1
|
Docampo R. Advances in the cellular biology, biochemistry, and molecular biology of acidocalcisomes. Microbiol Mol Biol Rev 2024; 88:e0004223. [PMID: 38099688 PMCID: PMC10966946 DOI: 10.1128/mmbr.00042-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
SUMMARYAcidocalcisomes are organelles conserved during evolution and closely related to the so-called volutin granules of bacteria and archaea, to the acidocalcisome-like vacuoles of yeasts, and to the lysosome-related organelles of animal species. All these organelles have in common their acidity and high content of polyphosphate and calcium. They are characterized by a variety of functions from storage of phosphorus and calcium to roles in Ca2+ signaling, osmoregulation, blood coagulation, and inflammation. They interact with other organelles through membrane contact sites or by fusion, and have several enzymes, pumps, transporters, and channels.
Collapse
Affiliation(s)
- Roberto Docampo
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Abstract
Acidocalcisomes are electron-dense organelles rich in polyphosphate and inorganic and organic cations that are acidified by proton pumps, and possess several channels, pumps, and transporters. They are present in bacteria and eukaryotes and have been studied in greater detail in trypanosomatids. Biogenesis studies of trypanosomatid acidocalcisomes found that they share properties with lysosome-related organelles of animal cells. In addition to their described roles in autophagy, cation and phosphorus storage, osmoregulation, pH homeostasis, and pathogenesis, recent studies have defined the role of these organelles in phosphate utilization, calcium ion (Ca2+ ) signaling, and bioenergetics, and will be the main subject of this review.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Ramos I, Machado E, Masuda H, Gomes F. Open questions on the functional biology of the yolk granules during embryo development. Mol Reprod Dev 2022; 89:86-94. [PMID: 35020238 DOI: 10.1002/mrd.23555] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/21/2022]
Abstract
Biogenesis and consumption of the yolk are well-conserved aspects of the reproductive biology in oviparous species. Most egg-laying animals accumulate yolk proteins within the oocytes thus creating the source of nutrients and energy that will feed embryo development. Yolk accumulation drives the generation of a highly specialized oocyte cytoplasm with maternal mRNAs, ribosomes, mitochondria, and, mainly, a set of organelles collectively referred to as yolk granules (Ygs). Following fertilization, the Ygs are involved in regulated mechanisms of yolk degradation to fuel the anabolic metabolism of the growing embryo. Thus, yolk accumulation and degradation are essential processes that allow successful development in many species. Nevertheless, the molecular machinery and mechanisms dedicated to the programmed yolk mobilization throughout development are still enigmatic and remain mostly unexplored. Moreover, while the Ygs functional biology as a nutritional source for the embryo has been acknowledged, several reports have suggested that Ygs cargoes and functions go far beyond yolk storage. Evidence of the role of Ygs in gene expression, microbiota harboring, and paracrine signaling has been proposed. In this study, we summarize the current knowledge of the Ygs functional biology pointing to open questions and where further investigation is needed.
Collapse
Affiliation(s)
- Isabela Ramos
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Rio de Janeiro, Brazil
| | - Ednildo Machado
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Rio de Janeiro, Brazil.,Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hatisaburo Masuda
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT-EM/CNPq, Rio de Janeiro, Brazil
| | - Fabio Gomes
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Wallnöfer EA, Thurner GC, Kremser C, Talasz H, Stollenwerk MM, Helbok A, Klammsteiner N, Albrecht-Schgoer K, Dietrich H, Jaschke W, Debbage P. Albumin-based nanoparticles as contrast medium for MRI: vascular imaging, tissue and cell interactions, and pharmacokinetics of second-generation nanoparticles. Histochem Cell Biol 2020; 155:19-73. [PMID: 33040183 DOI: 10.1007/s00418-020-01919-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
This multidisciplinary study examined the pharmacokinetics of nanoparticles based on albumin-DTPA-gadolinium chelates, testing the hypothesis that these nanoparticles create a stronger vessel signal than conventional gadolinium-based contrast agents and exploring if they are safe for clinical use. Nanoparticles based on human serum albumin, bearing gadolinium and designed for use in magnetic resonance imaging, were used to generate magnet resonance images (MRI) of the vascular system in rats ("blood pool imaging"). At the low nanoparticle doses used for radionuclide imaging, nanoparticle-associated metals were cleared from the blood into the liver during the first 4 h after nanoparticle application. At the higher doses required for MRI, the liver became saturated and kidney and spleen acted as additional sinks for the metals, and accounted for most processing of the nanoparticles. The multiple components of the nanoparticles were cleared independently of one another. Albumin was detected in liver, spleen, and kidneys for up to 2 days after intravenous injection. Gadolinium was retained in the liver, kidneys, and spleen in significant concentrations for much longer. Gadolinium was present as significant fractions of initial dose for longer than 2 weeks after application, and gadolinium clearance was only complete after 6 weeks. Our analysis could not account quantitatively for the full dose of gadolinium that was applied, but numerous organs were found to contain gadolinium in the collagen of their connective tissues. Multiple lines of evidence indicated intracellular processing opening the DTPA chelates and leading to gadolinium long-term storage, in particular inside lysosomes. Turnover of the stored gadolinium was found to occur in soluble form in the kidneys, the liver, and the colon for up to 3 weeks after application. Gadolinium overload poses a significant hazard due to the high toxicity of free gadolinium ions. We discuss the relevance of our findings to gadolinium-deposition diseases.
