in all cases showed loss of ER and PAX8 expression, retained MMR expression, wild-type p53 expression, patchy p16 expression, and diffusely positive cytokeratin expression (AE1/AE3 and CK7); at least focal neuroendocrine marker expression was present in all cases. CK20 was negative in all cases, with the exception of very focal staining in a single case (2% of tumor cells). All 5 of our tumors had at least a focal conventional FIGO grade 1 component. In all 4 cases tested, the low-grade component retained both PAX8 and ER expression and had, at best, focally aberrant β-catenin expression. Two of our cases had molecular analysis performed and both harbored mutations in exon 3 of CTNNB1 as expected; molecular analysis also revealed that both cases lacked POLE or TP53 mutations and showed no microsatellite instability. The tumors in this series were uniformly aggressive. Four of the 5 patients in our cohort had available follow-up information; of these, 3/4 died of their disease within 14 mo of diagnosis and the fourth patient had distant metastatic disease at presentation and is alive with disease 1 mo following diagnosis. The 1 patient without follow-up information also had distant metastatic disease at presentation and was lost to follow-up 17 mo later. The cases described in this series (1) represent a highly aggressive CTNNB1-mutated subset of the "no specific molecular profile" category of endometrioid adenocarcinomas; (2) illustrate a form of high-grade divergent differentiation resembling cutaneous pilomatrix carcinoma already described in carcinomas at other anatomic sites; and (3) underscore the difficulty in recognizing this phenotype at distant metastatic sites, which are frequent even at the time of presentation, given the consistent loss of ER and PAX8 expression and concurrent CDX2 expression.
Collapse
Affiliation(s)
- Paul Weisman
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Kay Park
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jin Xu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
14
|
Pan M, Jiang C, Tse P, Achacoso N, Alexeeff S, Solorzano AV, Chung E, Hu W, Truong TG, Arora A, Sundaresan T, Suga JM, Thomas S, Habel LA. TP53 Gain-of-Function and Non-Gain-of-Function Mutations Are Differentially Associated With Sidedness-Dependent Prognosis in Metastatic Colorectal Cancer. J Clin Oncol 2022; 40:171-179. [PMID: 34843402 PMCID: PMC8718185 DOI: 10.1200/jco.21.02014] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To examine the association of gain-of-function (GOF) and non-gain-of-function (non-GOF) TP53 mutations with prognosis of metastatic right-sided (RCC) versus left-sided colorectal cancer (LCC). METHODS This cohort study included patients with metastatic colorectal cancer (CRC) who had next-generation sequencing performed from November 2017 to January 2021. We defined R175H, R248W, R248Q, R249S, R273H, R273L, and R282W as GOF and all other mutp53 as non-GOF. We used Cox regression modeling to examine the association between GOF and non-GOF mutp53 and overall survival (OS), adjusting for age, sex, ethnicity, performance status, Charlson comorbidity index and receipt of chemotherapy. RESULTS Of total 1,043 patients, 735 had tumors with mutp53 and 308 had wild-type p53 (wtp53). GOF was associated with worse OS than non-GOF mutp53 only in LCC (hazard ratio [HR] = 1.66 [95% CI, 1.20 to 2.29]), but not in RCC (HR = 0.79 [95% CI, 0.49 to 1.26]). Importantly, RCC was associated with worse OS than LCC only in the subset of patients whose CRC carried non-GOF (HR = 1.76 [95% CI, 1.30 to 2.39]), but not GOF mutp53 (HR = 0.92 [95% CI, 0.55 to 1.53]) or wtp53 (HR = 0.88 [95% CI, 0.60 to 1.28]). These associations were largely unchanged after also adjusting for RAS, BRAF, and PIK3CA mutations, and microsatellite instability-high. CONCLUSION Poorer survival of patients with metastatic RCC versus LCC appeared to be restricted to the subset with non-GOF mutp53, whereas GOF versus non-GOF mutp53 was associated with poorer survival only among patients with LCC. This approach of collectively classifying mutp53 into GOF and non-GOF provides new insight for prognostic stratification and for understanding the mechanism of sidedness-dependent prognosis. If confirmed, future CRC clinical trials may benefit from incorporating this approach.
