1
|
Jiang S, Gu Q, Yu X. Detection of insecticides by Tetronarce californica acetylcholinesterase via expression and in silico analysis. Appl Microbiol Biotechnol 2023; 107:7657-7671. [PMID: 37831186 DOI: 10.1007/s00253-023-12780-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/16/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
The acetylcholinesterase (AChE) is involved in termination of synaptic transmission at cholinergic synapses and plays a vital role in the insecticide detection and inhibitor screening. Here, we report the heterologous expression of an AChE from Tetronarce californica (TcA) in Escherichia coli (E. coli) as a soluble active protein. TcA was immobilized in calcium alginate beads; the morphology, biochemical properties, and insecticide detection performance of free and immobilized TcA were characterized. Moreover, we used sequence, structure-based approaches, and molecular docking to investigate structural and functional characterization of TcA. The results showed that TcA exhibited a specific activity of 102 U/mg, with optimal activity at pH 8.0 and 30 °C. Immobilized TcA demonstrated superior thermal stability, pH stability, and storage stability compared to the free enzyme. The highest sensitivity of free TcA was observed with trichlorfon, whereas immobilized TcA showed reduced IC50 values towards tested insecticides by 3 to 180-fold. Molecular docking analysis revealed the interaction of trichlorfon, acephate, isoprocarb, λ-cyhalothrin, and fenpropathrin in the active site gorge of TcA, particularly mediated through the formation of hydrogen bonds and π-π stacking. Therefore, TcA expressed heterologously in E. coli is a promising candidate for applications in food safety and environmental analysis. KEY POINTS: • T. californica AChE was expressed solubly in prokaryotic system. • The biochemical properties of free/immobilized enzyme were characterized. • The sensitivity of enzyme to insecticides was evaluated in vitro and in silico.
Collapse
Affiliation(s)
- Shuoqi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China
| | - Qiuya Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Li-Hu Road, Bin-Hu District, Wuxi, Jiangsu, China.
| |
Collapse
|
2
|
Miao Z, Xiong C, Cao X, Shan T, Jin Q, Jiang H. Genome-wide identification, classification, and expression profiling of serine esterases and other esterase-related proteins in the tobacco hornworm, Manduca sexta. INSECT SCIENCE 2023; 30:338-350. [PMID: 36043911 PMCID: PMC11445795 DOI: 10.1111/1744-7917.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/05/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Serine esterases (SEs) are hydrolases that catalyze the conversion of carboxylic esters into acids and alcohols. Lipases and carboxylesterases constitute two major groups of SEs. Although over a hundred of insect genomes are known, systematic identification and classification of SEs are rarely performed, likely due to large size and complex composition of the gene family in each species. Considering their key roles in lipid metabolism and other physiological processes, we have categorized 144 M. sexta SEs and SE homologs (SEHs), 114 of which contain a motif of GXSXG. Multiple sequence alignment and phylogenetic tree analysis have revealed 39 neutral lipases (NLs), 3 neutral lipase homologs (NLHs), 11 acidic lipases (ALs), 3 acidic lipase homologs (ALHs), a lipase-3, a triglyceride lipase, a monoglyceride lipase, a hormone-sensitive lipase, and a GDSL lipase. Eighty-three carboxylesterase genes encode 29 α-esterases (AEs), 12 AEHs (e.g., SEH4-1-3), 20 feruloyl esterases (FEs), 2 FEHs, 2 β-esterases (BEs), 2 integument esterases (IEs), 1 IEH, 4 juvenile hormone esterases, 2 acetylcholinesterases, gliotactin, 6 neuroligins, neurotactin, and an uncharacteristic esterase homolog. In addition to these GXSXG proteins, we have identified 26 phospholipases and 13 thioesterases. Expression profiling of these genes in specific tissues and stages has provided insights into their functions including digestion, detoxification, hormone processing, neurotransmission, reproduction, and developmental regulation. In summary, we have established a framework of information on SEs and related proteins in M. sexta to stimulate their research in the model species and comparative investigations in agricultural pests or disease vectors.
