1
|
Jensen MA, Blatz DJ, LaLone CA. Defining the Biologically Plausible Taxonomic Domain of Applicability of an Adverse Outcome Pathway: A Case Study Linking Nicotinic Acetylcholine Receptor Activation to Colony Death. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:71-87. [PMID: 36263952 PMCID: PMC10100214 DOI: 10.1002/etc.5501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/30/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
For the majority of developed adverse outcome pathways (AOPs), the taxonomic domain of applicability (tDOA) is typically narrowly defined with a single or a handful of species. Defining the tDOA of an AOP is critical for use in regulatory decision-making, particularly when considering protection of untested species. Structural and functional conservation are two elements that can be considered when defining the tDOA. Publicly accessible bioinformatics approaches, such as the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool, take advantage of existing and growing databases of protein sequence and structural information to provide lines of evidence toward structural conservation of key events (KEs) and KE relationships (KERs) of an AOP. It is anticipated that SeqAPASS results could readily be combined with data derived from empirical toxicity studies to provide evidence of both structural and functional conservation, to define the tDOA for KEs, KERs, and AOPs. Such data could be incorporated in the AOP-Wiki as lines of evidence toward biological plausibility for the tDOA. We present a case study describing the process of using bioinformatics to define the tDOA of an AOP using an AOP linking the activation of the nicotinic acetylcholine receptor to colony death/failure in Apis mellifera. Although the AOP was developed to gain a particular biological understanding relative to A. mellifera health, applicability to other Apis bees, as well as non-Apis bees, has yet to be defined. The present study demonstrates how bioinformatics can be utilized to rapidly take advantage of existing protein sequence and structural knowledge to enhance and inform the tDOA of KEs, KERs, and AOPs, focusing on providing evidence of structural conservation across species. Environ Toxicol Chem 2023;42:71-87. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Marissa A. Jensen
- Department of Biology, Swenson College of Science and EngineeringUniversity of Minnesota DuluthDuluthMinnesotaUSA
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | | | - Carlie A. LaLone
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| |
Collapse
|
2
|
Zhang W, Yao Y, Wang H, Liu Z, Ma L, Wang Y, Xu B. The Roles of Four Novel P450 Genes in Pesticides Resistance in Apis cerana cerana Fabricius: Expression Levels and Detoxification Efficiency. Front Genet 2019; 10:1000. [PMID: 31803222 PMCID: PMC6873825 DOI: 10.3389/fgene.2019.01000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Cytochrome P450 monooxygenases (P450s) are widely distributed multifunctional enzymes that play crucial roles in insecticide detoxification or activation. In this study, to ascertain the molecular mechanisms of P450s in the detoxification of Chinese honeybees, Apis cerana cerana Fabricius (A. c. cerana), we isolated and characterized four new P450 genes (Acc301A1, Acc303A1, Acc306A1, and Acc315A1). The open reading frames of the four genes are 1263 to 1608 bp in length and encode four predicted polypeptides of 499 to 517 amino acids in length. Real-time quantitative PCR (RT-qPCR) results showed that expression of all four genes was observed in all developmental stages. In addition, Western blot assays further indicated the RT-qPCR results that showed that the four genes were induced by pesticide (thiamethoxam, deltamethrin, dichlorovos, and paraquat) treatments. Furthermore, we also used double-stranded RNA-mediated RNA interference to investigate the functions of Acc301A1, Acc303A1,and Acc306A1 in the antioxidant defense of honeybees. RNA interference targeting Acc301A1, Acc303A1, and Acc306A1 significantly increased the mortality rate of A. c. cerana upon pesticide treatment. These results provide important evidence about the role of the four P450 genes involved in detoxification.