Collapse
Affiliation(s)
- Minggui Pan
- Department of Oncology and Hematology, Kaiser Permanente, Santa Clara, CA,Division of Research, Kaiser Permanente, Oakland, CA,Minggui Pan, MD, PhD, Division of Research and Department of Oncology and Hematology, Kaiser Permanente, 710 Lawrence Expressway, Santa Clara, CA 95051; e-mail:
| | - Chen Jiang
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Pam Tse
- Division of Research, Kaiser Permanente, Oakland, CA
| | | | | | | | - Elaine Chung
- Division of Research, Kaiser Permanente, Oakland, CA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, State University of New Jersey, New Brunswick, NJ
| | - Thach-Giao Truong
- Department of Oncology and Hematology, Kaiser Permanente, Vallejo, CA
| | - Amit Arora
- Department of Oncology and Hematology, Kaiser Permanente, Fremont, CA
| | - Tilak Sundaresan
- Department of Oncology and Hematology, Kaiser Permanente, San Francisco, CA
| | | | - Sachdev Thomas
- Department of Oncology and Hematology, Kaiser Permanente, Vallejo, CA
| | | |
Collapse
|
15
|
Ferreira I, Arends MJ, Weyden L, Adams DJ, Brenn T. Primary de‐differentiated, trans‐differentiated and undifferentiated melanomas: overview of the clinicopathological, immunohistochemical and molecular spectrum. Histopathology 2021; 80:135-149. [PMID: 34958502 DOI: 10.1111/his.14545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Ingrid Ferreira
- Experimental Cancer Genetics Wellcome Sanger Institute Wellcome Genome Campus Cambridge UK
- Université Libre de Bruxelles Brussels Belgium
| | - Mark J Arends
- Division of Pathology Cancer Research UK Edinburgh Centre Edinburgh UK
| | - Louise Weyden
- Experimental Cancer Genetics Wellcome Sanger Institute Wellcome Genome Campus Cambridge UK
| | - David J Adams
- Experimental Cancer Genetics Wellcome Sanger Institute Wellcome Genome Campus Cambridge UK
| | - Thomas Brenn
- Division of Pathology Cancer Research UK Edinburgh Centre Edinburgh UK
- Department of Pathology and Laboratory Medicine and the Arnie Charbonneau Cancer Institute Cumming School of Medicine University of Calgary Calgary AB Canada
| |
Collapse
|
16
|
Ferreira I, Droop A, Edwards O, Wong K, Harle V, Habeeb O, Gharpuray-Pandit D, Houghton J, Wiedemeyer K, Mentzel T, Billings SD, Ko JS, Füzesi L, Mulholland K, Prusac IK, Liegl-Atzwanger B, de Saint Aubain N, Caldwell H, Riva L, van der Weyden L, Arends MJ, Brenn T, Adams DJ. The clinicopathologic spectrum and genomic landscape of de-/trans-differentiated melanoma. Mod Pathol 2021; 34:2009-2019. [PMID: 34155350 DOI: 10.1038/s41379-021-00857-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 02/03/2023]
Abstract
Dedifferentiation and transdifferentiation are rare and only poorly understood phenomena in cutaneous melanoma. To study this disease more comprehensively we have retrieved 11 primary cutaneous melanomas from our pathology archives showing biphasic features characterized by a conventional melanoma and additional areas of de-/trans-differentiation as defined by a lack of immunohistochemical expression of all conventional melanocytic markers (S-100 protein, SOX10, Melan-A, and HMB-45). The clinical, histologic, and immunohistochemical findings were recorded and follow-up was obtained. The patients were mostly elderly (median: 81 years; range: 42-86 years) without significant gender predilection, and the sun-exposed skin of the head and neck area was most commonly affected. The tumors were deeply invasive with a mean depth of 7 mm (range: 4-80 mm). The dedifferentiated component showed atypical fibroxanthoma-like features in the majority of cases (7), while additional rhabdomyosarcomatous and epithelial transdifferentiation was noted histologically and/or immunohistochemically in two tumors each. The background conventional melanoma component was of desmoplastic (4), superficial spreading (3), nodular (2), lentigo maligna (1), or spindle cell (1) types. For the seven patients with available follow-up data (median follow-up period of 25 months; range: 8-36 months), two died from their disease, and three developed metastases. Next-generation sequencing of the cohort revealed somatic mutations of established melanoma drivers including mainly NF1 mutations (5) in the conventional component, which was also detected in the corresponding de-/trans-differentiated component. In summary, the diagnosis of primary cutaneous de-/trans-differentiated melanoma is challenging and depends on the morphologic identification of conventional melanoma. Molecular analysis is diagnostically helpful as the mutated gene profile is shared between the conventional and de-/trans-differentiated components. Importantly, de-/trans-differentiation does not appear to confer a more aggressive behavior.
