1
|
Devilliers J, Marshall H, Warren B, Kyriacou CP, Araripe LO, Bruno RV, Rosato E, Feuda R. Molecular correlates of swarming behaviour in Aedes aegypti males. Biol Lett 2024; 20:20240245. [PMID: 39471837 PMCID: PMC11521606 DOI: 10.1098/rsbl.2024.0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024] Open
Abstract
Mosquitoes are the deadliest vectors of diseases. They impose a huge health burden on human populations spreading parasites as disparate as protozoans (malaria), viruses (yellow fever and more) and nematodes (filariasis) that cause life-threatening conditions. In recent years, mating has been proposed as a putative target for population control. Mosquitoes mate mid-air, in swarms initiated by males and triggered by a combination of internal and external stimuli. As the number of females in a swarm is limited, there is intense competition among males, and they 'retune' their physiology for this demanding behaviour. There is limited knowledge on the 'genetic reprogramming' required to enable swarming. Interestingly, recent evidence indicates that the upregulation of circadian clock genes may be involved in the swarming of malaria mosquitoes of the genus Anopheles. Here, we use whole-head RNA-seq to identify gene expression changes in Aedes aegypti males that are engaged in swarming in a laboratory setting. Our results suggest that in preparation to swarming, males tend to lower some housekeeping functions while increasing remodelling of the cytoskeleton and neuronal connectivity; the transcription of circadian clock genes is unaffected.
Collapse
Affiliation(s)
- Julien Devilliers
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Hollie Marshall
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Ben Warren
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Charalambos P. Kyriacou
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Luciana O. Araripe
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Rafaela V. Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ezio Rosato
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| | - Roberto Feuda
- Neurogenetics Group,University of Leicester, Leicester, UK
- Department of Genetics,Genomics & Cancer Sciences, College of Life Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
2
|
Cruz LNPD, Teles-de-Freitas R, Resck MEB, Fonseca ABDA, Padilha KP, Farnesi LC, Araripe LO, Bruno RV. Light and dark cycles modify the expression of clock genes in the ovaries of Aedes aegypti in a noncircadian manner. PLoS One 2023; 18:e0287237. [PMID: 37856474 PMCID: PMC10586701 DOI: 10.1371/journal.pone.0287237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/02/2023] [Indexed: 10/21/2023] Open
Abstract
Circadian oscillators (i.e., circadian clocks) are essential to producing the circadian rhythms observed in virtually all multicellular organisms. In arthropods, many rhythmic behaviors are generated by oscillations of the central pacemaker, specific groups of neurons of the protocerebrum in which the circadian oscillator molecular machinery is expressed and works; however, oscillators located in other tissues (i.e., peripheral clocks) could also contribute to certain rhythms, but are not well known in non-model organisms. Here, we investigated whether eight clock genes that likely constitute the Aedes aegypti clock are expressed in a circadian manner in the previtellogenic ovaries of this mosquito. Also, we asked if insemination by conspecific males would alter the expression profiles of these clock genes. We observed that the clock genes do not have a rhythmic expression profile in the ovaries of virgin (VF) or inseminated (IF) females, except for period, which showed a rhythmic expression profile in ovaries of IF kept in light and dark (LD) cycles, but not in constant darkness (DD). The mean expression of seven clock genes was affected by the insemination status (VF or IF) or the light condition (LD 12:12 or DD), among which five were affected solely by the light condition, one solely by the insemination status, and one by both factors. Our results suggest that a functional circadian clock is absent in the ovaries of A. aegypti. Still, their differential mean expression promoted by light conditions or insemination suggests roles other than circadian rhythms in this mosquito's ovaries.
Collapse
Affiliation(s)
| | - Rayane Teles-de-Freitas
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro- RJ, Brazil
| | - Maria Eduarda Barreto Resck
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro- RJ, Brazil
| | | | - Karine Pedreira Padilha
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro- RJ, Brazil
| | - Luana Cristina Farnesi
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro- RJ, Brazil
| | - Luciana Ordunha Araripe
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro- RJ, Brazil
| | - Rafaela Vieira Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro- RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), CNPq, Rio de Janeiro- RJ, Brazil
| |
Collapse
|
3
|
Chen SP, Wang DF, Ma WF, Lin XL, Yang G. Knockout of cryptochrome 1 disturbs the locomotor circadian rhythm and development of Plutella xylostella. INSECT SCIENCE 2022. [PMID: 36380712 DOI: 10.1111/1744-7917.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Cryptochrome 1 (CRY1) functions as a light-responsive photoreceptor, which is crucial for circadian rhythms. The identity and function of CRY1 in Plutella xylostella remain unknown. In this study, cry1 was cloned and identified in P. xylostella. Then, a cry1-knockout strain (Cry1-KO) of P. xylostella with a 2-bp deletion was established from the strain Geneva 88 (G88) using the CRISPR/Cas9 technology. No daily temporal oscillation of cry1 was observed in G88 and Cry1-KO, and cry1 mean daily transcription of Cry1-KO was lower than that of G88. Both G88 and Cry1-KO demonstrated rhythmic locomotion under the light/dark condition with Cry1-KO being more active than G88 in the daytime, whereas Cry1-KO completely lost rhythmicity under constant darkness. The developmental period of pre-adult of Cry1-KO was longer than that of G88; the lifespan of the Cry1-KO male adult was shorter than that of G88; the fecundity of Cry1-KO was lower than that of G88; and Cry1-KO showed lower intrinsic rate of increase (r), net reproduction rate (R0 ), finite increase rate (λ), and longer mean generation time (T) than G88. Our results indicate that cry1 is involved in the regulation of locomotor circadian rhythm and development in P. xylostella, providing a potential target gene for controlling the pest and a basis for further investigation on circadian rhythms in lepidopterans.
