1
|
Ashraf MZ, Mogilicherla K, Sellamuthu G, Siino V, Levander F, Roy A. Comparative gut proteomics study revealing adaptive physiology of Eurasian spruce bark beetle, Ips typographus (Coleoptera: Scolytinae). FRONTIERS IN PLANT SCIENCE 2023; 14:1157455. [PMID: 38078109 PMCID: PMC10703158 DOI: 10.3389/fpls.2023.1157455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/01/2023] [Indexed: 01/23/2024]
Abstract
The bark beetle, Ips typographus (L.), is a major pest of Norway spruce, Picea abies (L.), causing enormous economic losses globally. The adult stage of the I. typographus has a complex life cycle (callow and sclerotized); the callow beetles feed ferociously, whereas sclerotized male beetles are more aggressive and pioneers in establishing new colonies. We conducted a comparative proteomics study to understand male and female digestion and detoxification processes in callow and sclerotized beetles. Proteome profiling was performed using high-throughput liquid chromatography-mass spectrometry. A total of >3000 proteins were identified from the bark beetle gut, and among them, 539 were differentially abundant (fold change ±2, FDR <0.05) between callow and sclerotized beetles. The differentially abundant proteins (DAPs) mainly engage with binding, catalytic activity, anatomical activity, hydrolase activity, metabolic process, and carbohydrate metabolism, and hence may be crucial for growth, digestion, detoxification, and signalling. We validated selected DAPs with RT-qPCR. Gut enzymes such as NADPH-cytochrome P450 reductase (CYC), glutathione S-transferase (GST), and esterase (EST) play a crucial role in the I. typographus for detoxification and digesting of host allelochemicals. We conducted enzyme activity assays with them and observed a positive correlation of CYC and GST activities with the proteomic results, whereas EST activity was not fully correlated. Furthermore, our investigation revealed that callow beetles had an upregulation of proteins associated with juvenile hormone (JH) biosynthesis and chitin metabolism, whereas sclerotized beetles exhibited an upregulation of proteins linked to fatty acid metabolism and the TCA cycle. These distinctive patterns of protein regulation in metabolic and functional processes are specific to each developmental stage, underscoring the adaptive responses of I. typographicus in overcoming conifer defences and facilitating their survival. Taken together, it is the first gut proteomic study comparing males and females of callow and sclerotized I. typographus, shedding light on the adaptive ecology at the molecular level. Furthermore, the information about bark beetle handling of nutritionally limiting and defence-rich spruce phloem diet can be utilized to formulate RNAi-mediated beetle management.
Collapse
Affiliation(s)
- Muhammad Zubair Ashraf
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Gothandapani Sellamuthu
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
2
|
Ramakrishnan R, Hradecký J, Roy A, Kalinová B, Mendezes RC, Synek J, Bláha J, Svatoš A, Jirošová A. Metabolomics and transcriptomics of pheromone biosynthesis in an aggressive forest pest Ips typographus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103680. [PMID: 34808354 DOI: 10.1016/j.ibmb.2021.103680] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Eurasian spruce bark beetle, Ips typographus, is a destructive pest in spruce forests. The ability of I. typographus to colonise host trees depends on its massive aggregation behaviour mediated by aggregation pheromones, consisting of 2-methyl-3-buten-2-ol and cis-verbenol. Other biologically active compounds such as ipsdienol and verbenone have also been detected in the beetle. Biosynthesis of 2-methyl-3-buten-2-ol and ipsdienol de novo from mevalonate and that of cis-verbenol from α-pinene sequestrated from the host have been reported in preliminary studies. However, knowledge on the molecular mechanisms underlying pheromone biosynthesis in this pest is currently limited. In this study, we performed metabolomic and differential gene expression (DGE) analysis for the pheromone-producing life stages of I. typographus. The highest amounts of 2-methyl-3-buten-2-ol (238 ng/gut) and cis-verbenol (23 ng/gut) were found in the fed male gut (colonisation stage) and the immature male gut (early stage), respectively. We also determined the amount of verbenyl oleate (the possible storage form of cis-verbenol), a monoterpenyl fatty acid ester, to be approximately 1604 ng/mg in the immature stage in the beetle body. DGE analysis revealed possible candidate genes involved in the biosynthesis of the quantified pheromones and related compounds. A novel hemiterpene-synthesising candidate isoprenyl-di-phosphate synthase Ityp09271 gene proposed for 2-methyl-3-buten-2-ol synthesis was found to be highly expressed only in the fed male beetle gut. Putative cytochrome P450 genes involved in cis/trans-verbenol synthesis and an esterase gene Ityp11977, which could regulate verbenyl oleate synthesis, were identified in the immature male gut. Our findings from the molecular analysis of pheromone-producing gene families are the first such results reported for I. typographus. With further characterisation of the identified genes, we can develop novel strategies to disrupt the aggregation behaviour of I. typographus and thereby prevent vegetation loss.