Collapse
Affiliation(s)
- Weixing Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai´an, China
| | - Yufeng Yao
- College of Animal Science and Technology, Shandong Agricultural University, Tai´an, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai´an, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai´an, China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Tai´an, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai´an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai´an, China
| |
Collapse
|
3
|
Suenami S, Miyazaki R, Kubo T. Detection of Phospholipase C Activity in the Brain Homogenate from the Honeybee. J Vis Exp 2018. [PMID: 30272662 DOI: 10.3791/58173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The honeybee is a model organism for evaluating complex behaviors and higher brain function, such as learning, memory, and division of labor. The mushroom body (MB) is a higher brain center proposed to be the neural substrate of complex honeybee behaviors. Although previous studies identified genes and proteins that are differentially expressed in the MBs and other brain regions, the activities of the proteins in each region are not yet fully understood. To reveal the functions of these proteins in the brain, pharmacologic analysis is a feasible approach, but it is first necessary to confirm that pharmacologic manipulations indeed alter the protein activity in these brain regions. We previously identified a higher expression of genes encoding phospholipase C (PLC) in the MBs than in other brain regions, and pharmacologically assessed the involvement of PLC in honeybee behavior. In that study, we biochemically tested two pharmacologic agents and confirmed that they decreased PLC activity in the MBs and other brain regions. Here, we present a detailed description of how to detect PLC activity in honeybee brain homogenate. In this assay system, homogenates derived from different brain regions are reacted with a synthetic fluorogenic substrate, and fluorescence resulting from PLC activity is quantified and compared between brain regions. We also describe our evaluation of the inhibitory effects of certain drugs on PLC activity using the same system. Although this system is likely affected by other endogenous fluorescence compounds and/or the absorbance of the assay components and tissues, the measurement of PLC activity using this system is safer and easier than that using the traditional assay, which requires radiolabeled substrates. The simple procedure and manipulations allow us to examine PLC activity in the brains and other tissues of honeybees involved in different social tasks.
Collapse
Affiliation(s)
- Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology; Department of Biological Sciences, Graduate School of Science, The University of Tokyo;
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| |
Collapse
|
4
|
Full rescue of an inactive olfactory receptor mutant by elimination of an allosteric ligand-gating site. Sci Rep 2018; 8:9631. [PMID: 29941999 PMCID: PMC6018111 DOI: 10.1038/s41598-018-27790-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/31/2018] [Indexed: 11/25/2022] Open
Abstract
Ligand-gating has recently been proposed as a novel mechanism to regulate olfactory receptor sensitivity. TAAR13c, the zebrafish olfactory receptor activated by the death-associated odor cadaverine, appears to possess an allosteric binding site for cadaverine, which was assumed to block progress of the ligand towards the internal orthosteric binding-and-activation site. Here we have challenged the suggested gating mechanism by modeling the entry tunnel for the ligand as well as the ligand path inside the receptor. We report an entry tunnel, whose opening is blocked by occupation of the external binding site by cadaverine, confirming the hypothesized gating mechanism. A multistep docking algorithm suggested a plausible path for cadaverine from the allosteric to the orthosteric binding-and-activation site. Furthermore we have combined a gain-of-function gating site mutation and a loss-of-function internal binding site mutation in one recombinant receptor. This receptor had almost wildtype ligand affinities, consistent with modeling results that showed localized effects for each mutation. A novel mutation of the suggested gating site resulted in increased receptor ligand affinity. In summary both the experimental and the modeling results provide further evidence for the proposed gating mechanism, which surprisingly exhibits pronounced similarity to processes described for some metabotropic neurotransmitter receptors.
Collapse
|
5
|
Diao Q, Sun L, Zheng H, Zeng Z, Wang S, Xu S, Zheng H, Chen Y, Shi Y, Wang Y, Meng F, Sang Q, Cao L, Liu F, Zhu Y, Li W, Li Z, Dai C, Yang M, Chen S, Chen R, Zhang S, Evans JD, Huang Q, Liu J, Hu F, Su S, Wu J. Genomic and transcriptomic analysis of the Asian honeybee Apis cerana provides novel insights into honeybee biology. Sci Rep 2018; 8:822. [PMID: 29339745 PMCID: PMC5770391 DOI: 10.1038/s41598-017-17338-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/23/2017] [Indexed: 11/23/2022] Open
Abstract
The Asian honeybee Apis cerana is one of two bee species that have been commercially kept with immense economic value. Here we present the analysis of genomic sequence and transcriptomic exploration for A. cerana as well as the comparative genomic analysis of the Asian honeybee and the European honeybee A. mellifera. The genome and RNA-seq data yield new insights into the behavioral and physiological resistance to the parasitic mite Varroa the evolution of antimicrobial peptides, and the genetic basis for labor division in A. cerana. Comparison of genes between the two sister species revealed genes specific to A. cerana, 54.5% of which have no homology to any known proteins. The observation that A. cerana displayed significantly more vigilant grooming behaviors to the presence of Varroa than A. mellifera in conjunction with gene expression analysis suggests that parasite-defensive grooming in A. cerana is likely triggered not only by exogenous stimuli through visual and olfactory detection of the parasite, but also by genetically endogenous processes that periodically activates a bout of grooming to remove the ectoparasite. This information provides a valuable platform to facilitate the traits unique to A. cerana as well as those shared with other social bees for health improvement.