Collapse
Affiliation(s)
- Shao-Ping Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Dan-Feng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Wei-Feng Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xiao-Lu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Center for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| |
Collapse
|
4
|
Xu JW, Li LL, Wang M, Yang HH, Yao WC, Dewer Y, Zhu XY, Zhang YN. Identification and dynamic expression profiling of circadian clock genes in Spodoptera litura provide new insights into the regulation of sex pheromone communication. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:78-90. [PMID: 35225175 DOI: 10.1017/s0007485321000559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spodoptera litura is an important pest that causes significant economic damage to numerous crops worldwide. Sex pheromones (SPs) mediate sexual communication in S. litura and show a characteristic degree of rhythmic activity, occurring mainly during the scotophase; however, the specific regulatory mechanisms remain unclear. Here, we employed a genome-wide analysis to identify eight candidate circadian clock genes in S. litura. Sequence characteristics and expression patterns were analyzed. Our results demonstrated that some circadian clock genes might regulate the biosynthesis and perception of SPs by regulating the rhythmic expression of SP biosynthesis-related genes and SP perception-related genes. Interestingly, all potential genes exhibited peak expression in the scotophase, consistent with the SP could mediate courtship and mating behavior in S. litura. Our findings are helpful in elucidating the molecular mechanism by which circadian clock genes regulate sexual communication in S. litura.
Collapse
Affiliation(s)
- Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Meng Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Hui-Hui Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki12618, Giza, Egypt
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| |
Collapse
|
5
|
Hiroyoshi S, Mitsunaga T, Ganaha-Kikumura T, Reddy GVP. Effects of Age, Phase Variation and Pheromones on Male Sperm Storage in the Desert Locust, Schistocerca gregaria. INSECTS 2021; 12:insects12070642. [PMID: 34357302 PMCID: PMC8307635 DOI: 10.3390/insects12070642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary We investigated male sperm storage in the desert locust Schistocerca gregaria. Phase (solitary or gregarious) did not affect sperm distribution in the vas deferens and seminal vesicle, whereas sperm accumulation of the seminal vesicle in gregarious locusts was promoted more than in solitary ones. Pheromones received from neither mature adults nor nymphs affected sperm distribution in the vas deferens and seminal vesicle. However, sperm accumulation in the seminal vesicle was more promoted in the gregarious locusts which received pheromones from mature adults than those obtained from nymphs at early adult stage, especially seven days after adult emergence. Abstract In general, sperm produced in the testis are moved into the seminal vesicle via the vas deferens in insects, where they are stored. How this sperm movement is controlled is less well understood in locusts or grasshoppers. In this study, the effects of age, phase variation and pheromones on male sperm storage were investigated in the desert locust, Schistocerca gregaria (Forskål). In this locust, a pair of ducts, the vasa deferentia, connect the testes to a pair of the long, slender seminal vesicles that are folded approximately thirty times, and where the sperm are stored. We found that phase variation affected the level of sperm storage in the seminal vesicle. Moreover, adult males that detected pheromones emitted by mature adult males showed enhanced sperm storage compared with males that received the pheromones emitted from nymphs: The former, adult male pheromones are known to promote sexual maturation of immature adults of both sexes, whereas the latter, nymphal pheromones delay sexual maturation. Most mature adult males had much sperm in the vasa deferentia at all times examined, suggesting daily sperm movement from the testes to the seminal vesicles via the vasa deferentia. As adult males aged, sperm were accumulated from the proximal part to the distal end of the seminal vesicle. Many sperm remained in the seminal vesicle after mating. These results suggest that young or new sperm located near the proximal part of the seminal vesicle could be used for mating, whereas old sperm not used for mating are stored in the distal part of the seminal vesicle.
Collapse
Affiliation(s)
- Satoshi Hiroyoshi
- Department of Chemical Ecology, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi P.O. Box 30772-00100, Kenya
- Independent Researcher, Kawagoe 350-1115, Saitama, Japan
- Correspondence:
| | - Takayuki Mitsunaga
- Institute of Plant Protection National Agriculture and Food Research Organization, 2-1-18 Kannondai, Tsukuba 305-8602, Ibaraki, Japan;
| | | | - Gadi V. P. Reddy
- USDA-ARS-Southern Insect Management Research Unit, 141 Experiment Station Road, P.O. Box 346, Stoneville, MS 38776, USA;
| |
Collapse
|
6
|
Fu C, Li F, Wang L, Li T. Molecular insights into ovary degeneration induced by environmental factors in female oriental river prawns Macrobrachium nipponense. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 253:882-888. [PMID: 31349197 DOI: 10.1016/j.envpol.2019.07.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/17/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
The oriental river prawn, Macrobrachium nipponense, is an important breeding species in China. The ovary development of this prawn is regulated by the genetic factors and external environmental factors and has obvious seasonal regularity. However, the molecular mechanism of regulating ovary degradation in M. nipponense remains unclear. To address this issue, we performed transcriptome sequencing and gene expression analyses of eyestalks, cerebral ganglia (CG) and thoracic ganglia (TG) of female M. nipponense between the full ovary stage and degenerate ovary stage. Differentially expressed genes enrichment analysis results identified several important pathways such as "phototransduction-fly," "circadian rhythm-fly" and "steroid hormone biosynthesis secretion." In the period of ovarian degeneration, the expressions of Tim, Per2 and red pigment concentration hormone (RPCH) were significantly decreased in the eyestalk, CG and TG. And expression of 7 genes in the steroid synthesis pathway, including steryl-sulfatase, cytochrome P450 family 1 subfamily A polypeptide 1, estradiol 17β-dehydrogenase 2, glucuronosyltransferase, 3-oxo-5-alpha-steroid 4-dehydrogenase 1, estradiol 17-dehydrogenase 1 and estrone sulfotransferase was significantly decreased in the CG. Food and light signals affect the expression of clock genes and thereby decrease the expression of RPCH and the estradiol synthesis-related genes in the nervous system, which may be the main cause of ovarian degeneration in M. nipponense. The results will contribute to a better understanding of the molecular mechanisms of ovarian development regulation in crustaceans.