Collapse
Affiliation(s)
- Zelong Miao
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Chao Xiong
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Xiaolong Cao
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Tisheng Shan
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Qiao Jin
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Oklahoma, Stillwater, USA
| |
Collapse
|
3
|
Yang X, Li X, Cang X, Guo J, Shen X, Wu K. Influence of seasonal migration on the development of the insecticide resistance of oriental armyworm (Mythimna separata) to λ-cyhalothrin. PEST MANAGEMENT SCIENCE 2022; 78:1194-1205. [PMID: 34825453 DOI: 10.1002/ps.6736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The seasonal long-distance migration of pests amongst different seasonal habitats may encounter different degrees of insecticide selection pressure, but knowledge of the evolution of resistance and the underlying mechanisms remains sparse. Here, we show that the development of resistance of the oriental armyworm Mythimna separata (Walker), a notorious agricultural pest that migrates between northern and northeast China seasonally across the Bohai Gulf, is influenced by seasonal migration. RESULTS There are two conspicuous migrations of M. separata, the northeastwards population in the second half of May and the returning population in the second half of August, between northern and northeast China per year, and the abundance values of migrants from April to October are significantly different. The resistance levels of seasonal migratory populations to λ-cyhalothrin vary in different months, and the resistance levels and estimated frequency of the resistance allele of the first northeastward population (second half of May, May.-2) in spring are significantly higher than those of the returning populations in autumn. Moreover, resistance decline was observed in migrating population Jul.-2, with the resistance levels in the F1 progeny higher than those in their F2 progeny. Synergism tests indicate that cytochrome P450 monooxygenases (P450s) play a major role in resistance. Enzymatic assays show that P450 activity is significantly correlated with resistance levels in migratory populations, indicating that increased P450 activity is the main mechanism of resistance. The expression levels and correlation analysis of the relative expression of P450s with resistance levels show that three (CYP9A144, CYP9G40, and CYP6B79) out of 23 genes from CYP6 and CYP9 subfamilies are potentially involved in resistance to λ-cyhalothrin. CONCLUSION Our results show that the resistance of M. separata to λ-cyhalothrin is unstable and likely to be metabolically driven by enhanced P450 activity mediated by the overexpression of multiple P450 genes. Notably, the development of resistance is probably affected by seasonal migration.
Collapse
Affiliation(s)
- Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| | - Xinru Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| | - Xinzhu Cang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianglong Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiujing Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Lazarević J, Jevremović S, Kostić I, Vuleta A, Manitašević Jovanović S, Kostić M, Šešlija Jovanović D. Assessment of Sex-Specific Toxicity and Physiological Responses to Thymol in a Common Bean Pest Acanthoscelides obtectus Say. Front Physiol 2022; 13:842314. [PMID: 35250641 PMCID: PMC8892178 DOI: 10.3389/fphys.2022.842314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acanthoscelides obtectus Say (Coleoptera: Chrysomelidae: Bruchinae), is one of the most important pests of the common bean Phaseolus vulgaris L. Without appropriate management it may cause significant seed loss in storages. In search for means of environmentally safe and effective protection of beans we assessed biological activity of thymol, an oxygenated monoterpene present in essential oils of many aromatic plants. We studied contact toxicity of thymol on bean seeds and its effects on adult longevity and emergence in F1 generation. Furthermore, we determined acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT), mixed-function oxidase (MFO), carboxylesterases (CarE) and glutathione S-transferase (GST) activities in response to 24 h exposure of beetles to sublethal and lethal thymol concentrations. Our results showed that thymol decreased adult survival, longevity and percentage of adult emergence. Higher median lethal concentration (LC50) was recorded in females indicating their higher tolerance comparing to males. Overall, activities of SOD, CAT and CarE increased at sublethal and MFO increased at both sublethal and lethal thymol concentrations. On the other hand, GST and AChE activities decreased along with the increase in thymol concentrations from sublethal (1/5 of LC50, 1/2 of LC50) to lethal (LC50). Enzyme responses to the presence of thymol on bean seed were sex-specific. In the control group females had lower CarE and higher SOD, CAT and GST activity than males. In treatment groups, females had much higher CAT activity and much lower CarE activity than males. Our results contribute to deeper understanding of physiological mechanisms underlying thymol toxicity and tolerance which should be taken into account in future formulation of a thymol-based insecticide.