Collapse
Affiliation(s)
- Rajarajan Ramakrishnan
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Jaromír Hradecký
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Blanka Kalinová
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Rya C Mendezes
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jiri Synek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Jaromír Bláha
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Jena, Germany; Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, Prague, Czech Republic
| | - Anna Jirošová
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic.
| |
Collapse
|
3
|
Fang JX, Du HC, Shi X, Zhang SF, Liu F, Zhang Z, Zu PJ, Kong XB. Monoterpenoid signals and their transcriptional responses to feeding and juvenile hormone regulation in bark beetle Ips hauseri. J Exp Biol 2021; 224:jeb.238030. [PMID: 33795419 DOI: 10.1242/jeb.238030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/24/2021] [Indexed: 11/20/2022]
Abstract
Hauser's engraver beetle, Ips hauseri, is a serious pest in spruce forest ecosystems in Central Asia. Its monoterpenoid signal production, transcriptome responses and potential regulatory mechanisms remain poorly understood. The quality and quantity of volatile metabolites in hindgut extracts of I. hauseri were found to differ between males and females and among three groups: beetles that were newly emerged, those with a topical application of juvenile hormone III (JHIII) and those that had been feeding for 24 h. Feeding males definitively dominated monoterpenoid signal production in I. hauseri, which uses (4S)-(-)-ipsenol and (S)-(-)-cis-verbenol to implement reproductive segregation from Ipstypographus and Ipsshangrila. Feeding stimulation induced higher expression of most genes related to the biosynthesis of (4S)-(-)-ipsenol than JHIII induction, and showed a male-specific mode in I. hauseri. JHIII stimulated males to produce large amounts of (-)-verbenone and also upregulated the expression of several CYP6 genes, to a greater extent in males than in females. The expression of genes involved in the metabolism of JHIII in females and males was also found to be upregulated. Our results indicate that a species-specific aggregation pheromone system for I. hauseri, consisting of (4S)-(-)-ipsenol and S-(-)-cis-verbenol, can be used to monitor population dynamics or mass trap killing. Our results also enable a better understanding of the bottom-up role of feeding behaviors in mediating population reproduction/aggregation and interspecific interactions.
Collapse
Affiliation(s)
- Jia Xing Fang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Hui Cong Du
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Xia Shi
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Su Fang Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Fu Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| | - Peng Juan Zu
- Department of Geography, University of Zurich, CH-8057 Zurich, Switzerland
| | - Xiang Bo Kong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
4
|
Fisher KE, Tillett RL, Fotoohi M, Caldwell C, Petereit J, Schlauch K, Tittiger C, Blomquist GJ, MacLean M. RNA-Seq used to identify ipsdienone reductase (IDONER): A novel monoterpene carbon-carbon double bond reductase central to Ips confusus pheromone production. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 129:103513. [PMID: 33388375 PMCID: PMC7909325 DOI: 10.1016/j.ibmb.2020.103513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The pinyon ips beetle, Ips confusus (LeConte) is a highly destructive pest in pine forests in western North America. When colonizing a new host tree, I. confusus beetles coordinate a mass attack to overcome the tree's defenses using aggregation pheromones. Ips confusus, as with other Ips spp. beetles, biosynthesize ipsdienol and ipsenol in a specific enantiomeric blend and ratio as aggregation pheromones. While several of the initial steps in the pheromone biosynthetic pathway have been well defined, the final steps were unknown. We used comparative RNA-Seq analysis between fed and unfed male I. confusus midgut tissue to identify candidate genes involved in pheromone biosynthesis. The 12,995 potentially unique transcripts showed a clear separation based on feeding state. Differential expression analysis identified gene groups that were tightly connected. This analysis identified all known pheromone biosynthetic genes and suggested a novel monoterpene double bond reductase, ipsdienone reductase (IDONER), with pheromone biosynthetic gene expression patterns. IDONER cDNA was cloned, expressed, and functionally characterized. The coding DNA sequence has an ORF of 1101 nt with a predicted translation product of 336 amino acids. The enzyme has a molecular weight of 36.7 kDa with conserved motifs of the medium chain dehydrogenases/reductase (MDR) superfamily in the leukotriene B4 dehydrogenases/reductases (LTB4R) family. Tagged recombinant protein was expressed and purified. Enzyme assays and GC/MS analysis showed IDONER catalyzed the reduction of ipsdienone to form ipsenone. This study shows that IDONER is a monoterpene double bond reductase involved in I. confusus pheromone biosynthesis.