Collapse
Affiliation(s)
- Chunpeng Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China.
| | - Fajun Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China
| | - Lifang Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China
| | - Tingting Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang 262700, China
| |
Collapse
|
7
|
Weger BD, Rawashdeh O, Gachon F. At the Intersection of Microbiota and Circadian Clock: Are Sexual Dimorphism and Growth Hormones the Missing Link to Pathology? Bioessays 2019; 41:e1900059. [DOI: 10.1002/bies.201900059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/28/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Benjamin D. Weger
- Institute of Bioengineering, School of Life SciencesEcole Polytechnique Fédérale de LausanneLausanne CH‐1015 Switzerland
| | - Oliver Rawashdeh
- School of Biomedical Science, Faculty of MedicineThe University of QueenslandSt. Lucia QLD‐4072 Australia
| | - Frédéric Gachon
- Institute for Molecular BioscienceThe University of QueenslandSt. Lucia QLD‐4072 Australia
| |
Collapse
|
8
|
Jiang YD, Yuan X, Bai YL, Wang GY, Zhou WW, Zhu ZR. Knockdown of timeless Disrupts the Circadian Behavioral Rhythms in Laodelphax striatellus (Hemiptera: Delphacidae). ENVIRONMENTAL ENTOMOLOGY 2018; 47:1216-1225. [PMID: 30059997 DOI: 10.1093/ee/nvy095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Indexed: 06/08/2023]
Abstract
Most living organisms developed the innate clock system to anticipate daily environmental changes and to enhance their chances of survival. timeless (tim) is a canonical clock gene. It has been extensively studied in Drosophila melanogaster (Diptera: Drosophilidae) as a key component of the endogenous circadian clock, but its role is largely unknown in some agriculture pests. Laodelphax striatellus (Fallén) (Hemiptera: Delphacidae), an important rice pest, exhibits a robust locomotor rhythm. In the present study, we cloned tim gene (ls-tim) from L. striatellus and investigated its function in the regulation of behavioral rhythms. Quantitative real-time polymerase chain reaction revealed a circadian expression pattern of ls-tim under different light conditions with a trough in the photophase and a peak in the late scotophase. After the knockdown of ls-tim via RNA interference (RNAi), the adults showed an earlier onset of locomotor activity under light/dark cycles and became arrhythmic in constant darkness. ls-tim RNAi also abolished the timing of adult emergence that normally occurs in the early photophase. These results suggest that ls-tim is essential for the light-entrained circadian rhythms in L. striatellus and provide more insights into the endogenous clock network underlying the behavioral and physiological rhythms of this insect.
Collapse
Affiliation(s)
- Yan-Dong Jiang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xin Yuan
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yue-Liang Bai
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Gui-Yao Wang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Li CJ, Yun XP, Yu XJ, Li B. Functional analysis of the circadian clock gene timeless in Tribolium castaneum. INSECT SCIENCE 2018; 25:418-428. [PMID: 28101904 DOI: 10.1111/1744-7917.12441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/18/2016] [Accepted: 12/24/2016] [Indexed: 06/06/2023]
Abstract
Circadian rhythms are endogenous oscillations with a period of about 24 h driven by a circadian clock. So far, variable oscillators have been found in insects. To explore the circadian clock of Tribolium castaneum, we cloned the clock gene timeless (Tctimeless). Its open reading frame is 3240 bp in length and consists of 10 exons. Tctimeless is highly expressed in the late pupal stage. Tissue-specific expression analysis in late adult stages revealed high expression of Tctimeless in the head, epidermis, fat body and accessory glands. Silencing of Tctimeless by RNA interference (RNAi) at the late larval stages caused a failure to initiate eclosion. Tctimeless knockdown in late pupal stages led to a gender-independent decline in egg production and progeny survival. As a core clock gene, Tctimeless exhibited one expression peak in the middle of the circadian day. Knockdown of Tctimeless disrupted daily expression patterns of Tccycle, Tcclock, Tcperiod and itself, while Tctimeless and Tcperiod expression patterns over the circadian day were also perturbed when Tccycle or Tcclock is suppressed by RNAi. This study identified a complex transcriptional relationship among circadian clock genes in T. castaneum.