Collapse
|
5
|
Adedeji EO, Ogunlana OO, Fatumo S, Beder T, Ajamma Y, Koenig R, Adebiyi E. Anopheles metabolic proteins in malaria transmission, prevention and control: a review. Parasit Vectors 2020; 13:465. [PMID: 32912275 PMCID: PMC7488410 DOI: 10.1186/s13071-020-04342-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022] Open
Abstract
The increasing resistance to currently available insecticides in the malaria vector, Anopheles mosquitoes, hampers their use as an effective vector control strategy for the prevention of malaria transmission. Therefore, there is need for new insecticides and/or alternative vector control strategies, the development of which relies on the identification of possible targets in Anopheles. Some known and promising targets for the prevention or control of malaria transmission exist among Anopheles metabolic proteins. This review aims to elucidate the current and potential contribution of Anopheles metabolic proteins to malaria transmission and control. Highlighted are the roles of metabolic proteins as insecticide targets, in blood digestion and immune response as well as their contribution to insecticide resistance and Plasmodium parasite development. Furthermore, strategies by which these metabolic proteins can be utilized for vector control are described. Inhibitors of Anopheles metabolic proteins that are designed based on target specificity can yield insecticides with no significant toxicity to non-target species. These metabolic modulators combined with each other or with synergists, sterilants, and transmission-blocking agents in a single product, can yield potent malaria intervention strategies. These combinations can provide multiple means of controlling the vector. Also, they can help to slow down the development of insecticide resistance. Moreover, some metabolic proteins can be modulated for mosquito population replacement or suppression strategies, which will significantly help to curb malaria transmission.
Collapse
Affiliation(s)
- Eunice Oluwatobiloba Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Olubanke Olujoke Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State Nigeria
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, Keppel St, Bloomsbury, London, UK
| | - Thomas Beder
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Yvonne Ajamma
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
| | - Rainer Koenig
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State Nigeria
- Computer and Information Sciences, Covenant University, Ota, Ogun State Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), G200, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Knutsson S, Engdahl C, Kumari R, Forsgren N, Lindgren C, Kindahl T, Kitur S, Wachira L, Kamau L, Ekström F, Linusson A. Noncovalent Inhibitors of Mosquito Acetylcholinesterase 1 with Resistance-Breaking Potency. J Med Chem 2018; 61:10545-10557. [PMID: 30339371 DOI: 10.1021/acs.jmedchem.8b01060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Resistance development in insects significantly threatens the important benefits obtained by insecticide usage in vector control of disease-transmitting insects. Discovery of new chemical entities with insecticidal activity is highly desired in order to develop new insecticide candidates. Here, we present the design, synthesis, and biological evaluation of phenoxyacetamide-based inhibitors of the essential enzyme acetylcholinesterase 1 (AChE1). AChE1 is a validated insecticide target to control mosquito vectors of, e.g., malaria, dengue, and Zika virus infections. The inhibitors combine a mosquito versus human AChE selectivity with a high potency also for the resistance-conferring mutation G122S; two properties that have proven challenging to combine in a single compound. Structure-activity relationship analyses and molecular dynamics simulations of inhibitor-protein complexes have provided insights that elucidate the molecular basis for these properties. We also show that the inhibitors demonstrate in vivo insecticidal activity on disease-transmitting mosquitoes. Our findings support the concept of noncovalent, selective, and resistance-breaking inhibitors of AChE1 as a promising approach for future insecticide development.