Collapse
Affiliation(s)
- Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Liangxian Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,Molecular Biology and Pharmacology Key Laboratory of Fujian Advanced Education, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Zhijiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Shengyue Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Shufa Xu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanping Chen
- USDA-ARS Beltsville Bee Research Laboratory, Beltsville, Maryland, 20705, USA
| | - Yuanyuan Shi
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Fei Meng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingliang Sang
- Molecular Biology and Pharmacology Key Laboratory of Fujian Advanced Education, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Lianfei Cao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fang Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Wenfeng Li
- USDA-ARS Beltsville Bee Research Laboratory, Beltsville, Maryland, 20705, USA
| | - Zhiguo Li
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Congjie Dai
- Molecular Biology and Pharmacology Key Laboratory of Fujian Advanced Education, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Minjun Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Shenglu Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Runsheng Chen
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaowu Zhang
- ARC Centre of Excellence in Vision Science, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT 2601, Australia
| | - Jay D Evans
- USDA-ARS Beltsville Bee Research Laboratory, Beltsville, Maryland, 20705, USA
| | - Qiang Huang
- USDA-ARS Beltsville Bee Research Laboratory, Beltsville, Maryland, 20705, USA
| | - Jie Liu
- USDA-ARS Beltsville Bee Research Laboratory, Beltsville, Maryland, 20705, USA
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Songkun Su
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China. .,College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jie Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 10093, China.
| |
Collapse
|
6
|
LaLone CA, Villeneuve DL, Wu-Smart J, Milsk RY, Sappington K, Garber KV, Housenger J, Ankley GT. Weight of evidence evaluation of a network of adverse outcome pathways linking activation of the nicotinic acetylcholine receptor in honey bees to colony death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:751-775. [PMID: 28126277 PMCID: PMC6156782 DOI: 10.1016/j.scitotenv.2017.01.113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 04/14/2023]
Abstract
Ongoing honey bee (Apis mellifera) colony losses are of significant international concern because of the essential role these insects play in pollinating crops. Both chemical and non-chemical stressors have been implicated as possible contributors to colony failure; however, the potential role(s) of commonly-used neonicotinoid insecticides has emerged as particularly concerning. Neonicotinoids act on the nicotinic acetylcholine receptors (nAChRs) in the central nervous system to eliminate pest insects. However, mounting evidence indicates that neonicotinoids also may adversely affect beneficial pollinators, such as the honey bee, via impairments on learning and memory, and ultimately foraging success. The specific mechanisms linking activation of the nAChR to adverse effects on learning and memory are uncertain. Additionally, clear connections between observed impacts on individual bees and colony level effects are lacking. The objective of this review was to develop adverse outcome pathways (AOPs) as a means to evaluate the biological plausibility and empirical evidence supporting (or refuting) the linkage between activation of the physiological target site, the nAChR, and colony level consequences. Potential for exposure was not a consideration in AOP development and therefore this effort should not be considered a risk assessment. Nonetheless, development of the AOPs described herein has led to the identification of research gaps which, for example, may be of high priority in understanding how perturbation of pathways involved in neurotransmission can adversely affect normal colony functions, causing colony instability and subsequent bee population failure. A putative AOP network was developed, laying the foundation for further insights as to the role of combined chemical and non-chemical stressors in impacting bee populations. Insights gained from the AOP network assembly, which more realistically represents multi-stressor impacts on honey bee colonies, are promising toward understanding common sensitive nodes in key biological pathways and identifying where mitigation strategies may be focused to reduce colony losses.