Collapse
Affiliation(s)
- Cheng-Jun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Xiao-Pei Yun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiao-Juan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
10
|
Chapman EC, O’Dell AR, Meligi NM, Parsons DR, Rotchell JM. Seasonal expression patterns of clock-associated genes in the blue mussel Mytilus edulis. Chronobiol Int 2017; 34:1300-1314. [DOI: 10.1080/07420528.2017.1363224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Emma C. Chapman
- School of Environmental Sciences, University of Hull, Hull, UK
| | | | - Noha M. Meligi
- Zoology Department, Faculty of Science, Minia University, Minia, Egypt
| | | | | |
Collapse
|
11
|
Kang K, Yang P, Pang R, Yue L, Zhang W. Cycle affects imidacloprid efficiency by mediating cytochrome P450 expression in the brown planthopper Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2017; 26:522-529. [PMID: 28543984 DOI: 10.1111/imb.12313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Circadian clocks influence most behaviours and physiological activities in animals, including daily fluctuations in metabolism. However, how the clock gene cycle influences insects' responses to pesticides has rarely been reported. Here, we provide evidence that cycle affects imidacloprid efficacy by mediating the expression of cytochrome P450 genes in the brown planthopper (BPH) Nilaparvata lugens, a serious insect pest of rice. Survival bioassays showed that the susceptibility of BPH adults to imidacloprid differed significantly between the two time points tested [Zeitgeber Time 8 (ZT8) and ZT4]. After cloning the cycle gene in the BPH (Nlcycle), we found that Nlcycle was expressed at higher levels in the fat body and midgut, and its expression was rhythmic with two peaks. Knockdown of Nlcycle affected the expression levels and rhythms of cytochrome P450 genes as well as susceptibility to imidacloprid. The survival rates of BPH adults after treatment with imidacloprid did not significantly differ between ZT4 and ZT8 after double-stranded Nlcycle treatment. These findings can be used to improve pesticide use and increase pesticide efficiency in the field.
Collapse
Affiliation(s)
- K Kang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - P Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - R Pang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - L Yue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - W Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Chen S, Qiao H, Fu H, Sun S, Zhang W, Jin S, Gong Y, Jiang S, Xiong W, YanWu. Molecular cloning, characterization, and temporal expression of the clock genes period and timeless in the oriental river prawn Macrobrachium nipponense during female reproductive development. Comp Biochem Physiol A Mol Integr Physiol 2017; 207:43-51. [PMID: 28192242 DOI: 10.1016/j.cbpa.2017.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
The circadian clock is crucial for sustaining rhythmic biochemical, physiological, and behavioral processes in living creatures. In this study, we isolated and characterized two circadian clock genes in Macrobrachium nipponense, period (Mnper) and timeless (Mntim). The complete Mnper cDNA measures 4283bp in length with an open reading frame encoding 1292 amino acids, including functional domains such as PER-ARNT-SIM (PAS), cytoplasmic localization domain (CLD), TIM interaction site (TIS), and nuclear localization signal (NLS). The deduced Mntim protein comprises1540 amino acids with functional domains such as PER interaction site (PIS), NLS, and CLD. Tissue distribution analyses showed that the two genes were highly expressed in the eyestalk and brain in both males and females, as well as being expressed in the ovary. The expression profiles of Mnper and Mntim were determined in the eyestalk, brain, and ovary under simulated breeding season and non-breeding season conditions. The expression profiles of both Mnper and Mntim appeared to be unaffected in the eyestalk. However, the expression of both genes exhibited significant seasonal variations in the brain, and thus we assumed the brain to be their functional location. The expression profiles under different simulated seasons and the variations during different ovarian stages indicate that both genes might be involved with female reproduction. Especially the mRNA levels in the brain varied greatly during these stages indicating that the clock function in the brain is closely related to ovarian development and female reproduction. And the reproductive roles of clock genes need to be elucidated.
Collapse
Affiliation(s)
- SuHua Chen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - HongTuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - WenYi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - ShuBo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Weiyi Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - YanWu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| |
Collapse
|
13
|
Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil. Sci Rep 2017; 7:40189. [PMID: 28071697 PMCID: PMC5223211 DOI: 10.1038/srep40189] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/01/2016] [Indexed: 11/23/2022] Open
Abstract
Microbes in hot desert soil partake in core ecosystem processes e.g., biogeochemical cycling of carbon. Nevertheless, there is still a fundamental lack of insights regarding short-term (i.e., over a 24-hour [diel] cycle) microbial responses to highly fluctuating microenvironmental parameters like temperature and humidity. To address this, we employed T-RFLP fingerprinting and 454 pyrosequencing of 16S rRNA-derived cDNA to characterize potentially active bacteria in Namib Desert soil over multiple diel cycles. Strikingly, we found that significant shifts in active bacterial groups could occur over a single 24-hour period. For instance, members of the predominant Actinobacteria phyla exhibited a significant reduction in relative activity from morning to night, whereas many Proteobacterial groups displayed an opposite trend. Contrary to our leading hypothesis, environmental parameters could only account for 10.5% of the recorded total variation. Potential biotic associations shown through co-occurrence networks indicated that non-random inter- and intra-phyla associations were ‘time-of-day-dependent’ which may constitute a key feature of this system. Notably, many cyanobacterial groups were positioned outside and/or between highly interconnected bacterial associations (modules); possibly acting as inter-module ‘hubs’ orchestrating interactions between important functional consortia. Overall, these results provide empirical evidence that bacterial communities in hot desert soils exhibit complex and diel-dependent inter-community associations.
Collapse
|
14
|
Villanueva OK, Ponce G, Lopez B, Gutierrez SM, Rodriguez IP, Reyes G, Saavedra KJ, Black WC, Garcia J, Beaty B, Eisen L, Flores AE. Effect of Photoperiod On Permethrin Resistance In Aedes aegypti. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2016; 32:308-314. [PMID: 28206856 DOI: 10.2987/16-6577.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Living organisms have been exposed to light-dark cycles that allowed them to adapt to different ecological niches. Circadian cycles affect hormone release, metabolism, and response to xenobiotic compounds. Current studies have shown that insect susceptibility to toxic agents depends on circadian cycles, mainly because the biochemical processes involved in detoxification and responses to oxidative stress are modulated by this process. The goal of this study was to determine the effect of photoperiod on resistance to permethrin in Aedes aegypti . Collections of Ae. aegypti from 4 locations in Yucatan, southern Mexico, were subjected to 2 different photoperiod schemes: dark (0 h light:24 h dark) and natural photoperiod (12 h light:12 h dark). The comparison of both photoperiods was evaluated with respect to permethrin resistance using bottle bioassays and by monitoring the possible mechanism related such as enzymatic activity and by the frequency of 2 knockdown resistance mutations in the voltage-dependent sodium channel gene (V1016I and F1534C). The susceptible strain was used as a reference. The mosquitoes in dark photoperiod showed a reduction in resistance to the pyrethroid. The α-esterases and glutathione S-transferase enzymatic activities showed lower levels in the dark photoperiod, and the frequencies of V1016I knockdown resistance mutation showed significant difference between photoperiod schemes.