Collapse
Affiliation(s)
- Ingrid Ferreira
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- Université Libre de Bruxelles, Brussels, Belgium
| | - Alastair Droop
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Olivia Edwards
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Kim Wong
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Victoria Harle
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Omar Habeeb
- Department of Anatomic Pathology, Middlemore Hospital, Auckland, NZ, New Zealand
| | | | - Joseph Houghton
- Department of Pathology, Royal Victoria Hospital, Belfast, Ireland
| | - Katharina Wiedemeyer
- Department of Dermatology, University of Heidelberg, Heidelberg, Germany
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Thomas Mentzel
- Dermatopathology Friedrichshafen, Friedrichshafen, Germany
| | | | - Jennifer S Ko
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Laszlo Füzesi
- Center for Pathology, Robert-Weixler-Straße 48a, Kempten, Germany
| | | | - Ivana Kuzmic Prusac
- Department of Pathology, University Hospital Split and Split University School of Medicine, Split, Croatia
| | - Bernadette Liegl-Atzwanger
- Diagnostic and Research Centre for Molecular Biomedicine, Diagnostic and Research Centre for Pathology, Translational Sarcoma Pathology, Comprehensive Cancer Centre Subunit Sarcoma, Medical University Graz, Graz, Austria
| | - Nicolas de Saint Aubain
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Helen Caldwell
- Division of Pathology, Cancer Research UK Edinburgh Centre, The University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, UK
| | - Laura Riva
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Louise van der Weyden
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Mark J Arends
- Division of Pathology, Cancer Research UK Edinburgh Centre, The University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, UK
| | - Thomas Brenn
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- Division of Pathology, Cancer Research UK Edinburgh Centre, The University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, UK.
- The Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| |
Collapse
|
17
|
Tomlins SA, Hovelson DH, Harms P, Drewery S, Falkner J, Fischer A, Hipp J, Kwiatkowski K, Lazo de la Vega L, Mitchell K, Reeder T, Siddiqui J, Vakil H, Johnson DB, Rhodes DR. Development and Validation of StrataNGS, a Multiplex PCR, Semiconductor Sequencing-Based Comprehensive Genomic Profiling Test. J Mol Diagn 2021; 23:1515-1533. [PMID: 34454112 DOI: 10.1016/j.jmoldx.2021.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/09/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Despite widespread use in targeted tumor testing, multiplex PCR/semiconductor (Ion Torrent) sequencing-based assessment of all comprehensive genomic profiling (CGP) variant classes has been limited. Herein, we describe the development and validation of StrataNGS, a 429-gene, multiplex PCR/semiconductor sequencing-based CGP laboratory-developed test performed on co-isolated DNA and RNA from formalin-fixed, paraffin-embedded tumor specimens with ≥2 mm2 tumor surface area. Validation was performed in accordance with MolDX CGP validation guidelines using 1986 clinical formalin-fixed, paraffin-embedded samples and an in-house developed optimized bioinformatics pipeline. Across CGP variant classes, accuracy ranged from 0.945 for tumor mutational burden (TMB) status to >0.999 for mutations and gene fusions, positive predictive value ranged from 0.915 for TMB status to 1.00 for gene fusions, and reproducibility ranged from 0.998 for copy number alterations to 1.00 for splice variants and insertions/deletions. StrataNGS TMB estimates were highly correlated to those from whole exome- or FoundationOne CDx-determined TMB (Pearson r = 0.998 and 0.960, respectively); TMB reproducibility was 0.996 (concordance correlation coefficient). Limit of detection for all variant classes was <20% tumor content. Together, we demonstrate that multiplex PCR/semiconductor sequencing-based tumor tissue CGP is feasible using optimized bioinformatic approaches described herein.