Collapse
Affiliation(s)
- E A Wallnöfer
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - G C Thurner
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - C Kremser
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - H Talasz
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - M M Stollenwerk
- Faculty of Health and Society, Biomedical Laboratory Science, University Hospital MAS, Malmö University, 205 06, Malmö, Sweden
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - A Helbok
- Department of Nuclear Medicine, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria
| | - N Klammsteiner
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria
| | - K Albrecht-Schgoer
- Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University Innsbruck, Innrain 80-82/IV, 6020, Innsbruck, Austria
- Institute of Cell Genetics, Department for Pharmacology and Genetics, Medical University of Innsbruck, Peter-Mayr-Strasse 1a, 6020, Innsbruck, Austria
| | - H Dietrich
- Central Laboratory Animal Facilities, Innsbruck Medical University, Peter-Mayr-Strasse 4a, 6020, Innsbruck, Austria
| | - W Jaschke
- Department of Radiology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - P Debbage
- Division of Histology and Embryology, Department of Anatomy, Histology and Embryology, Medical University of Innsbruck, Müllerstrasse 59, 6020, Innsbruck, Austria.
| |
Collapse
|
5
|
Silencing of RpATG8 impairs the biogenesis of maternal autophagosomes in vitellogenic oocytes, but does not interrupt follicular atresia in the insect vector Rhodnius prolixus. PLoS Negl Trop Dis 2020; 14:e0008012. [PMID: 31986144 PMCID: PMC7004382 DOI: 10.1371/journal.pntd.0008012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/06/2020] [Accepted: 12/23/2019] [Indexed: 01/03/2023] Open
Abstract
Follicular atresia is the mechanism by which the oocyte contents are degraded during oogenesis in response to stress conditions, allowing the energetic resources stored in the developing oocytes to be reallocated to optimize female fitness. Autophagy is a conserved intracellular degradation pathway where double-membrane vesicles are formed around target organelles leading to their degradation after lysosome fusion. The autophagy-related protein 8 (ATG8) is conjugated to the autophagic membrane and has a key role in the elongation and closure of the autophagosome. Here we identified one single isoform of ATG8 in the genome of the insect vector of Chagas Disease Rhodnius prolixus (RpATG8) and found that it is highly expressed in the ovary during vitellogenesis. Accordingly, autophagosomes were detected in the vitellogenic oocytes, as seen by immunoblotting and electron microscopy. To test if autophagosomes were important for follicular atresia, we silenced RpATG8 and elicited atresia in vitellogenic females by Zymosan-A injections. We found that silenced females were still able to trigger the same levels of follicle atresia, and that their atretic oocytes presented a characteristic morphology, with accumulated brown aggregates. Regardless of the difference in morphology, RpATG8-silenced atretic oocytes presented the same levels of protein, TAG and PolyP, as detected in control atretic oocytes, as well as the same levels of acidification of the yolk organelles. Because follicular atresia has the ultimate goal of restoring female fitness, we tested if RpATG8-silenced atresia would result in female physiology and behavior changes. Under insectarium conditions, we found that atresia-induced control and RpATG8-silenced females present no changes in blood meal digestion, survival, oviposition, TAG content in the fat body, haemolymph amino acid levels and overall locomotor activity. Altogether, we found that autophagosomes are formed during oogenesis and that the silencing of RpATG8 impairs autophagosome biogenesis in the oocytes. Nevertheless, regarding major macromolecule degradation and adaptations to the fitness costs imposed by triggering an immune response, we found that autophagic organelles are not essential for follicle atresia in R. prolixus. Follicular atresia is a phenomenon in response to environmental and physiological conditions in which female insects are able to signal the degeneration and resorption of their oocytes. It is crucial for the maintenance of female survival, as the energy stored in the developing oocytes can be reallocated allowing them to adapt to a stress condition. In the context of insect vectors of human diseases, such as flies, bugs and mosquitoes, the ability of the hematophagous female to interrupt oogenesis and reallocate its energy resources is strategic for safeguarding vector fitness. The cellular and molecular mechanisms that govern the oocytes degradation during atresia are mostly unknown. In this work, we found that a special degradation organelle, named autophagosome, is formed in the oocytes, and that these organelles are not needed for the oocytes to be degenerated during atresia in this insect. These findings are important in the context of vector population control as they provide us with knowledge regarding the vector’s specific molecular biology. Information such as these are important, as they can be used for the elaboration and design of novel population control strategies.