Collapse
|
15
|
Bactrocera dorsalis male sterilization by targeted RNA interference of spermatogenesis: empowering sterile insect technique programs. Sci Rep 2016; 6:35750. [PMID: 27767174 PMCID: PMC5073305 DOI: 10.1038/srep35750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/30/2016] [Indexed: 11/08/2022] Open
Abstract
RNA interference (RNAi) is a genetic technique which has novel application for sustainable pest control. The Sterile Insect Technique (SIT) uses releases of mass-produced, sterile male insects to out-compete wild males for mates to reduce pest populations. RNAi sterilization of SIT males would have several advantages over radiation sterilization, but to achieve this appropriate target genes must first be identified and then targeted with interference technology. With this goal, eight spermatogenesis related candidate genes were cloned and tested for potential activity in Bactrocera dorsalis. The knockdown of candidate genes by oral delivery of dsRNAs did not influence the mating of male flies, but significantly affected the daily average number of eggs laid by females, and reduced egg hatching rate by 16-60%. RNAi negatively affected spermatozoa quantitatively and qualitatively. Following the mating of lola-/topi-/rac-/rho-/upd-/magu-silenced males, we recorded a significant decrease in number and length of spermatozoa in female spermatheca compared to gfp-silenced control group. In a greenhouse trial, the number of damaged oranges and B. dorsalis larvae were significantly reduced in a dsrho-treated group compared with the dsgfp group. This study provides strong evidence for the use RNAi in pest management, especially for the improvement of SIT against B. dorsalis and other species.
Collapse
|
16
|
Bernatowicz PP, Kotwica-Rolinska J, Joachimiak E, Sikora A, Polanska MA, Pijanowska J, Bębas P. Temporal Expression of the Clock Genes in the Water FleaDaphnia pulex(Crustacea: Cladocera). ACTA ACUST UNITED AC 2016; 325:233-54. [DOI: 10.1002/jez.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/14/2016] [Accepted: 04/18/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Piotr P. Bernatowicz
- Department of Paleobiology and Evolution, Institute of Zoology, Faculty of Biology; University of Warsaw; Biological and Chemical Research Centre; Warsaw Poland
| | - Joanna Kotwica-Rolinska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology; University of Warsaw; Warsaw Poland
| | - Ewa Joachimiak
- Department of Cell Biology; Nencki Institute of Experimental Biology PAS; Warsaw Poland
| | - Anna Sikora
- Department of Hydrobiology, Institute of Zoology, Faculty of Biology; University of Warsaw; Biological and Chemical Research Centre; Warsaw Poland
| | - Marta A. Polanska
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology; University of Warsaw; Warsaw Poland
| | - Joanna Pijanowska
- Department of Hydrobiology, Institute of Zoology, Faculty of Biology; University of Warsaw; Biological and Chemical Research Centre; Warsaw Poland
| | - Piotr Bębas
- Department of Animal Physiology, Institute of Zoology, Faculty of Biology; University of Warsaw; Warsaw Poland
| |
Collapse
|
17
|
Urbanová V, Bazalová O, Vaněčková H, Dolezel D. Photoperiod regulates growth of male accessory glands through juvenile hormone signaling in the linden bug, Pyrrhocoris apterus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:184-190. [PMID: 26826599 DOI: 10.1016/j.ibmb.2016.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Adult reproductive diapause is characterized by lower behavioral activity, ceased reproduction and absence of juvenile hormone (JH). The role of JH receptor Methoprene-tolerant (Met) in female reproduction is well established; however, its function in male reproductive development and behavior is unclear. In the bean bug, Riptortus pedestris, circadian genes are essential for mediating photoperiodically-dependent growth of the male accessory glands (MAGs). The present study explores the role of circadian genes and JH receptor in male diapause in the linden bug, Pyrrhocoris apterus. These data indicate that circadian factors Clock, Cycle and Cry2 are responsible for photoperiod measurement, whereas Met and its partner protein Taiman participate in JH reception. Surprisingly, knockdown of the JH receptor neither lowered locomotor activity nor reduced mating behavior of males. These data suggest existence of a parallel, JH-independent or JH-upstream photoperiodic regulation of reproductive behavior.
Collapse
Affiliation(s)
- Veronika Urbanová
- Institute of Entomology, Biology Center, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Olga Bazalová
- Institute of Entomology, Biology Center, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic
| | - Hanka Vaněčková
- Institute of Entomology, Biology Center, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - David Dolezel
- Institute of Entomology, Biology Center, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic; Department of Molecular Biology, Faculty of Sciences, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic.