Collapse
Affiliation(s)
| | | | - Paul Harms
- Departments of Pathology and Dermatology, University of Michigan, Ann Arbor, Michigan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lo ACQ, McDonald S, Wong KY. Case of pleomorphic dermal sarcoma with systematic review of disease characteristics, outcomes and management. BMJ Case Rep 2021; 14:e244522. [PMID: 34446519 PMCID: PMC8395263 DOI: 10.1136/bcr-2021-244522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
| | - Sarah McDonald
- Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kai Yuen Wong
- Plastic & Reconstructive Surgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
19
|
Tomlins SA, Hovelson DH, Suga JM, Anderson DM, Koh HA, Dees EC, McNulty B, Burkard ME, Guarino M, Khatri J, Safa MM, Matrana MR, Yang ES, Menter AR, Parsons BM, Slim JN, Thompson MA, Hwang L, Edenfield WJ, Nair S, Onitilo A, Siegel R, Miller A, Wassenaar T, Irvin WJ, Schulz W, Padmanabhan A, Harish V, Gonzalez A, Mansoor AH, Kellum A, Harms P, Drewery S, Falkner J, Fischer A, Hipp J, Kwiatkowski K, Lazo de la Vega L, Mitchell K, Reeder T, Siddiqui J, Vakil H, Johnson DB, Rhodes DR. Real-World Performance of a Comprehensive Genomic Profiling Test Optimized for Small Tumor Samples. JCO Precis Oncol 2021; 5:PO.20.00472. [PMID: 34476329 PMCID: PMC8384401 DOI: 10.1200/po.20.00472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/18/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Tissue-based comprehensive genomic profiling (CGP) is increasingly used for treatment selection in patients with advanced cancer; however, tissue availability may limit widespread implementation. Here, we established real-world CGP tissue availability and assessed CGP performance on consecutively received samples. MATERIALS AND METHODS We conducted a post hoc, nonprespecified analysis of 32,048 consecutive tumor tissue samples received for StrataNGS, a multiplex polymerase chain reaction (PCR)-based comprehensive genomic profiling (PCR-CGP) test, as part of an ongoing observational trial (NCT03061305). Sample characteristics and PCR-CGP performance were assessed across all tested samples, including exception samples not meeting minimum input quality control (QC) requirements (< 20% tumor content [TC], < 2 mm2 tumor surface area [TSA], DNA or RNA yield < 1 ng/µL, or specimen age > 5 years). Tests reporting ≥ 1 prioritized alteration or meeting TC and sequencing QC were considered successful. For prostate carcinoma and lung adenocarcinoma, tests reporting ≥ 1 actionable or informative alteration or meeting TC and sequencing QC were considered actionable. RESULTS Among 31,165 (97.2%) samples where PCR-CGP was attempted, 10.7% had < 20% TC and 59.2% were small (< 25 mm2 tumor surface area). Of 31,101 samples evaluable for input requirements, 8,089 (26.0%) were exceptions not meeting requirements. However, 94.2% of the 31,101 tested samples were successfully reported, including 80.5% of exception samples. Positive predictive value of PCR-CGP for ERBB2 amplification in exceptions and/or sequencing QC-failure breast cancer samples was 96.7%. Importantly, 84.0% of tested prostate carcinomas and 87.9% of lung adenocarcinomas yielded results informing treatment selection. CONCLUSION Most real-world tissue samples from patients with advanced cancer desiring CGP are limited, requiring optimized CGP approaches to produce meaningful results. An optimized PCR-CGP test, coupled with an inclusive exception testing policy, delivered reportable results for > 94% of samples, potentially expanding the proportion of CGP-testable patients and impact of biomarker-guided therapies.
Collapse
Affiliation(s)
| | | | | | - Daniel M. Anderson
- Metro-Minnesota Community Oncology Research Consortium (MMCORC), St Louis Park, MN
| | | | - Elizabeth C. Dees
- The University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | | | | | - Michael Guarino
- ChristianaCare's Helen F. Graham Cancer Center & Research Institute, Newark, DE
| | - Jamil Khatri
- ChristianaCare's Helen F. Graham Cancer Center & Research Institute, Newark, DE
| | | | | | - Eddy S. Yang
- University of Alabama at Birmingham, Birmingham, AL
| | | | | | | | | | - Leon Hwang
- Kaiser Permanente Mid Atlantic, Rockville, MD
| | | | | | | | - Robert Siegel
- Bon Secours St Francis Cancer Center, Greenville, SC
| | | | | | - William J. Irvin
- Bon Secours St Francis Medical Center Midlothian, Midlothian, VA
| | | | | | | | | | | | | | - Paul Harms
- University of Michigan Health Systems, Ann Arbor, MI
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chung J, Shevchenko A, Lee JB. Evolution of a melanoma in situ to a sarcomatoid dedifferentiated melanoma. J Cutan Pathol 2021; 48:943-947. [PMID: 33675557 DOI: 10.1111/cup.14003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/30/2021] [Accepted: 02/22/2021] [Indexed: 01/12/2023]
Abstract
Sarcomatoid dedifferentiated melanoma (SDDM) is a recently recognized subtype of melanoma that stains diffusely for CD10 and lacks the expression of the usual melanocytic markers including S100, SOX10, MITF, and Melan A. Advances in next-generation DNA sequencing technology have facilitated the increased recognition of this rare, aggressive spindle cell melanoma. Herein, a case of relatively early lesion of SDDM arising in association with melanoma in situ is highlighted. A 72-year-old man with a history of previously treated melanoma in situ on the face five years prior presented with a new rapidly growing lesion within the scar of the treated site. A shave biopsy of the lesion revealed a centrally located 1.8-mm deep, poorly differentiated spindle cell neoplasm in association with an adjacent recurrent melanoma in situ. The spindle cell component stained diffusely for CD10, but failed to stain for S100, SOX10, and Melan-A while the melanoma in situ expressed all three melanocytic markers. Next-generation DNA sequencing assay revealed mutations in NF1, CDKN2A, TP53, and TSC1. A diagnosis of stage 2B SDDM arising in association with melanoma in situ was established based on the clinical context and genomic assay results.