Collapse
|
6
|
Vieira PH, Bomfim L, Atella GC, Masuda H, Ramos I. Silencing of RpATG6 impaired the yolk accumulation and the biogenesis of the yolk organelles in the insect vector R. prolixus. PLoS Negl Trop Dis 2018; 12:e0006507. [PMID: 29768406 PMCID: PMC5973624 DOI: 10.1371/journal.pntd.0006507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/29/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
In oviparous animals, the egg yolk is synthesized by the mother in a major metabolic challenge, where the different yolk components are secreted to the hemolymph and delivered to the oocytes mostly by endocytosis. The yolk macromolecules are then stored in a wide range of endocytic-originated vesicles which are collectively referred to as yolk organelles and occupy most of the mature oocytes cytoplasm. After fertilization, the contents of these organelles are degraded in a regulated manner to supply the embryo cells with fundamental molecules for de novo synthesis. Yolk accumulation and its regulated degradation are therefore crucial for successful development, however, most of the molecular mechanisms involved in the biogenesis, sorting and degradation of targeted yolk organelles are still poorly understood. ATG6 is part of two PI3P-kinase complexes that can regulate the recruitment of the endocytic or the autophagy machineries. Here, we investigate the role of RpATG6 in the endocytosis of the yolk macromolecules and in the biogenesis of the yolk organelles in the insect vector Rhodnius prolixus. We found that vitellogenic females express high levels of RpATG6 in the ovaries, when compared to the levels detected in the midgut and fat body. RNAi silencing of RpATG6 resulted in yolk proteins accumulated in the vitellogenic hemolymph, as a consequence of poor uptake by the oocytes. Accordingly, the silenced oocytes are unviable, white (contrasting to the control pink oocytes), smaller (62% of the control oocyte volume) and accumulate only 40% of the yolk proteins, 80% of the TAG and 50% of the polymer polyphosphate quantified in control oocytes. The cortex of silenced oocytes present atypical smaller vesicles indicating that the yolk organelles were not properly formed and/or sorted, which was supported by the lack of endocytic vesicles near the plasma membrane of silenced oocytes as seen by TEM. Altogether, we found that RpATG6 is central for the mechanisms of yolk accumulation, emerging as an important target for further investigations on oogenesis and, therefore, reproduction of this vector.
Collapse
Affiliation(s)
- Priscila H. Vieira
- Laboratório de Bioquímica de Insetos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Bomfim
- Laboratório de Bioquímica de Insetos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia C. Atella
- Laboratório de Bioquímica de lipídeos e lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hatisaburo Masuda
- Laboratório de Bioquímica de Insetos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Laboratório de Bioquímica de Insetos, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Ramos CL, Gomes FM, Girard-Dias W, Almeida FP, Albuquerque PC, Kretschmer M, Kronstad JW, Frases S, de Souza W, Rodrigues ML, Miranda K. Phosphorus-rich structures and capsular architecture in Cryptococcus neoformans. Future Microbiol 2017; 12:227-238. [PMID: 28262043 DOI: 10.2217/fmb-2017-0060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM In this study, we aimed to analyze the relationship of phosphorus-rich structures with surface architecture in Cryptococcus neoformans. METHODS Phosphorus-rich structures in C. neoformans were analyzed by combining fluorescence microscopy, biochemical extraction, scanning electron microscopy, electron probe x-ray microanalysis and 3D reconstruction of high pressure frozen and freeze substituted cells by focused ion beam-scanning electron microscopy (FIB-SEM). RESULTS & CONCLUSION Intracellular and surface phosphorus-enriched structures were identified. These molecules were required for capsule assembly, as demonstrated in experiments using polysaccharide incorporation by capsule-deficient cells and mutants with defects in polyphosphate synthesis. The demonstration of intracellular and cell wall-associated polyphosphates in C. neoformans may lead to future studies involving their participation in both physiologic and pathogenic events.
Collapse
Affiliation(s)
- Caroline L Ramos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio M Gomes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wendell Girard-Dias
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Fernando P Almeida
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila C Albuquerque
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Matthias Kretschmer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - James W Kronstad
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Susana Frases
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcio L Rodrigues
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Kildare Miranda
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Docampo R, Huang G. Acidocalcisomes of eukaryotes. Curr Opin Cell Biol 2016; 41:66-72. [PMID: 27125677 DOI: 10.1016/j.ceb.2016.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 01/01/2023]
Abstract
Acidocalcisomes are organelles rich in polyphosphate and cations and acidified by proton pumps. Although they have also been described in prokaryotes they have been better characterized in unicellular and multicellular eukaryotes. Eukaryotic acidocalcisomes belong to the group of lysosome-related organelles. They have a variety of functions, from the storage of cations and phosphorus to calcium signaling, autophagy, osmoregulation, blood coagulation, and inflammation. Acidocalcisomes of several unicellular eukaryotes possess a variety of transporters, channels and pumps implying a large energetic requirement for their maintenance and suggesting other important functions waiting to be discovered.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Kim HJ, Suga K, Kim BM, Rhee JS, Lee JS, Hagiwara A. Light-dependent transcriptional events during resting egg hatching of the rotifer Brachionus manjavacas. Mar Genomics 2015; 20:25-31. [PMID: 25703093 DOI: 10.1016/j.margen.2015.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 01/30/2015] [Accepted: 02/06/2015] [Indexed: 11/26/2022]
Abstract
Rotifer resting eggs often have to endure harsh environmental conditions during the diapause phase. They are stimulated by light to hatch. In order to study the hatching mechanism, we observed resting eggs and measured their transcriptional expression under different light exposure periods (total darkness, and after 30 min, and 4h light). By using differential-display reverse transcription PCR (DDRT-PCR), we isolated 80 genes that displayed different expression patterns in response to the three light treatments: 20 genes were expressed in total darkness, 40 different genes were differentially expressed under 30 min light, and 20 further genes were expressed after 4h of light. The resting eggs showed no phenotypic differences in embryonic development during the 4h illumination period. In general, the expression patterns of the analyzed genes in resting eggs were differentially modulated by light exposure time. In total darkness, resting eggs mainly expressed genes encoding cell defense and homeostasis functions. In the 30 min illumination group, we found enriched expression of genes encoding fatty acid metabolism-related components, including Acyl-CoA dehydrogenase (ACAD). Genes encoding cellular and embryonic developmental functions were highly observed in the 30 min-illuminated group but were not observed in the 4h-illuminated group. Real-time RT-PCR revealed that several transcripts such as encoding V-type H(+)-translocating pyrophosphatase (V-PPase) and Meckelin had prolonged expression levels when exposed to light for 4h. In the 4h illuminated group, the RecQ protein-like 5 (RECQL5) gene was enriched. This RECQL5 gene may be expressed to protect the developing embryo from continuous light exposure. The data presented in this study indicate that DDRT-PCR-aided gene screening can be helpful to isolate candidate genes involved in the hatching process.