Collapse
Affiliation(s)
- Katherine E Fisher
- Phigenics Research and Innovation Laboratory, Nevada Center for Applied Research, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Richard L Tillett
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, 89154, USA.
| | - Misha Fotoohi
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Cody Caldwell
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Juli Petereit
- Nevada Center for Bioinformatics, University of Nevada, Reno, NV, 89557, USA.
| | - Karen Schlauch
- Desert Research Institute, Northern Nevada Science Center Campus, 2215 Raggio Parkway, Reno, NV, 89512, USA.
| | - Claus Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Gary J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
| | - Marina MacLean
- Department of Biochemistry and Molecular Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA.
| |
Collapse
|
5
|
de Hsie BS, Bueno AIS, Bertolucci SKV, de Carvalho AA, da Cunha SHB, Martins ER, Pinto JEBP. Study of the influence of wavelengths and intensities of LEDs on the growth, photosynthetic pigment, and volatile compounds production of Lippia rotundifolia Cham in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 198:111577. [PMID: 31376573 DOI: 10.1016/j.jphotobiol.2019.111577] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 11/18/2022]
Abstract
Lippia rotundifolia Cham. is in the family Verbenaceae and is endemic to the Cerrado. This species is aromatic and characterized by the presence of glandular trichomes on its leaves that are rich in monoterpenes. The objective of this study was to evaluate the growth, photosynthetic pigment production, and chemical composition of L. rotundifolia grown in vitro under different light wavelengths and intensities. The light intensities consisted of five treatments using cool white fluorescent lamps at 20, 54, 78, 88, and 110 μmol m-2 s-1. The light quality consisted of six treatments using light-emitting diodes (LEDs) in different light wavelengths, namely, white, red, blue, and their interactions: 1R:1B, 2.5R:1B, and 1R:2.5B. After 45 days, the biometric parameters, photosynthetic pigment content, and volatile compounds were evaluated. The lower light intensities of 20 and 54 μmol m-2 s-1 generated higher growth, photosynthetic pigment content, and biomass accumulation. Myrcene and pentadecane were highest under light intensities of 88 and 110 μmol m-2 s-1, respectively. The highest limonene and ocimenone levels were obtained at 20 and 54 μmol m-2 s-1 intensity, respectively, and the highest myrcenone content was obtained at 78 μmol m-2 s-1 intensity. Regarding the light wavelengths, the combination of red and blue spectra further stimulated plantlet growth, and the 2.5R:1B combination obtained the best biometric data and total chlorophyll content. The z-ocimenone chemical compound contents were highest under the 1R:2.5B light spectrum. The monochromatic blue spectrum increased the myrcene and limonene content but decreased the myrcenone content, which was increased by red light. The highest pentadecane contents were obtained with the white spectrum and the red and blue combinations.
Collapse
Affiliation(s)
- Bety Shiue de Hsie
- Laboratory of Plant Tissue Culture and Medicinal Plants, Department of Agriculture, Federal University of Lavras, 37200-000 Lavras, Brazil
| | - Ana Izabela Sales Bueno
- Laboratory of Plant Tissue Culture and Medicinal Plants, Department of Agriculture, Federal University of Lavras, 37200-000 Lavras, Brazil
| | - Suzan Kelly Vilela Bertolucci
- Laboratory of Phytochemistry and Medicinal Plants, Department of Agriculture, Federal University of Lavras, 37200-000 Lavras, Brazil
| | - Alexandre Alves de Carvalho
- Laboratory of Plant Tissue Culture and Medicinal Plants, Department of Agriculture, Federal University of Lavras, 37200-000 Lavras, Brazil
| | - Samuel Henrique Braga da Cunha
- Laboratory of Plant Tissue Culture and Medicinal Plants, Department of Agriculture, Federal University of Lavras, 37200-000 Lavras, Brazil
| | - Ernane Ronie Martins
- Laboratory of Medicinal and Aromatic Plants, Institute of Agrarian Sciences, Federal University of Minas Gerais, Montes Claros, Brazil
| | - José Eduardo Brasil Pereira Pinto
- Laboratory of Plant Tissue Culture and Medicinal Plants, Department of Agriculture, Federal University of Lavras, 37200-000 Lavras, Brazil.