Collapse
Affiliation(s)
- Jina Chung
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Alina Shevchenko
- Department of Dermatology, Temple University Hospital, Philadelphia, Pennsylvania, USA
| | - Jason B Lee
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Iglesias-Pena N, Martínez-Campayo N, López-Solache L. Relation Between Atypical Fibroxanthoma and Pleomorphic Dermal Sarcoma: Histopathologic Features and Review of the Literature. ACTAS DERMO-SIFILIOGRAFICAS 2021. [DOI: 10.1016/j.adengl.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Fourteen-Day Gemcitabine-Docetaxel Chemotherapy Is Effective and Safer Compared to 21-Day Regimen in Patients with Advanced Soft Tissue and Bone Sarcoma. Cancers (Basel) 2021; 13:cancers13081983. [PMID: 33924080 PMCID: PMC8074251 DOI: 10.3390/cancers13081983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Gemcitabine-docetaxel chemotherapy is an important regimen for the treatment of soft tissue and bone sarcomas. We aimed to determine if gemcitabine-docetaxel when administered every 14-day would be as effective and less toxic compared to the 21-day schedule. Our study shows that indeed when administered in 14-day schedule gemcitabine-docetaxel chemotherapy results in similar chance of tumor shrinkage and survival yet fewer febrile neutropenia and discontinuation of chemotherapy due to intolerance, compared to 21-day schedule. Therefore, 14-day gemcitabine-docetaxel chemotherapy is safer and can be broadly adopted for the treatment of advanced soft tissue and bone sarcomas. Abstract Gemcitabine-docetaxel (G-D) combination is an effective chemotherapy for patients with advanced soft tissue and bone sarcoma, first developed with G administered on days 1 and 8, and D on day 8 every 21 days and later modified to be administered every 14 days in 2012. The 14-day regimen has become increasingly adopted. However, its efficacy and toxicities have not been compared. We identified 161 patients with metastatic or locally advanced soft tissue and bone sarcoma treated with either a 14-day or 21-day regimen within Northern California Kaiser Permanente from 1 January 2017 to 30 July 2020 and compared the outcomes and toxicity profiles of patients treated with the either regimen. Seventy-nine (49%) and 82 (51%) patients received the 14-day and the 21-day regimen, respectively, with similar response rate (22.8% and 15.8%, p = 0.26), median progression-free survival (PFS, 4.0 and 3.2 months, p = 0.15), and median overall survival (OS, 12.6 and 14.7 months, p = 0.55). Subset analysis of the untreated patients (approximately 60% of the entire cohort) as well as the patients with leiomyosarcoma only (approximately 50% of the entire cohort) showed that OS was not significantly different between the two regimens. Febrile neutropenia requiring hospitalization occurred in 10 and one patients (p = 0.006) and intolerance leading to discontinuation of chemotherapy occurred in 12 and two patients (p = 0.006) treated with the 21-day and the 14-day regimens, respectively. CDKN2A deletion/mutation or CDK4 amplification was associated with worse median OS (p = 0.06), while a RB1 deletion/mutation was associated with better median PFS (p = 0.05), and these two genomic alterations were mutually exclusive. Our data demonstrate that, compared to the traditional 21-day G-D regimen, the 14-day G-D regimen is equally effective but safer. In addition, CDKN2A and RB1 pathways play significant role on the outcomes of the patients.