Collapse
Affiliation(s)
- Hee-Jin Kim
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan.
| | - Koushirou Suga
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| | - Bo-Mi Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 406-772, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Bunkyo 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
10
|
Huang G, Ulrich PN, Storey M, Johnson D, Tischer J, Tovar JA, Moreno SNJ, Orlando R, Docampo R. Proteomic analysis of the acidocalcisome, an organelle conserved from bacteria to human cells. PLoS Pathog 2014; 10:e1004555. [PMID: 25503798 PMCID: PMC4263762 DOI: 10.1371/journal.ppat.1004555] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/05/2014] [Indexed: 01/12/2023] Open
Abstract
Acidocalcisomes are acidic organelles present in a diverse range of organisms from bacteria to human cells. In this study acidocalcisomes were purified from the model organism Trypanosoma brucei, and their protein composition was determined by mass spectrometry. The results, along with those that we previously reported, show that acidocalcisomes are rich in pumps and transporters, involved in phosphate and cation homeostasis, and calcium signaling. We validated the acidocalcisome localization of seven new, putative, acidocalcisome proteins (phosphate transporter, vacuolar H+-ATPase subunits a and d, vacuolar iron transporter, zinc transporter, polyamine transporter, and acid phosphatase), confirmed the presence of six previously characterized acidocalcisome proteins, and validated the localization of five novel proteins to different subcellular compartments by expressing them fused to epitope tags in their endogenous loci or by immunofluorescence microscopy with specific antibodies. Knockdown of several newly identified acidocalcisome proteins by RNA interference (RNAi) revealed that they are essential for the survival of the parasites. These results provide a comprehensive insight into the unique composition of acidocalcisomes of T. brucei, an important eukaryotic pathogen, and direct evidence that acidocalcisomes are especially adapted for the accumulation of polyphosphate.
Collapse
Affiliation(s)
- Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Paul N Ulrich
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Melissa Storey
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Darryl Johnson
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Julie Tischer
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Javier A Tovar
- Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
11
|
Identification and characterization of an ecto-pyrophosphatase activity in intact epimastigotes of Trypanosoma rangeli. PLoS One 2014; 9:e106852. [PMID: 25203926 PMCID: PMC4159237 DOI: 10.1371/journal.pone.0106852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/09/2014] [Indexed: 02/06/2023] Open
Abstract
In this study, we performed the molecular and biochemical characterization of an ecto-enzyme present in Trypanosoma rangeli that is involved with the hydrolysis of extracellular inorganic pyrophosphate. PCR analysis identified a putative proton-pyrophosphatase (H+-PPase) in the epimastigote forms of T. rangeli. This protein was recognized with Western blot and flow cytometry analysis using an antibody against the H+-PPase of Arabidopsis thaliana. Immunofluorescence microscopy confirmed that this protein is located in the plasma membrane of T. rangeli. Biochemical assays revealed that the optimum pH for the ecto-PPase activity was 7.5, as previously demonstrated for other organisms. Sodium fluoride (NaF) and aminomethylenediphosphonate (AMDP) were able to inhibit approximately 75% and 90% of the ecto-PPase activity, respectively. This ecto-PPase activity was stimulated in a dose-dependent manner by MgCl2. In the presence of MgCl2, this activity was inhibited by millimolar concentrations of CaCl2. The ecto-PPase activity of T. rangeli decreased with increasing cell proliferation in vitro, thereby suggesting a role for this enzyme in the acquisition of inorganic phosphate (Pi). Moreover, this activity was modulated by the extracellular concentration of Pi and increased approximately two-fold when the cells were maintained in culture medium depleted of Pi. All of these results confirmed the occurrence of an ecto-PPase located in the plasma membrane of T. rangeli that possibly plays an important role in phosphate metabolism of this protozoan.