| |
Collapse
|
18
|
Numata H, Miyazaki Y, Ikeno T. Common features in diverse insect clocks. ZOOLOGICAL LETTERS 2015; 1:10. [PMID: 26605055 PMCID: PMC4604113 DOI: 10.1186/s40851-014-0003-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/23/2014] [Indexed: 06/05/2023]
Abstract
This review describes common features among diverse biological clocks in insects, including circadian, circatidal, circalunar/circasemilunar, and circannual clocks. These clocks control various behaviors, physiological functions, and developmental events, enabling adaptation to periodic environmental changes. Circadian clocks also function in time-compensation for celestial navigation and in the measurement of day or night length for photoperiodism. Phase response curves for such clocks reported thus far exhibit close similarities; specifically, the circannual clock in Anthrenus verbasci shows striking similarity to circadian clocks in its phase response. It is suggested that diverse biological clocks share physiological properties in their phase responses irrespective of period length. Molecular and physiological mechanisms are best understood for the optic-lobe and mid-brain circadian clocks, although there is no direct evidence that these clocks are involved in rhythmic phenomena other than circadian rhythms in daily events. Circadian clocks have also been localized in peripheral tissues, and research on their role in various rhythmic phenomena has been started. Although clock genes have been identified as controllers of circadian rhythms in daily events, some of these genes have also been shown to be involved in photoperiodism and possibly in time-compensated celestial navigation. In contrast, there is no experimental evidence indicating that any known clock gene is involved in biological clocks other than circadian clocks.
Collapse
Affiliation(s)
- Hideharu Numata
- />Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| | - Yosuke Miyazaki
- />Graduate School of Education, Ashiya University, Ashiya, 659-8511 Japan
| | - Tomoko Ikeno
- />Department of Psychology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
19
|
Santos D, Vanden Broeck J, Wynant N. Systemic RNA interference in locusts: reverse genetics and possibilities for locust pest control. CURRENT OPINION IN INSECT SCIENCE 2014; 6:9-14. [PMID: 32846691 DOI: 10.1016/j.cois.2014.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 06/11/2023]
Abstract
RNA interference (RNAi) is a biological process triggered by double stranded (ds)RNA that results in sequence-dependent mRNA degradation. Because of its high specificity, this post-transcriptional gene silencing mechanism is a widely used tool for reverse genetics in several insect species. In particular, locusts possess a very robust and sensitive RNAi response that has already been exploited to investigate a diverse range of important physiological processes. These orthopteran insects constitute important model organisms in several areas of entomology, but they can also become voracious swarming pests that threaten the agricultural production in large parts of the world. In comparison to the widely applied chemical insecticides, the RNAi-technology could contribute to the development of a novel generation of insecticides, with high species-specificity. In this article, we discuss the potential of the RNAi-technology in loss of function studies in locusts, as well as to control locust populations.
Collapse
Affiliation(s)
- Dulce Santos
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium
| | - Niels Wynant
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, KU Leuven, Naamsestraat 59, P.O. Box 02465, B-3000 Leuven, Belgium.
| |
Collapse
|
20
|
Li C, Wu W, Sang M, Liu X, Hu X, Yun X, Li B. Comparative RNA-sequencing analysis of mthl1 functions and signal transductions in Tribolium castaneum. Gene 2014; 547:310-8. [DOI: 10.1016/j.gene.2014.06.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/17/2014] [Accepted: 06/27/2014] [Indexed: 01/20/2023]
|
21
|
Anava S, Saad Y, Ayali A. The role of gap junction proteins in the development of neural network functional topology. INSECT MOLECULAR BIOLOGY 2013; 22:457-472. [PMID: 23782271 DOI: 10.1111/imb.12036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Gap junctions (GJs) provide a common form of intercellular communication in most animal cells and tissues, from Hydra to human, including electrical synaptic signalling. Cell coupling via GJs has an important role in development in general, and in neural network development in particular. However, quantitative studies monitoring GJ proteins throughout nervous system development are few. Direct investigations demonstrating a role for GJ proteins by way of experimental manipulation of their expression are also rare. In the current work we focused on the role of invertebrate GJ proteins (innexins) in the in vitro development of neural network functional topology, using two-dimensional neural culture preparations derived from the frontal ganglion of the desert locust, Schistocerca gregaria. Immunocytochemistry and quantitative real-time PCR revealed a dynamic expression pattern of the innexins during development of the cultured networks. Changes were observed both in the levels and in the localization of expression. Down-regulating the expression of innexins, by using double-strand RNA for the first time in locust neural cultures, induced clear changes in network morphology, as well as inhibition of synaptogenesis, thus suggesting a role for GJs during the development of the functional topology of neuronal networks.
Collapse
Affiliation(s)
- S Anava
- Department of Zoology, Tel-Aviv University, Tel Aviv, Israel
| | | | | |
Collapse
|
22
|
Kotwica-Rolinska J, Gvakharia BO, Kedzierska U, Giebultowicz JM, Bebas P. Effects of period RNAi on V-ATPase expression and rhythmic pH changes in the vas deferens of Spodoptera littoralis (Lepidoptera: Noctuidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:522-32. [PMID: 23499932 DOI: 10.1016/j.ibmb.2013.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/23/2013] [Accepted: 03/04/2013] [Indexed: 05/03/2023]
Abstract
Circadian clocks (oscillators) regulate multiple aspects of insect behaviour and physiology. The circadian system located in the male reproductive tract of Lepidoptera orchestrates rhythmic sperm release from testis and sperm maturation in the upper vas deferens (UVD). Our previous research on the cotton leafworm, Spodoptera littoralis, suggested rhythmic changes in the V-ATPase levels in the UVD epithelium, which correlated with rhythmic pH fluctuations in the UVD lumen. However, it was not known whether UVD cells contain clock mechanism that generates these daily fluctuations. In the current paper, we show circadian rhythm in the expression of clock gene period at the mRNA and protein level in the UVD epithelium. To determine the role of PER in V-ATPase and pH regulation, testes-UVD complexes were treated in vitro with double-stranded fragments of per mRNA (dsRNA). This treatment, which transiently lowered per mRNA and protein in the UVD, altered expression of V-ATPase c subunit. In addition, per RNAi caused a significant delay in the UVD lumen acidification. These data demonstrate that the UVD molecular oscillator involving the period gene plays an essential role in the regulation of rhythmic V-ATPase activity and periodic acidification of the UVD lumen.