| |
Collapse
|
6
|
Tittiger C, Blomquist GJ. Pheromone biosynthesis in bark beetles. CURRENT OPINION IN INSECT SCIENCE 2017; 24:68-74. [PMID: 29208225 DOI: 10.1016/j.cois.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/08/2017] [Accepted: 09/06/2017] [Indexed: 05/14/2023]
Abstract
Pine bark beetles rely on aggregation pheromones to coordinate mass attacks and thus reproduce in host trees. The structural similarity between many pheromone components and those of defensive tree resin led to early suggestions that pheromone components are metabolic derivatives of ingested precursors. This model has given way to our current understanding that most pheromone components are synthesized de novo. Their synthesis involves enzymes that modify products from endogenous metabolic pathways; some of these enzymes have been identified and characterized. Pheromone production is regulated in a complex way involving multiple signals, including JH III. This brief review summarizes progress in our understanding of this highly specialized metabolic process.
Collapse
Affiliation(s)
- Claus Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA.
| | - Gary J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
7
|
Figueroa-Teran R, Pak H, Blomquist GJ, Tittiger C. High substrate specificity of ipsdienol dehydrogenase (IDOLDH), a short-chain dehydrogenase from Ips pini bark beetles. J Biochem 2016; 160:141-51. [PMID: 26953347 DOI: 10.1093/jb/mvw019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Ips spp. bark beetles use ipsdienol, ipsenol, ipsdienone and ipsenone as aggregation pheromone components and pheromone precursors. For Ips pini, the short-chain oxidoreductase ipsdienol dehydrogenase (IDOLDH) converts (-)-ipsdienol to ipsdienone, and thus likely plays a role in determining pheromone composition. In order to further understand the role of IDOLDH in pheromone biosynthesis, we compared IDOLDH to its nearest functionally characterized ortholog with a solved structure: human L-3-hydroxyacyl-CoA dehydrogenase type II/ amyloid-β binding alcohol dehydrogenase (hHADH II/ABAD), and conducted functional assays of recombinant IDOLDH to determine substrate and product ranges and structural characteristics. Although IDOLDH and hHADH II/ABAD had only 35% sequence identity, their predicted tertiary structures had high identity. We found IDOLDH is a functional homo-tetramer. In addition to oxidizing (-)-ipsdienol, IDOLDH readily converted racemic ipsenol to ipsenone, and stereo-specifically reduced both ketones to their corresponding (-)-alcohols. The (+)-enantiomers were never observed as products. Assays with various substrate analogs showed IDOLDH had high substrate specificity for (-)-ipsdienol, ipsenol, ipsenone and ipsdienone, supporting that IDOLDH functions as a pheromone-biosynthetic enzyme. These results suggest that different IDOLDH orthologs and or activity levels contribute to differences in Ips spp. pheromone composition.
Collapse
Affiliation(s)
- Rubi Figueroa-Teran
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Heidi Pak
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Gary J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Claus Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
8
|
Obregón-Molina G, Cesar-Ayala AK, López MF, Cano-Ramírez C, Zúñiga G. Comparison of orthologous cytochrome P450 genes relative expression patterns in the bark beetles Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae) during host colonization. INSECT MOLECULAR BIOLOGY 2015; 24:649-661. [PMID: 26537737 DOI: 10.1111/imb.12191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Bark beetles of the genus Dendroctonus are important components of coniferous forests. During host colonization, they must overcome the chemical defences of their host trees, which are metabolized by cytochrome P450 (CYP or P450) enzymes to compounds that are readily excreted. In this study, we report the relative expression (quantitative real-time PCR) of four orthologous cytochrome P450 genes (CYP6BW5, CYP6DG1, CYP6DJ2 and CYP9Z20) in Dendroctonus rhizophagus and Dendroctonus valens forced to attack host trees at 8 and 24 h following forced attack and in four stages during natural colonization [solitary females boring the bark (T1); both male and female members of couples before oviposition (T2); both male and female members of couples during oviposition (T3), and solitary females inside the gallery containing eggs (T4)]. For both species gene expression was different compared with that observed in insects exposed to single monoterpenes in the laboratory, and the expression patterns were significantly different amongst species, sex, gut region and exposure time or natural colonization stage. The induction of genes (CYP6BW5v1, CYP6DJ2v1 and CYP9Z20v1 from D. rhizophagus, as well as CYP6DG1v3 from D. valens) correlated with colonization stage as well as with the increase in oxygenated monoterpenes in the gut of both species throughout the colonization of the host. Our results point to different functions of these orthologous genes in both species.