Collapse
Affiliation(s)
- Sofie Knutsson
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| | - Cecilia Engdahl
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| | - Rashmi Kumari
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| | - Nina Forsgren
- Swedish Defence Research Agency , CBRN Defence and Security , SE-906 21 Umeå , Sweden
| | - Cecilia Lindgren
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| | - Tomas Kindahl
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| | - Stanley Kitur
- Centre for Biotechnology Research and Development , Kenya Medical Research Institute , Nairobi , Kenya
| | - Lucy Wachira
- Centre for Biotechnology Research and Development , Kenya Medical Research Institute , Nairobi , Kenya
| | - Luna Kamau
- Centre for Biotechnology Research and Development , Kenya Medical Research Institute , Nairobi , Kenya
| | - Fredrik Ekström
- Swedish Defence Research Agency , CBRN Defence and Security , SE-906 21 Umeå , Sweden
| | - Anna Linusson
- Department of Chemistry , Umeå University , SE-901 82 Umeå , Sweden
| |
Collapse
|
7
|
Carlier PR, Bloomquist JR, Totrov M, Li J. Discovery of Species-selective and Resistance-breaking Anticholinesterase Insecticides for the Malaria Mosquito. Curr Med Chem 2017; 24:2946-2958. [PMID: 28176636 DOI: 10.2174/0929867324666170206130024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/20/2016] [Accepted: 01/20/2017] [Indexed: 11/22/2022]
Abstract
Great reductions in malaria mortality have been accomplished in the last 15 years, in part due to the widespread roll-out of insecticide-treated bednets across sub-Saharan Africa. To date, these nets only employ pyrethroids, insecticides that target the voltage-gated sodium ion channel of the malaria vector, Anopheles gambiae. Due to the growing emergence of An. gambiae strains that are resistant to pyrethroids, there is an urgent need to develop new public health insecticides that engage a different target and possess low mammalian toxicity. In this review, we will describe efforts to develop highly species-specific and resistance-breaking inhibitors of An. gambiae acetylcholinesterase (AgAChE). These efforts have been greatly aided by advances in knowledge of the structure of the enzyme, and two major inhibitor design strategies have been explored. Since AgAChE possesses an unpaired Cys residue not present in mammalian AChE, a logical strategy to achieve selective inhibition involves design of compounds that could ligate that Cys. A second strategy involves the design of new molecules to target the catalytic serine of the enzyme. Here the challenge is not only to achieve high inhibition selectivity vs human AChE, but also to demonstrate toxicity to An. gambiae that carry the G119S resistance mutation of AgAChE. The advances made and challenges remaining will be presented. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity".
Collapse
Affiliation(s)
- Paul R Carlier
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061. United States
| | - Jeffrey R Bloomquist
- Department of Entomology and Nematology and Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610-00009. United States
| | - Max Totrov
- Molsoft LLC, 11199 Sorrento Valley Road, San Diego, CA 92121. United States
| | - Jianyong Li
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061. United States
| |
Collapse
|
8
|
Engdahl C, Knutsson S, Ekström F, Linusson A. Discovery of Selective Inhibitors Targeting Acetylcholinesterase 1 from Disease-Transmitting Mosquitoes. J Med Chem 2016; 59:9409-9421. [DOI: 10.1021/acs.jmedchem.6b00967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cecilia Engdahl
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Sofie Knutsson
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Fredrik Ekström
- Swedish Defense Research Agency, CBRN Defense and
Security, SE-906 21 Umeå, Sweden
| | - Anna Linusson
- Department
of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
9
|
Zhou D, Liu X, Sun Y, Ma L, Shen B, Zhu C. Genomic Analysis of Detoxification Supergene Families in the Mosquito Anopheles sinensis. PLoS One 2015; 10:e0143387. [PMID: 26588704 PMCID: PMC4654499 DOI: 10.1371/journal.pone.0143387] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/04/2015] [Indexed: 01/01/2023] Open
Abstract
Anopheles sinensis is an important malaria vector in China and other Southeast Asian countries, and the emergence of insecticide resistance in this mosquito poses a serious threat to the efficacy of malaria control programs. The recently published An. sinensis genome and transcriptome provide an opportunity to understand the molecular mechanisms of insecticide resistance. Analysis of the An. sinensis genome revealed 174 detoxification genes, including 93 cytochrome P450s (P450s), 31 glutathione-S-transferases (GSTs), and 50 choline/carboxylesterases (CCEs). The gene number was similar to that in An. gambiae, but represented a decrease of 29% and 42% compared with Aedes aegypti and Culex quinquefasciatus, respectively. The considerable contraction in gene number in Anopheles mosquitoes mainly occurred in two detoxification supergene families, P450s and CCEs. The available An. sinensis transcriptome was also re-analyzed to further identify key resistance-associated detoxification genes. Among 174 detoxification genes, 124 (71%) were detected. Several candidate genes overexpressed in a deltamethrin-resistant strain (DR-strain) were identified as belonging to the CYP4 or CYP6 family of P450s and the Delta GST class. These generated data provide a basis for identifying the resistance-associated genes of An. sinensis at the molecular level.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Xianmiao Liu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