Collapse
Affiliation(s)
- Carlie A LaLone
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Daniel L Villeneuve
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Judy Wu-Smart
- University of Nebraska-Lincoln, Department of Entomology, 105A Entomology Hall, Lincoln, NE 68583, USA
| | - Rebecca Y Milsk
- ORISE Research Participation Program, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Keith Sappington
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington D.C. 20460, USA
| | - Kristina V Garber
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington D.C. 20460, USA
| | - Justin Housenger
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington D.C. 20460, USA
| | - Gerald T Ankley
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| |
Collapse
|
7
|
Reim T, Balfanz S, Baumann A, Blenau W, Thamm M, Scheiner R. AmTAR2: Functional characterization of a honeybee tyramine receptor stimulating adenylyl cyclase activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 80:91-100. [PMID: 27939988 DOI: 10.1016/j.ibmb.2016.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
The biogenic monoamines norepinephrine and epinephrine regulate important physiological functions in vertebrates. Insects such as honeybees do not synthesize these neuroactive substances. Instead, they employ octopamine and tyramine for comparable physiological functions. These biogenic amines activate specific guanine nucleotide-binding (G) protein-coupled receptors (GPCRs). Based on pharmacological data obtained on heterologously expressed receptors, α- and β-adrenergic-like octopamine receptors are better activated by octopamine than by tyramine. Conversely, GPCRs forming the type 1 tyramine receptor clade (synonymous to octopamine/tyramine receptors) are better activated by tyramine than by octopamine. More recently, receptors were characterized which are almost exclusively activated by tyramine, thus forming an independent type 2 tyramine receptor clade. Functionally, type 1 tyramine receptors inhibit adenylyl cyclase activity, leading to a decrease in intracellular cAMP concentration ([cAMP]i). Type 2 tyramine receptors can mediate Ca2+ signals or both Ca2+ signals and effects on [cAMP]i. We here provide evidence that the honeybee tyramine receptor 2 (AmTAR2), when heterologously expressed in flpTM cells, exclusively causes an increase in [cAMP]i. The receptor displays a pronounced preference for tyramine over octopamine. Its activity can be blocked by a series of established antagonists, of which mianserin and yohimbine are most efficient. The functional characterization of two tyramine receptors from the honeybee, AmTAR1 (previously named AmTYR1) and AmTAR2, which respond to tyramine by changing cAMP levels in opposite direction, is an important step towards understanding the actions of tyramine in honeybee behavior and physiology, particularly in comparison to the effects of octopamine.
Collapse
Affiliation(s)
- Tina Reim
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Sabine Balfanz
- Institute of Complex Systems, ICS-4, Forschungszentrum Jülich, Jülich, Germany
| | - Arnd Baumann
- Institute of Complex Systems, ICS-4, Forschungszentrum Jülich, Jülich, Germany
| | - Wolfgang Blenau
- Zoological Institute, University of Cologne, Cologne, Germany
| | - Markus Thamm
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany; Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Ricarda Scheiner
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany; Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
8
|
Sharma K, Ahuja G, Hussain A, Balfanz S, Baumann A, Korsching SI. Elimination of a ligand gating site generates a supersensitive olfactory receptor. Sci Rep 2016; 6:28359. [PMID: 27323929 PMCID: PMC4914996 DOI: 10.1038/srep28359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/01/2016] [Indexed: 11/18/2022] Open
Abstract
Olfaction poses one of the most complex ligand-receptor matching problems in biology due to the unparalleled multitude of odor molecules facing a large number of cognate olfactory receptors. We have recently deorphanized an olfactory receptor, TAAR13c, as a specific receptor for the death-associated odor cadaverine. Here we have modeled the cadaverine/TAAR13c interaction, exchanged predicted binding residues by site-directed mutagenesis, and measured the activity of the mutant receptors. Unexpectedly we observed a binding site for cadaverine at the external surface of the receptor, in addition to an internal binding site, whose mutation resulted in complete loss of activity. In stark contrast, elimination of the external binding site generated supersensitive receptors. Modeling suggests this site to act as a gate, limiting access of the ligand to the internal binding site and thereby downregulating the affinity of the native receptor. This constitutes a novel mechanism to fine-tune physiological sensitivity to socially relevant odors.