Collapse
|
23
|
Harms KL, Zhao L, Johnson B, Wang X, Carskadon S, Palanisamy N, Rhodes DR, Mannan R, Vo JN, Choi JE, Chan MP, Fullen DR, Patel RM, Siddiqui J, Ma VT, Hrycaj S, McLean SA, Hughes TM, Bichakjian CK, Tomlins SA, Harms PW. Virus-positive Merkel Cell Carcinoma Is an Independent Prognostic Group with Distinct Predictive Biomarkers. Clin Cancer Res 2021; 27:2494-2504. [PMID: 33547200 DOI: 10.1158/1078-0432.ccr-20-0864] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 12/31/2020] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine carcinoma that can be divided into two classes: virus-positive (VP) MCC, associated with oncogenic Merkel cell polyomavirus (MCPyV); and virus-negative (VN) MCC, associated with photodamage. EXPERIMENTAL DESIGN We classified 346 MCC tumors from 300 patients for MCPyV using a combination of IHC, ISH, and qPCR assays. In a subset of tumors, we profiled mutation status and expression of cancer-relevant genes. MCPyV and molecular profiling results were correlated with disease-specific outcomes. Potential prognostic biomarkers were further validated by IHC. RESULTS A total of 177 tumors were classified as VP-MCC, 151 tumors were VN-MCC, and 17 tumors were indeterminate. MCPyV positivity in primary tumors was associated with longer disease-specific and recurrence-free survival in univariate analysis, and in multivariate analysis incorporating age, sex, immune status, and stage at presentation. Prioritized oncogene or tumor suppressor mutations were frequent in VN-MCC but rare in VP-MCC. TP53 mutation developed with recurrence in one VP-MCC case. Importantly, for the first time we find that VP-MCC and VN-MCC display distinct sets of prognostic molecular biomarkers. For VP-MCC, shorter survival was associated with decreased expression of immune markers including granzyme and IDO1. For VN-MCC, shorter survival correlated with high expression of several genes including UBE2C. CONCLUSIONS MCPyV status is an independent prognostic factor for MCC. Features of the tumor genome, transcriptome, and microenvironment may modify prognosis in a manner specific to viral status. MCPyV status has clinicopathologic significance and allows for identification of additional prognostic subgroups.
Collapse
Affiliation(s)
- Kelly L Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | | | - Xiaoming Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Shannon Carskadon
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | - Nallasivam Palanisamy
- Department of Urology, Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan
| | | | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Josh N Vo
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Jae Eun Choi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - May P Chan
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Douglas R Fullen
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Rajiv M Patel
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Javed Siddiqui
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Vincent T Ma
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.,Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, Michigan
| | - Steven Hrycaj
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Scott A McLean
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan
| | - Tasha M Hughes
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Christopher K Bichakjian
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan.,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Scott A Tomlins
- Strata Oncology, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Paul W Harms
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan. .,Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.,Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan.,Department of Pathology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
24
|
Iglesias-Pena N, Martínez-Campayo N, López-Solache L. Relation Between Atypical Fibroxanthoma and Pleomorphic Dermal Sarcoma: Histopathologic Features and Review of the Literature. ACTAS DERMO-SIFILIOGRAFICAS 2020; 112:392-405. [PMID: 33301761 DOI: 10.1016/j.ad.2020.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 12/20/2022] Open
Abstract
The relation between atypical fibroxanthoma and pleomorphic dermal sarcoma has led to confusion and debate in the literature. Both tumors present on sun-exposed skin, typically on the head and neck, in patients of advanced age. Both are comprised of a variable mix of histiocytoid, spindle, epithelioid, and/or giant multinucleated cells with pleomorphic nuclei. No immunohistochemical diagnostic techniques have emerged to distinguish these tumors. Diagnosis is by exclusion. Histologically, atypical fibroxanthoma is seen as a well-circumscribed dermal nodule but there will be no evidence of extensive subcutaneous invasion, tumor necrosis, or lymphovascular or perineural invasion. Therefore, if any of the aforementioned features is present, the diagnosis would be pleomorphic dermal sarcoma. This narrative review of the literature aims to identify the distinguishing and overlapping histopathologic features of these 2 tumors as they have been described in case series.
Collapse
Affiliation(s)
- N Iglesias-Pena
- Servicio de Dermatología, Hospital Universitario Lucus Augusti, Lugo, España.
| | - N Martínez-Campayo
- Servicio de Dermatología, Complejo Hospitalario Universitario A Coruña, A Coruña, España
| | - L López-Solache
- Servicio de Anatomía Patológica, Complejo Hospitalario Universitario A Coruña, A Coruña, España
| |
Collapse
|