Collapse
Affiliation(s)
- Joanna Kotwica-Rolinska
- Departament of Animal Physiology, Zoological Institute, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland
| | | | | | | | | |
Collapse
|
23
|
Moriyama Y, Kamae Y, Uryu O, Tomioka K. gb'clock is expressed in the optic lobe and is required for the circadian clock in the cricket Gryllus bimaculatus. J Biol Rhythms 2013; 27:467-77. [PMID: 23223372 DOI: 10.1177/0748730412462207] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reverse genetic studies have revealed that common clock genes, such as period (per), timeless (tim), cycle (cyc), and Clock (Clk), are involved in the circadian clock mechanism among a wide variety of insects. However, to what degree the molecular oscillatory mechanism is conserved is still to be elucidated. In this study, cDNA of the clock gene Clk was cloned in the cricket Gryllus bimaculatus, and its function was analyzed using RNA interference (RNAi). In adult optic lobes, the Clk mRNA level showed no significant rhythmic changes both under light-dark cycle (LD) and constant darkness (DD). A single injection of Clk double-stranded RNA (dsRNA) resulted in a knockdown of the mRNA level to about 25% of the peak level of control animals. The injected crickets lost their locomotor rhythms in DD. The arrhythmicity in locomotor activity persisted for up to 50 days after the Clk dsRNA injection. Control animals injected with DsRed2 dsRNA showed a clear locomotor rhythm like intact animals. Injection of Clk dsRNA not only suppressed the mRNA levels of both per and tim but also abolished their rhythmic expression. per RNAi down-regulates the Clk mRNA levels, suggesting that per is required for sufficient expression of Clk. These results suggest that Clk is an essential component and plays an important role in the cricket's circadian clock machinery like in Drosophila, but regulation of its expression is probably different from regulation in Drosophila.
Collapse
Affiliation(s)
- Yoshiyuki Moriyama
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | | | |
Collapse
|
24
|
Gräs S, Georg B, Jørgensen HL, Fahrenkrug J. Expression of the clock genes Per1 and Bmal1 during follicle development in the rat ovary. Effects of gonadotropin stimulation and hypophysectomy. Cell Tissue Res 2012; 350:539-48. [PMID: 22940729 DOI: 10.1007/s00441-012-1489-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 08/16/2012] [Indexed: 12/15/2022]
Abstract
Daily oscillations of clock genes have recently been demonstrated in the ovaries of several species. Clock gene knockout or mutant mice demonstrate a variety of reproductive defects. Accumulating evidence suggests that these rhythms act to synchronise the expression of specific ovarian genes to hypothalamo-pituitary signals and that they are regulated by one or both of the gonadotropins. The aim of this study has been to examine the spatio-temporal expression of the clock genes Per1 and Bmal1 during gonadotropin-independent and gonadotropin-dependent follicle development in the rat ovary. We have examined the ovaries of prepubertal rats, of prepubertal rats stimulated with equine chorionic gonadotropin (eCG)/human chorionic gonadotropin (hCG) and of hypophysectomised adult animals. Using quantitative reverse transcription with the polymerase chain reaction, in situ hybridisation histochemistry and immunohistochemistry, we have demonstrated that the expression of the two clock genes is low and arrhythmic in ovarian cells during early gonadotropin-independent follicle development in prepubertal animals and in hypophysectomised animals. We have also demonstrated that the expression of the clock genes becomes rhythmic following eCG stimulation in the theca interna cells and the secondary interstitial cells and that, following additional hCG stimulation, the expression of the clock genes also becomes rhythmic in the granulosa cells of preovulatory follicles. These findings link the initiation of clock gene rhythms in the rat ovary to the luteinising hormone receptor and suggest a functional link to androgen and progesterone production. In hypophysectomised animals, rhythmic clock gene expression is also observed in the corpora lutea and in secondary interstitial cells demonstrating that, in these compartments, entrainment of clock gene rhythms is gonadotropin-independent.
Collapse
Affiliation(s)
- Søren Gräs
- Department of Obstetrics and Gynecology, Herlev Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
25
|
Marchal E, Verlinden H, Badisco L, Van Wielendaele P, Vanden Broeck J. RNAi-mediated knockdown of Shade negatively affects ecdysone-20-hydroxylation in the desert locust, Schistocerca gregaria. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:890-896. [PMID: 22465741 DOI: 10.1016/j.jinsphys.2012.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 05/31/2023]
Abstract
A major breakthrough in elucidating the ecdysteroid biosynthetic pathway in insects was realized with the molecular identification and further functional characterization of the 'Halloween' genes. These genes were found to encode cytochrome P450 enzymes catalysing the final steps of ecdysteroid biosynthesis in the dipteran, Drosophila melanogaster, and in the Lepidoptera, Manduca sexta and Bombyx mori. A recent report focused on the identification of Halloween orthologs in the desert locust, Schistocerca gregaria, a member of the hemimetabolous insect order of the Orthoptera. In the present study, an additional Halloween gene Shade, is identified in the desert locust. In Diptera and Lepidoptera, this gene encodes a 20-hydroxylase, catalysing the conversion of ecdysone (E) to 20-hydroxyecdysone (20E). However, this enzymatic function has previously been suggested for CYP6H1 in another locust species, the migratory locust, Locusta migratoria. Using q-RT-PCR, the spatial and temporal transcript profiles of S. gregaria orthologs for Shade as well as CYP6H1 were analysed in last larval stage desert locusts. An RNA interference (RNAi)-based approach was employed to study whether these genes could possibly encode a functional 20-hydroxylase in the desert locust.