Collapse
|
12
|
Oliveira DMP, Gomes FM, Carvalho DB, Ramos I, Carneiro AB, Silva-Neto MAC, de Souza W, Lima APCA, Miranda K, Machado EA. Yolk hydrolases in the eggs of Anticarsia gemmatalis hubner (Lepidoptera: Noctuidae): a role for inorganic polyphosphate towards yolk mobilization. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1242-1249. [PMID: 24140472 DOI: 10.1016/j.jinsphys.2013.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 06/02/2023]
Abstract
Despite being the main insect pest on soybean crops in the Americas, very few studies have approached the general biology of the lepidopteran Anticarsia gemmatalis and there is a paucity of studies with embryo formation and yolk mobilization in this species. In the present work, we identified an acid phosphatase activity in the eggs of A. gemmatalis (agAP) that we further characterized by means of biochemistry and cell biology experiments. By testing several candidate substrates, this enzyme proved chiefly active with phosphotyrosine; in vitro assays suggested a link between agAP activity and dephosphorylation of egg yolk phosphotyrosine. We also detected strong activity with endogenous and exogenous short chain polyphosphates (PolyP), which are polymers of phosphate residues involved in a number of physiological processes. Both agAP activity and PolyP were shown to initially concentrate in small vesicles clearly distinct from typically larger yolk granules, suggesting subcellular compartmentalization. As PolyP has been implicated in inhibition of yolk proteases, we performed in vitro enzymatic assays with a cysteine protease to test whether it would be inhibited by PolyP. This cysteine protease is prominent in Anticarsia egg homogenates. Accordingly, short chain PolyP was a potent inhibitor of cysteine protease. We thereby suggest that PolyP hydrolysis by agAP is a triggering mechanism of yolk mobilization in A. gemmatalis.
Collapse
Affiliation(s)
- Danielle M P Oliveira
- Laboratório de Entomologia Médica, Programa de Parasitologia e Biologia Celular, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro CEP 21941-590, RJ, Brazil; Departamento de Bioquímica, Instituto de Química, Centro de Ciências da Matemática e Natureza, UFRJ, Cidade Universitária, Rio de Janeiro CEP 21941-909, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gomes FM, Ramos IB, Wendt C, Girard-Dias W, De Souza W, Machado EA, Miranda K. New insights into the in situ microscopic visualization and quantification of inorganic polyphosphate stores by 4',6-diamidino-2-phenylindole (DAPI)-staining. Eur J Histochem 2013; 57:e34. [PMID: 24441187 PMCID: PMC3896036 DOI: 10.4081/ejh.2013.e34] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/22/2013] [Accepted: 09/24/2013] [Indexed: 01/10/2023] Open
Abstract
Inorganic polyphosphate (PolyP) is a biological polymer that plays important roles in the cell physiology of both prokaryotic and eukaryotic organisms. Among the available methods for PolyP localization and quantification, a 4',6-diamidino-2-phenylindole(DAPI)-based assay has been used for visualization of PolyP-rich organelles. Due to differences in DAPI permeability to different compartments and/or PolyP retention after fixation, a general protocol for DAPI-PolyP staining has not yet been established. Here, we tested different protocols for DAPI-PolyP detection in a range of samples with different levels of DAPI permeability, including subcellular fractions, free-living cells and cryosections of fixed tissues. Subcellular fractions of PolyP-rich organelles yielded DAPI-PolyP fluorescence, although those with a complex external layer usually required longer incubation times, previous aldehyde fixation and/or detergent permeabilization. DAPI-PolyP was also detected in cryosections of OCT-embedded tissues analyzed by multi-photon microscopy. In addition, a semi-quantitative fluorimetric analysis of DAPI-stained fractions showed PolyP mobilization in a similar fashion to what has been demonstrated with the use of enzyme-based quantitative protocols. Taken together, our results support the use of DAPI for both PolyP visualization and quantification, although specific steps are suggested as a general guideline for DAPI-PolyP staining in biological samples with different degrees of DAPI and PolyP permeability.
Collapse
Affiliation(s)
- F M Gomes
- Universidade Federal do Rio de Janeiro.