Collapse
Affiliation(s)
- G Obregón-Molina
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Zoología, Casco de Santo Tomás, México, DF, México
| | - A K Cesar-Ayala
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Zoología, Casco de Santo Tomás, México, DF, México
| | - M F López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Zoología, Casco de Santo Tomás, México, DF, México
| | - C Cano-Ramírez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Zoología, Casco de Santo Tomás, México, DF, México
| | - G Zúñiga
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Zoología, Casco de Santo Tomás, México, DF, México
| |
Collapse
|
9
|
Foster SP, Anderson KG. Sex pheromones in mate assessment: analysis of nutrient cost of sex pheromone production by females of the moth Heliothis virescens. ACTA ACUST UNITED AC 2015; 218:1252-8. [PMID: 25722008 DOI: 10.1242/jeb.119883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/19/2015] [Indexed: 11/20/2022]
Abstract
It has been postulated that sex pheromones, in addition to their role in mate recognition and/or finding, may also serve a role in assessment of mate quality. For this, a sex pheromone must give honest information about a signaler's quality, with honesty ensured by a direct metabolic or indirect fitness cost to the signaler. Using a stable isotope tracer-tracee method, we characterized the nutrient pools that fuel sex pheromone production in females of the moth Heliothis virescens, as well as the relative importance of larval- and adult-acquired nutrients to this process. Females used three pools for de novo biosynthesis of sex pheromone, hemolymph trehalose, glycogen (via trehalose) and fat, and produced ca. 25% of pheromone directly from stored (previously synthesized) precursor fatty acids. Pheromone was produced roughly equally from carbohydrate and fat. Adult feeding was very important for pheromone biosynthesis, with a maximum of 65% of de novo biosynthesized pheromone produced from a single adult feed (carbohydrate). Although these nutrient pools are shared with other reproductive physiologies, notably oocyte production, it is unlikely that pheromone production imposes a significant metabolic cost on females, because (i) the amount of nutrients used for pheromone production is negligible compared with that available, (ii) the hemolymph trehalose pool is readily replaceable throughout the adult life, and (iii) in mated females, carbohydrate shortages result in reduced allocation to pheromone.
Collapse
Affiliation(s)
- Stephen P Foster
- Entomology Department, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050, USA
| | - Karin G Anderson
- Entomology Department, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050, USA
| |
Collapse
|
10
|
Song M, Delaplain P, Nguyen TT, Liu X, Wickenberg L, Jeffrey C, Blomquist GJ, Tittiger C. exo-Brevicomin biosynthetic pathway enzymes from the Mountain Pine Beetle, Dendroctonus ponderosae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 53:73-80. [PMID: 25138711 DOI: 10.1016/j.ibmb.2014.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 08/01/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
exoBrevicomin (exo-7-ethyl-5-methyl-6,8-dioxabicyclo[3.2.1]octane) is an important semiochemical for a number of beetle species, including the highly destructive Mountain Pine Beetle (Dendroctonus ponderosae). It is also found in other insects and the African elephant. Despite its significance, very little is known about its biosynthesis. A recent microarray analysis implicated a small cluster of three D. ponderosae genes in exo-brevicomin biosynthesis, two of which had identifiable open reading frames (Aw et al., 2010; BMC Genomics 11:215). Here we report further expression profiling of two genes in that cluster and functional analysis of their recombinantly-produced enzymes. One encodes a short-chain dehydrogenase that used NAD(P)(+) as a co-factor to catalyze the oxidation of (Z)-6-nonen-2-ol to (Z)-6-nonen-2-one. We therefore named the enzyme (Z)-6-nonen-2-ol dehydrogenase (ZnoDH). The other encodes the cytochrome P450, CYP6CR1, which epoxidized (Z)-6-nonen-2-one to 6,7-epoxynonan-2-one with very high specificity and substrate selectivity. Both the substrates and products of the two enzymes are intermediates in the exo-brevicomin biosynthetic pathway. Thus, ZnoDH and CYP6CR1 are enzymes that apparently catalyze the antepenultimate and penultimate steps in the exo-brevicomin biosynthetic pathway, respectively.