Collapse
Affiliation(s)
- Kanika Sharma
- Institute of Genetics, Biocenter, University at Cologne, Zülpicherstrasse 47a, 50674 Cologne, Germany
| | - Gaurav Ahuja
- Institute of Genetics, Biocenter, University at Cologne, Zülpicherstrasse 47a, 50674 Cologne, Germany
| | - Ashiq Hussain
- Institute of Genetics, Biocenter, University at Cologne, Zülpicherstrasse 47a, 50674 Cologne, Germany
| | - Sabine Balfanz
- Institute of Complex Systems (ICS-4), Research Center Jülich, 52428 Jülich, Germany
| | - Arnd Baumann
- Institute of Complex Systems (ICS-4), Research Center Jülich, 52428 Jülich, Germany
| | - Sigrun I Korsching
- Institute of Genetics, Biocenter, University at Cologne, Zülpicherstrasse 47a, 50674 Cologne, Germany
| |
Collapse
|
9
|
Meisenberg A, Kaschuba D, Balfanz S, Jordan N, Baumann A. Molecular and functional profiling of histamine receptor-mediated calcium ion signals in different cell lines. Anal Biochem 2015; 486:96-101. [PMID: 26151682 DOI: 10.1016/j.ab.2015.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
Abstract
Calcium ions (Ca(2+)) play a pivotal role in cellular physiology. Often Ca(2+)-dependent processes are studied in commonly available cell lines. To induce Ca(2+) signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca(2+) signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca(2+) signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca(2+) in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca(2+) signals and Ca(2+) oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca(2+) signaling processes directly and (ii) these cell lines are suitable for calibrating Ca(2+) biosensors in situ based on histamine receptor evoked responses.
Collapse
Affiliation(s)
- Annika Meisenberg
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Dagmar Kaschuba
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Sabine Balfanz
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Nadine Jordan
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Arnd Baumann
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
10
|
Eisenhardt D. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera). ACTA ACUST UNITED AC 2014; 21:534-42. [PMID: 25225299 PMCID: PMC4175491 DOI: 10.1101/lm.033118.113] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The honeybee (Apis mellifera) has long served as an invertebrate model organism for reward learning and memory research. Its capacity for learning and memory formation is rooted in the ecological need to efficiently collect nectar and pollen during summer to ensure survival of the hive during winter. Foraging bees learn to associate a flower's characteristic features with a reward in a way that resembles olfactory appetitive classical conditioning, a learning paradigm that is used to study mechanisms underlying learning and memory formation in the honeybee. Due to a plethora of studies on appetitive classical conditioning and phenomena related to it, the honeybee is one of the best characterized invertebrate model organisms from a learning psychological point of view. Moreover, classical conditioning and associated behavioral phenomena are surprisingly similar in honeybees and vertebrates, suggesting a convergence of underlying neuronal processes, including the molecular mechanisms that contribute to them. Here I review current thinking on the molecular mechanisms underlying long-term memory (LTM) formation in honeybees following classical conditioning and extinction, demonstrating that an in-depth analysis of the molecular mechanisms of classical conditioning in honeybees might add to our understanding of associative learning in honeybees and vertebrates.