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang Y, Jin S, Wang M, Zhu L, Zhang X. Isolation and characterization of a conserved domain in the eremophyte H+-PPase family. PLoS One 2013; 8:e70099. [PMID: 23922918 PMCID: PMC3726567 DOI: 10.1371/journal.pone.0070099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/14/2013] [Indexed: 11/24/2022] Open
Abstract
H+-translocating inorganic pyrophosphatases (H+-PPase) were recognized as the original energy donors in the development of plants. A large number of researchers have shown that H+-PPase could be an early-originated protein that participated in many important biochemical and physiological processes. In this study we cloned 14 novel sequences from 7 eremophytes: Sophora alopecuroid (Sa), Glycyrrhiza uralensis (Gu), Glycyrrhiza inflata (Gi), Suaeda salsa (Ss), Suaeda rigida (Sr), Halostachys caspica (Hc), and Karelinia caspia (Kc). These novel sequences included 6 ORFs and 8 fragments, and they were identified as H+-PPases based on the typical conserved domains. Besides the identified domains, sequence alignment showed that there still were two novel conserved motifs. A phylogenetic tree was constructed, including the 14 novel H+-PPase amino acid sequences and the other 34 identified H+-PPase protein sequences representing plants, algae, protozoans and bacteria. It was shown that these 48 H+-PPases were classified into two groups: type I and type II H+-PPase. The novel 14 eremophyte H+-PPases were classified into the type I H+-PPase. The 3D structures of these H+-PPase proteins were predicted, which suggested that all type I H+-PPases from higher plants and algae were homodimers, while other type I H+-PPases from bacteria and protozoans and all type II H+-PPases were monomers. The 3D structures of these novel H+-PPases were homodimers except for SaVP3, which was a monomer. This regular structure could provide important evidence for the evolutionary origin and study of the relationship between the structure and function among members of the H+-PPase family.
Collapse
Affiliation(s)
- Yanqin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science, Tarim University, Alaer, Xinjiang, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
15
|
New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:69-113. [PMID: 23890380 DOI: 10.1016/b978-0-12-407695-2.00002-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While free-living protists are usually subjected to hyposmotic environments, parasitic protists are also in contact with hyperosmotic habitats. Recent work in one of these parasites, Trypanosoma cruzi, has revealed that its contractile vacuole complex, which usually collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress, has also a role in cell shrinking when the cells are submitted to hyperosmotic stress. Trypanosomes also have an acidic calcium store rich in polyphosphate (polyP), named the acidocalcisome, which is involved in their response to osmotic stress. Here, we review newly emerging insights on the role of acidocalcisomes and the contractile vacuole complex in the cellular response to hyposmotic and hyperosmotic stresses. We also review the current state of knowledge on the composition of these organelles and their other roles in calcium homeostasis and protein trafficking.
Collapse
|
16
|
Gomes FM, Carvalho DB, Peron AC, Saito K, Miranda K, Machado EA. Inorganic polyphosphates are stored in spherites within the midgut of Anticarsia gemmatalis and play a role in copper detoxification. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:211-219. [PMID: 21946413 DOI: 10.1016/j.jinsphys.2011.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 09/13/2011] [Accepted: 09/13/2011] [Indexed: 05/31/2023]
Abstract
Inorganic polyphosphates (PolyP) are widespread molecules that have been shown to play a role in metal detoxification and heavy-metal tolerance. In the present report, we investigated the functional role of spherites as PolyP-metal binding stores in epithelial cells of the midgut of Anticarsia gemmatalis, a lepidopteran pest of soybean. PolyP stores were detected by DAPI staining and indirect immunohistochemistry as vesicles distributed in columnar cells and around goblet cell cavities. These PolyP vesicles were identified as spherites by their elemental profile in cell lysates that were partially modulated by P- or V-ATPases. PolyP levels along the midgut were detected using a recombinant exopolyphosphatase assay. When copper was added in the diet of larva, copper detection in spherites by X-ray microanalysis correlated with an increase in the relative phosphorous X-ray signal and with an increase in PolyP levels in epithelia cell lysate. Transmission electron microscopy of chemically fixed or cryofixed and freeze substituted tissues confirmed a preferential localization of spherites around the goblet cell cavity. Taken together, these results suggest that spherites store high levels of PolyP that are modulated during metal uptake and detoxification. The similarity between PolyP granules and spherites herein described also suggest that PolyP is one of the main phosphorous source of spherites found in different biological models. This suggests physiological roles played by spherites in the midgut of arthropods and mechanisms involved in heavy metal resistance among different insect genera.
Collapse
Affiliation(s)
- F M Gomes
- Laboratório de Entomologia Médica, Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Ramos I, Gomes F, Koeller CM, Saito K, Heise N, Masuda H, Docampo R, de Souza W, Machado EA, Miranda K. Acidocalcisomes as calcium- and polyphosphate-storage compartments during embryogenesis of the insect Rhodnius prolixus Stahl. PLoS One 2011; 6:e27276. [PMID: 22096545 PMCID: PMC3214050 DOI: 10.1371/journal.pone.0027276] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/12/2011] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The yolk of insect eggs is a cellular domain specialized in the storage of reserve components for embryo development. The reserve macromolecules are stored in different organelles and their interactions with the embryo cells are mostly unknown. Acidocalcisomes are lysosome-related organelles characterized by their acidic nature, high electron density and large content of polyphosphate bound to several cations. In this work, we report the presence of acidocalcisome-like organelles in eggs of the insect vector Rhodnius prolixus. METHODOLOGY/PRINCIPAL FINDINGS Characterization of the elemental composition of electron-dense vesicles by electron probe X-ray microanalysis revealed a composition similar to that previously described for acidocalcisomes. Following subcellular fractionation experiments, fractions enriched in acidocalcisomes were obtained and characterized. Immunofluorescence showed that polyphosphate polymers and the vacuolar proton translocating pyrophosphatase (V-H(+)-PPase, considered as a marker for acidocalcisomes) are found in the same vesicles and that these organelles are mainly localized in the egg cortex. Polyphosphate quantification showed that acidocalcisomes contain a significant amount of polyphosphate detected at day-0 eggs. Elemental analyses of the egg fractions showed that 24.5±0.65% of the egg calcium are also stored in such organelles. During embryogenesis, incubation of acidocalcisomes with acridine orange showed that these organelles are acidified at day-3 (coinciding with the period of yolk mobilization) and polyphosphate quantification showed that the levels of polyphosphate tend to decrease during early embryogenesis, being approximately 30% lower at day-3 compared to day-0 eggs. CONCLUSIONS We found that acidocalcisomes are present in the eggs and are the main storage compartments of polyphosphate and calcium in the egg yolk. As such components have been shown to be involved in a series of dynamic events that may control embryo growth, results reveal the potential involvement of a novel organelle in the storage and mobilization of inorganic elements to the embryo cells.