Collapse
Affiliation(s)
- Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, Zoological Institute, K.U. Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
26
|
Tobback J, Vuerinckx K, Boerjan B, Huybrechts R. RNA interference mortality points to noncircadian functions for the clock gene in the desert locust Schistocerca gregaria. INSECT MOLECULAR BIOLOGY 2012; 21:369-381. [PMID: 22433062 DOI: 10.1111/j.1365-2583.2012.01143.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
One of the core genes in the circadian regulation network is clock (clk). By forming a heterodimer with CYCLE (CYC) that binds on an E-box in the promoter region, it induces the transcription of other elements in the circadian transcriptional feedback loops and different clock output genes. In contrast to other insects, a clk double-stranded RNA (dsRNA) treatment is lethal in adults and fifth instar nymphs of the desert locust, Schistocerca gregaria, in a dose-dependent manner. Clk knock down fifth instar nymphs are able to undergo their imaginal moult but, depending on the amount of dsRNA, it takes them longer than the controls to reach adulthood. As adults, clk knock down animals do not develop their fat body and ovaries like the control animals. Therefore, we tested the expression of different genes involved in energy metabolism and reproduction to see the effect of the clk RNA interference knock down. Surprisingly, the expression of the vitellogenin gene was up-regulated in the clk knock down females who did not appear to invest their energy in egg development. Taken together, our results point out that the clk gene in the desert locust has an additional function in development besides its established role in maintaining the circadian rhythms in the brain.
Collapse
Affiliation(s)
- J Tobback
- Research Group of Insect Physiology and Molecular Ethology, Department of Biology, K.U. Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
27
|
Boerjan B, Cardoen D, Verdonck R, Caers J, Schoofs L. Insect omics research coming of age1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era. CAN J ZOOL 2012. [DOI: 10.1139/z2012-010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As more and more insect genomes are fully sequenced and annotated, omics technologies, including transcriptomic, proteomic, peptidomics, and metobolomic profiling, as well as bioinformatics, can be used to exploit this huge amount of sequence information for the study of different biological aspects of insect model organisms. Omics experiments are an elegant way to deliver candidate genes, the function of which can be further explored by genetic tools for functional inactivation or overexpression of the genes of interest. Such tools include mainly RNA interference and are currently being developed in diverse insect species. In this manuscript, we have reviewed how omics technologies were integrated and applied in insect biology.
Collapse
Affiliation(s)
- Bart Boerjan
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Dries Cardoen
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
- Laboratory of Entomology, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Rik Verdonck
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Jelle Caers
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | - Liliane Schoofs
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| |
Collapse
|
28
|
Peripheral circadian rhythms and their regulatory mechanism in insects and some other arthropods: a review. J Comp Physiol B 2012; 182:729-40. [PMID: 22327195 DOI: 10.1007/s00360-012-0651-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/18/2012] [Accepted: 01/26/2012] [Indexed: 01/15/2023]
Abstract
Many physiological functions of insects show a rhythmic change to adapt to daily environmental cycles. These rhythms are controlled by a multi-clock system. A principal clock located in the brain usually organizes the overall behavioral rhythms, so that it is called the "central clock". However, the rhythms observed in a variety of peripheral tissues are often driven by clocks that reside in those tissues. Such autonomous rhythms can be found in sensory organs, digestive and reproductive systems. Using Drosophila melanogaster as a model organism, researchers have revealed that the peripheral clocks are self-sustained oscillators with a molecular machinery slightly different from that of the central clock. However, individual clocks normally run in harmony with each other to keep a coordinated temporal structure within an animal. How can this be achieved? What is the molecular mechanism underlying the oscillation? Also how are the peripheral clocks entrained by light-dark cycles? There are still many questions remaining in this research field. In the last several years, molecular techniques have become available in non-model insects so that the molecular oscillatory mechanisms are comparatively investigated among different insects, which give us more hints to understand the essential regulatory mechanism of the multi-oscillatory system across insects and other arthropods. Here we review current knowledge on arthropod's peripheral clocks and discuss their physiological roles and molecular mechanisms.
Collapse
|
29
|
Tobback J, Boerjan B, Vandersmissen HP, Huybrechts R. Male reproduction is affected by RNA interference of period and timeless in the desert locust Schistocerca gregaria. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:109-115. [PMID: 22154754 DOI: 10.1016/j.ibmb.2011.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/14/2011] [Accepted: 11/22/2011] [Indexed: 05/31/2023]
Abstract
In all living organisms, behavior, metabolism and physiology are under the regulation of a circadian clock. The molecular machinery of this clock has been conserved throughout the animal kingdom. Besides regulating the circadian timing of a variety of processes through a central oscillating mechanism in the brain, these circadian clock genes were found to have a function in peripheral tissues in different insects. Here, we provide evidence that the circadian clock genes period (per) and timeless (tim) have a role in the male locust reproduction. A knockdown of either of the two genes has no effect on male sexual maturation or behavior, but progeny output in their untreated female copulation partners is affected. Indeed, the fertilization rates of the eggs are lower for females with a per or tim RNAi copulation partner as compared to the eggs deposited by females that mated with a control male. As the sperm content of the seminal vesicles is higher in per or tim knockdown males, we suggest that this phenotype could be caused by a disturbance of the circadian regulated sperm transfer in the male reproductive organs, or an insufficient maturation of the sperm after release from the testes.
Collapse
Affiliation(s)
- Julie Tobback
- Research Group of Insect Physiology and Molecular Ethology, Department of Biology, K.U.Leuven, Naamsestraat 59, Box 2465, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|