Collapse
Affiliation(s)
- Dorothea Eisenhardt
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Neurobiology, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
11
|
Mizunami M, Nemoto Y, Terao K, Hamanaka Y, Matsumoto Y. Roles of calcium/calmodulin-dependent kinase II in long-term memory formation in crickets. PLoS One 2014; 9:e107442. [PMID: 25215889 PMCID: PMC4162583 DOI: 10.1371/journal.pone.0107442] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 08/18/2014] [Indexed: 12/29/2022] Open
Abstract
Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a key molecule in many systems of learning and memory in vertebrates, but roles of CaMKII in invertebrates have not been characterized in detail. We have suggested that serial activation of NO/cGMP signaling, cyclic nucleotide-gated channel, Ca2+/CaM and cAMP signaling participates in long-term memory (LTM) formation in olfactory conditioning in crickets, and here we show participation of CaMKII in LTM formation and propose its site of action in the biochemical cascades. Crickets subjected to 3-trial conditioning to associate an odor with reward exhibited memory that lasts for a few days, which is characterized as protein synthesis-dependent LTM. In contrast, animals subjected to 1-trial conditioning exhibited memory that lasts for only several hours (mid-term memory, MTM). Injection of a CaMKII inhibitor prior to 3-trial conditioning impaired 1-day memory retention but not 1-hour memory retention, suggesting that CaMKII participates in LTM formation but not in MTM formation. Animals injected with a cGMP analogue, calcium ionophore or cAMP analogue prior to 1-trial conditioning exhibited 1-day retention, and co-injection of a CaMKII inhibitor impaired induction of LTM by the cGMP analogue or that by the calcium ionophore but not that by the cAMP analogue, suggesting that CaMKII is downstream of cGMP production and Ca2+ influx and upstream of cAMP production in biochemical cascades for LTM formation. Animals injected with an adenylyl cyclase (AC) activator prior to 1-trial conditioning exhibited 1-day retention. Interestingly, a CaMKII inhibitor impaired LTM induction by the AC activator, although AC is expected to be a downstream target of CaMKII. The results suggest that CaMKII interacts with AC to facilitate cAMP production for LTM formation. We propose that CaMKII serves as a key molecule for interplay between Ca2+ signaling and cAMP signaling for LTM formation, a new role of CaMKII in learning and memory.
Collapse
Affiliation(s)
- Makoto Mizunami
- Faculty of Science, Hokkaido University, Sapporo, Japan
- * E-mail:
| | - Yuko Nemoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kanta Terao
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | | | - Yukihisa Matsumoto
- Faculty of Science, Hokkaido University, Sapporo, Japan
- Faculty of Liberal Arts, Tokyo Medical and Dental University, Ichikawa, Japan
| |
Collapse
|
12
|
Matsumoto Y, Sandoz JC, Devaud JM, Lormant F, Mizunami M, Giurfa M. Cyclic nucleotide-gated channels, calmodulin, adenylyl cyclase, and calcium/calmodulin-dependent protein kinase II are required for late, but not early, long-term memory formation in the honeybee. Learn Mem 2014; 21:272-86. [PMID: 24741108 PMCID: PMC3994501 DOI: 10.1101/lm.032037.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee Apis mellifera, olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM) are formed upon multiple-trial conditioning: an early phase (e-LTM) which depends on translation from already available mRNA, and a late phase (l-LTM) which requires de novo transcription and translation. Here we combined olfactory PER conditioning and neuropharmacological inhibition and studied the involvement of the NO-cGMP pathway, and of specific molecules, such as cyclic nucleotide-gated channels (CNG), calmodulin (CaM), adenylyl cyclase (AC), and Ca(2+)/calmodulin-dependent protein kinase (CaMKII), in the formation of olfactory LTM in bees. We show that in addition to NO-cGMP and cAMP-PKA, CNG channels, CaM, AC, and CaMKII also participate in the formation of a l-LTM (72-h post-conditioning) that is specific for the learned odor. Importantly, the same molecules are dispensable for olfactory learning and for the formation of both MTM (in the minute and hour range) and e-LTM (24-h post-conditioning), thus suggesting that the signaling pathways leading to l-LTM or e-LTM involve different molecular actors.
Collapse
Affiliation(s)
- Yukihisa Matsumoto
- Université de Toulouse, UPS, Research Centre on Animal Cognition, 31062 Toulouse Cedex 9, France
| | | | | | | | | | | |
Collapse
|
13
|
Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera). PLoS One 2013; 8:e82407. [PMID: 24324783 PMCID: PMC3855752 DOI: 10.1371/journal.pone.0082407] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/23/2013] [Indexed: 11/27/2022] Open
Abstract
Background Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Methods Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. Results The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. Conclusions This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.
Collapse
|