Collapse
Affiliation(s)
- Isabela Ramos
- Intituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Gomes
- Intituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina M. Koeller
- Intituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katsuharu Saito
- Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano, Japan
| | - Norton Heise
- Intituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hatisaburo Masuda
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Docampo
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Wanderley de Souza
- Intituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Diretoria de Programas, Instituto Nacional de Metrologia Normalização e Qualidade Industrial, Xerém, Brazil
| | - Ednildo A. Machado
- Intituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Diretoria de Programas, Instituto Nacional de Metrologia Normalização e Qualidade Industrial, Xerém, Brazil
| | - Kildare Miranda
- Intituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Diretoria de Programas, Instituto Nacional de Metrologia Normalização e Qualidade Industrial, Xerém, Brazil
| |
Collapse
|
18
|
Seufferheld MJ, Kim KM, Whitfield J, Valerio A, Caetano-Anollés G. Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome. Biol Direct 2011; 6:50. [PMID: 21974828 PMCID: PMC3198990 DOI: 10.1186/1745-6150-6-50] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/05/2011] [Indexed: 01/08/2023] Open
Abstract
Background Volutin granules appear to be universally distributed and are morphologically and chemically identical to acidocalcisomes, which are electron-dense granular organelles rich in calcium and phosphate, whose functions include storage of phosphorus and various metal ions, metabolism of polyphosphate, maintenance of intracellular pH, osmoregulation and calcium homeostasis. Prokaryotes are thought to differ from eukaryotes in that they lack membrane-bounded organelles. However, it has been demonstrated that as in acidocalcisomes, the calcium and polyphosphate-rich intracellular "volutin granules (polyphosphate bodies)" in two bacterial species, Agrobacterium tumefaciens, and Rhodospirillum rubrum, are membrane bound and that the vacuolar proton-translocating pyrophosphatases (V-H+PPases) are present in their surrounding membranes. Volutin granules and acidocalcisomes have been found in organisms as diverse as bacteria and humans. Results Here, we show volutin granules also occur in Archaea and are, therefore, present in the three superkingdoms of life (Archaea, Bacteria and Eukarya). Molecular analyses of V-H+PPase pumps, which acidify the acidocalcisome lumen and are diagnostic proteins of the organelle, also reveal the presence of this enzyme in all three superkingdoms suggesting it is ancient and universal. Since V-H+PPase sequences contained limited phylogenetic signal to fully resolve the ancestral nodes of the tree, we investigated the divergence of protein domains in the V-H+PPase molecules. Using Protein family (Pfam) database, we found a domain in the protein, PF03030. The domain is shared by 31 species in Eukarya, 231 in Bacteria, and 17 in Archaea. The universal distribution of the V-H+PPase PF03030 domain, which is associated with the V-H+PPase function, suggests the domain and the enzyme were already present in the Last Universal Common Ancestor (LUCA). Conclusion The importance of the V-H+PPase function and the evolutionary dynamics of these domains support the early origin of the acidocalcisome organelle. In particular, the universality of volutin granules and presence of a functional V-H+PPase domain in the three superkingdoms of life reveals that the acidocalcisomes may have appeared earlier than the divergence of the superkingdoms. This result is remarkable and highlights the possibility that a high degree of cellular compartmentalization could already have been present in the LUCA. Reviewers This article was reviewed by Anthony Poole, Lakshminarayan Iyer and Daniel Kahn
Collapse
Affiliation(s)
- Manfredo J Seufferheld
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | | | | | | | | |
Collapse
|
19
|
Abstract
Acidocalcisomes are acidic organelles containing calcium and a high concentration of phosphorus in the form of pyrophosphate (PP(i)) and polyphosphate (poly P). Organelles with these characteristics have been found from bacteria to human cells implying an early appearance and persistence over evolutionary time or their appearance by convergent evolution. Acidification of the organelles is driven by the presence of vacuolar proton pumps, one of which, the vacuolar proton pyrophosphatase, is absent in animals, where it is substituted by a vacuolar proton ATPase. A number of other pumps, antiporters, and channels have been described in acidocalcisomes of different species and are responsible for their internal content. Enzymes involved in the synthesis and degradation of PP(i) and poly P are present within the organelle. Acidocalcisomes function as storage sites for cations and phosphorus, and participate in PP(i) and poly P metabolism, calcium homeostasis, maintenance of intracellular pH, and osmoregulation. Experiments in which the acidocalcisome Ca(2+)-ATPase of different parasites were downregulated or eliminated, or acidocalcisome Ca(2+) was depleted revealed the importance of this store in Ca(2+) signaling needed for host invasion and virulence. Acidocalcisomes interact with other organelles in a number of organisms suggesting their association with the endosomal/lysosomal pathway, and are considered part of the lysosome-related group of organelles.