- * E-mail: (BS); (CZ)
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
- * E-mail: (BS); (CZ)
| |
Collapse
|
10
|
Luo GH, Li XH, Zhang ZC, Liu BS, Huang SJ, Fang JC. Cloning of Two Acetylcholinesterase Genes and Analysis of Point Mutations Putatively Associated with Triazophos Resistance in Chilo auricilius (Lepidoptera: Pyralidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:1289-1297. [PMID: 26470257 DOI: 10.1093/jee/tov086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/30/2015] [Indexed: 06/05/2023]
Abstract
Acetylcholinesterase (AChE) is the target of organophosphate (OP) and carbamate insecticides. Mutations in the AChE gene (ace) leading to decreased insecticide susceptibility is the main resistance mechanism in insects. In this study, two Chilo auricilius acetylcholinesterase genes, designated as Caace1 and Caace2, were cloned using RT-PCR and RACE. Caace1 cDNA is 2534 bp, with ORF of 2082 bp, and it encodes an acetylcholinesterase 1 (CaAChE1) protein comprising a calculated 693 amino acid (aa) residues. Caace2 cDNA contains 2280 bp, with a full-length ORF of 1917 bp, encoding acetylcholinesterase 2 (CaAChE2) comprising a calculated 638 aa residues. At the aa level, CaAChE1 displays the highest similarity (97%) with the Chilo suppressalis AChE1, and CaAChE2 shows the highest similarity with the C. suppressalis AChE2 (99%). From the restriction fragment length polymorphism (RFLP) PCR (RFLP-PCR) analysis, one mutation in Caace1, similar to the ace1 mutation associated with triazophos resistance in C. suppressalis, was detected. Detailed examination of field populations of C. auricilius indicated this resistance mutation in C. auricilius is still quite infrequent. Based on the assay of AChE activity and RFLP-PCR testing, an individual that contains resistance mutation has lower AChE activities, while the individual that does not contain the resistance mutation has higher AChE activities. This study provides a basis for future investigations into the mechanism of OP resistance in C. auricilius, as well as a guidance for C. auricilius control with reasonable choice of pesticides.
Collapse
Affiliation(s)
- Guang-Hua Luo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao-Huan Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi-Chun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bao-Sheng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shui-Jin Huang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Ji-Chao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Yang XQ, Zhang YL. Investigation of insecticide-resistance status of Cydia pomonella in Chinese populations. BULLETIN OF ENTOMOLOGICAL RESEARCH 2015; 105:316-325. [PMID: 25779221 DOI: 10.1017/s0007485315000115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The codling moth Cydia pomonella (L.) is an economically important fruit pest and it has been directly targeted by insecticides worldwide. Serious resistance to insecticides has been reported in many countries. As one of the most serious invasive pest, the codling moth has populated several areas in China. However, resistance to insecticides has not been reported in China. We investigated the insecticide-resistance status of four field populations from Northwestern China by applying bioassays, enzyme activities, and mutation detections. Diagnostic concentrations of lambda-cyhalothrin, chlorpyrifos-ethyl, carbaryl, and imidacloprid were determined and used in bioassays. Field populations were less susceptible to chlorpyrifos-ethyl and carbaryl than laboratory strain. Insensitive populations displayed an elevated glutathione S-transferases (GSTs) activity. Reduced carboxylesterase (CarE) activity was observed in some insecticide insensitive populations and reduced acetylcholinesterase activity was observed only in the Wuw population. The cytochrome P450 polysubstrate monooxygenases activities in four field populations were not found to be different from susceptible strains. Neither the known-resistance mutation F399V in the acetylcholinesterase (AChE) gene, ace1, nor mutations in CarE gene CpCE-1 were found in adult individuals from our field populations. Native-PAGE revealed that various CarE isozymes and AChE insensitivity were occurring among Chinese populations. Our results indicate that codling moth populations from Northwestern China were insensitivity to chlorpyrifos-ethyl and carbaryl. Increased GST activity was responsible for insecticides insensitivity. Decreased CarE activity, as well as the presence of CarE and AChE polymorphisms might also be involved in insecticides insensitivity. New management strategies for managing this pest are discussed.
Collapse
Affiliation(s)
- X-Q Yang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education,College of Plant Protection,Northwest A & F University,Yangling712100,Shaanxi,China
| | - Y-L Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education,College of Plant Protection,Northwest A & F University,Yangling712100,Shaanxi,China
| |
Collapse
|