Collapse
Affiliation(s)
- Minmin Song
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Patrick Delaplain
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Trang T Nguyen
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA.
| | - Xibei Liu
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA.
| | - Leah Wickenberg
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | | | - Gary J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Claus Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
11
|
Robert JA, Pitt C, Bonnett TR, Yuen MMS, Keeling CI, Bohlmann J, Huber DPW. Disentangling detoxification: gene expression analysis of feeding mountain pine beetle illuminates molecular-level host chemical defense detoxification mechanisms. PLoS One 2013; 8:e77777. [PMID: 24223726 PMCID: PMC3815198 DOI: 10.1371/journal.pone.0077777] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/04/2013] [Indexed: 12/19/2022] Open
Abstract
The mountain pine beetle, Dendroctonus ponderosae, is a native species of bark beetle (Coleoptera: Curculionidae) that caused unprecedented damage to the pine forests of British Columbia and other parts of western North America and is currently expanding its range into the boreal forests of central and eastern Canada and the USA. We conducted a large-scale gene expression analysis (RNA-seq) of mountain pine beetle male and female adults either starved or fed in male-female pairs for 24 hours on lodgepole pine host tree tissues. Our aim was to uncover transcripts involved in coniferophagous mountain pine beetle detoxification systems during early host colonization. Transcripts of members from several gene families significantly increased in insects fed on host tissue including: cytochromes P450, glucosyl transferases and glutathione S-transferases, esterases, and one ABC transporter. Other significantly increasing transcripts with potential roles in detoxification of host defenses included alcohol dehydrogenases and a group of unexpected transcripts whose products may play an, as yet, undiscovered role in host colonization by mountain pine beetle.
Collapse
Affiliation(s)
- Jeanne A. Robert
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
- * E-mail:
| | - Caitlin Pitt
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | - Tiffany R. Bonnett
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| | - Macaire M. S. Yuen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Dezene P. W. Huber
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, Canada
| |
Collapse
|
12
|
Cano-Ramírez C, López MF, Cesar-Ayala AK, Pineda-Martínez V, Sullivan BT, Zúñiga G. Isolation and expression of cytochrome P450 genes in the antennae and gut of pine beetle Dendroctonus rhizophagus (Curculionidae: Scolytinae) following exposure to host monoterpenes. Gene 2013; 520:47-63. [DOI: 10.1016/j.gene.2012.11.059] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/17/2012] [Accepted: 11/29/2012] [Indexed: 11/15/2022]
|
13
|
Song M, Kim AC, Gorzalski AJ, MacLean M, Young S, Ginzel MD, Blomquist GJ, Tittiger C. Functional characterization of myrcene hydroxylases from two geographically distinct Ips pini populations. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:336-343. [PMID: 23376633 DOI: 10.1016/j.ibmb.2013.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 01/07/2013] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
Ips pini bark beetles use myrcene hydroxylases to produce the aggregation pheromone component, ipsdienol, from myrcene. The enantiomeric ratio of pheromonal ipsdienol is an important prezygotic mating isolation mechanism of I. pini and differs among geographically distinct populations. We explored the substrate and product ranges of myrcene hydroxylases (CYP9T2 and CYP9T3) from reproductively-isolated western and eastern I. pini. The two cytochromes P450 share 94% amino acid identity. CYP9T2 mRNA levels were not induced in adults exposed to myrcene-saturated atmosphere. Functional assays of recombinant enzymes showed both hydroxylated myrcene, (+)- and (-)-α-pinene, 3-carene, and R-(+)-limonene, but not α-phellandrene, (-)-β-pinene, γ-terpinene, or terpinolene, with evidence that CYP9T2 strongly preferred myrcene over other substrates. They differed in the enantiomeric ratios of ipsdienol produced from myrcene, and in the products resulting from different α-pinene enantiomers. These data provide new information regarding bark beetle pheromone evolution and factors affecting cytochrome P450 structure-function relationships.
Collapse
Affiliation(s)
- Minmin Song
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | | | | | | | | | | | | | | |
Collapse
|