Collapse
|
20
|
Calcium- and polyphosphate-containing acidic granules of sea urchin eggs are similar to acidocalcisomes, but are not the targets for NAADP. Biochem J 2010; 429:485-95. [PMID: 20497125 PMCID: PMC2907711 DOI: 10.1042/bj20091956] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acidocalcisomes are acidic calcium-storage compartments described from bacteria to humans and characterized by their high content in poly P (polyphosphate), a linear polymer of many tens to hundreds of Pi residues linked by high-energy phosphoanhydride bonds. In the present paper we report that millimolar levels of short-chain poly P (in terms of Pi residues) and inorganic PPi are present in sea urchin extracts as detected using 31P-NMR, enzymatic determinations and agarose gel electrophoresis. Poly P was localized to granules randomly distributed in the sea urchin eggs, as shown by labelling with the poly-P-binding domain of Escherichia coli exopolyphosphatase. These granules were enriched using iodixanol centrifugation and shown to be acidic and to contain poly P, as determined by Acridine Orange and DAPI (4',6'-diamidino-2-phenylindole) staining respectively. These granules also contained large amounts of calcium, sodium, magnesium, potassium and zinc, as detected by X-ray microanalysis, and bafilomycin A1-sensitive ATPase, pyrophosphatase and exopolyphosphatase activities, as well as Ca2+/H+ and Na+/H+ exchange activities, being therefore similar to acidocalcisomes described in other organisms. Calcium release from these granules induced by nigericin was associated with poly P hydrolysis. Although NAADP (nicotinic acid-adenine dinucleotide phosphate) released calcium from the granule fraction, this activity was not significantly enriched as compared with the NAADP-stimulated calcium release from homogenates and was not accompanied by poly P hydrolysis. GPN (glycyl-L-phenylalanine-naphthylamide) released calcium when added to sea urchin homogenates, but was unable to release calcium from acidocalcisome-enriched fractions, suggesting that these acidic stores are not the targets for NAADP.
Collapse
|
21
|
Abstract
BACKGROUND INFORMATION Poly P (inorganic polyphosphate) is a polymer formed by P(i) residues linked by high-energy phosphoanhydride bonds. The presence of poly P in bacteria, fungi, algae and protists has been widely recognized, but the distribution of poly P in more complex eukaryotes has been poorly studied. Poly P accumulates, together with calcium, in acidic vesicles or acidocalcisomes in a number of organisms and possesses a diverse array of functions, including roles in stress response, blood clotting, inflammation, calcification, cell proliferation and apoptosis. RESULTS We report here that a considerable amount of phosphorus in the yolk of chicken eggs is in the form of poly P. DAPI (4',6-diamidino-2-phenylindole) staining showed that poly P is localized mainly in electron-dense vesicles located inside larger vacuoles (compound organelles) that are randomly distributed in the yolk. These internal vesicles were shown to contain calcium, potassium, sodium, magnesium, phosphorus, chlorine, iron and zinc, as detected by X-ray microanalysis and elemental mapping. These vesicles stain with the acidophilic dye Acridine Orange. The presence of poly P in organellar fractions of the egg yolk was evident in agarose gels stained with Toluidine Blue and DAPI. Of the total phosphate (Pi) of yolk organelles, 16% is present in the form of poly P. Total poly P content was not altered during the first 4 days of embryogenesis, but poly P chain length decreased after 1 day of development. CONCLUSIONS The results of the present study identify a novel organelle in chicken egg yolk comprising acidic vesicles with a morphology, physiology and composition similar to those of acidocalcisomes, within larger acidic vacuoles. The elemental composition of these acidocalcisomes is proportionally similar to the elemental composition of the yolk, suggesting that most of these elements are located in these organelles, which might be an important storage compartment in eggs.
Collapse
|
22
|
Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends Cell Biol 2010; 20:277-86. [PMID: 20303271 DOI: 10.1016/j.tcb.2010.02.003] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/08/2010] [Accepted: 02/11/2010] [Indexed: 12/18/2022]
Abstract
Changes in cytosolic calcium concentration are crucial for a variety of cellular processes in all cells. It has long been appreciated that calcium is stored and released from intracellular calcium stores such as the endoplasmic reticulum. However, emerging evidence indicates that calcium is also dynamically regulated by a seemingly disparate collection of acidic organelles. In this paper, we review the defining features of these 'acidic calcium stores' and highlight recent progress in understanding the mechanisms of uptake and release of calcium from these stores. We also examine the nature of calcium buffering within the stores, and summarize the physiological and pathophysiological significance of these ubiquitous organelles in calcium signaling.
Collapse
|