1
|
Rallabandi HR, Choi H, Cha H, Kim YJ. Research Trends in C-Terminal Domain Nuclear Envelope Phosphatase 1. Life (Basel) 2023; 13:1338. [PMID: 37374122 DOI: 10.3390/life13061338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
C-terminal domain nuclear envelope phosphatase 1 (CTDNEP1, formerly Dullard) is a member of the newly emerging protein phosphatases and has been recognized in neuronal cell tissues in amphibians. It contains the phosphatase domain in the C-terminal, and the sequences are conserved in various taxa of organisms. CTDNEP1 has several roles in novel biological activities such as neural tube development in embryos, nuclear membrane biogenesis, regulation of bone morphogenetic protein signaling, and suppression of aggressive medulloblastoma. The three-dimensional structure of CTDNEP1 and the detailed action mechanisms of CTDNEP1's functions have yet to be determined for several reasons. Therefore, CTDNEP1 is a protein phosphatase of interest due to recent exciting and essential works. In this short review, we summarize the presented biological roles, possible substrates, interacting proteins, and research prospects of CTDNEP1.
Collapse
Affiliation(s)
- Harikrishna Reddy Rallabandi
- Department of Medicinal Bioscience and Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea
| | - Haewon Choi
- Department of Medicinal Bioscience and Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyunseung Cha
- Department of Medicinal Bioscience and Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Jun Kim
- Department of Medicinal Bioscience and Nanotechnology Research Center, Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
2
|
Antson H, Tõnissoo T, Shimmi O. The developing wing crossvein of Drosophila melanogaster: a fascinating model for signaling and morphogenesis. Fly (Austin) 2022; 16:118-127. [PMID: 35302430 PMCID: PMC8942417 DOI: 10.1080/19336934.2022.2040316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Drosophila wing has been used as a model for studying tissue growth, morphogenesis and pattern formation. The wing veins of Drosophila are composed of two distinct structures, longitudinal veins and crossveins. Although positional information of longitudinal veins is largely defined in the wing imaginal disc during the larval stage, crossvein primordial cells appear to be naive until the early pupal stage. Here, we first review how wing crossveins have been investigated in the past. Then, the developmental mechanisms underlying crossvein formation are summarized. This review focuses on how a conserved trafficking mechanism of BMP ligands is utilized for crossvein formation, and how various co-factors play roles in sustaining BMP signalling. Recent findings further reveal that crossvein development serves as an excellent model to address how BMP signal and dynamic cellular processes are coupled. This comprehensive review illustrates the uniqueness, scientific value and future perspectives of wing crossvein development as a model.
Collapse
Affiliation(s)
- Hanna Antson
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tambet Tõnissoo
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Osamu Shimmi
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Wang Y, Wang J, Xia X, Wu G. Functional Identification of Px-fringe and Px-engrailed Genes under Heat Stress in Chlorpyrifos-Resistant and -Susceptible Plutela xylostella (Lepidoptera: Plutellidae). INSECTS 2020; 11:insects11050287. [PMID: 32392846 PMCID: PMC7290670 DOI: 10.3390/insects11050287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/18/2020] [Accepted: 03/21/2020] [Indexed: 11/16/2022]
Abstract
In our previous research, the fitness cost of resistance of the diamondback moth (DBM), Plutella xylostella found in insecticide-resistant DBM (Rc-DBM) under heat stress was based on heavier damage to wing veins when compared to insecticide-susceptible DBM (Sm-DBM). To investigate the molecular mechanism of the damage to the veins between Rc- and Sm-DBM, the full-length sequences of two related genes involved in the development of wing veins, fringe (Px-fng) and engrailed (Px-en) of DBM were cloned, and the mRNA expressions of both Px-fng and Px-en were studied. The Px-fng and Px-en cDNA contained 1038 bp and 1152 bp of open reading frames (ORFs), respectively, which encoded a putative protein comprising 345 and 383 amino acids with a calculated molecular weight of 39.59 kDa and 42.69 kDa. Significantly down regulated expressions of Px-fng and Px-en under heat stress were found in pupae and adults of Rc-DBM compared to Sm-DBM, and a result of higher damage to wing veins in Rc-DBM under heat stress. Based on RNAi experiments, significant inhibitions on expressions of Px-fng and Px-en in both Sm-DBM and Rc-DBM were found when the pupae were infected by dsFng or dsEn. Corresponding to these, infections of dsFng or dsEn resulted in significant decrease of eclosion rate and increase malformation rate of DBM. Our results suggest that the higher damage of wing veins in DBM might be related to the heavier inhibitions of Px-fng and Px-en expression, and the Px-fng and Px-en are involved in the development of wings and veins.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.W.); (J.W.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingnan Wang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.W.); (J.W.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaofeng Xia
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.W.); (J.W.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (X.X.); (G.W.)
| | - Gang Wu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.W.); (J.W.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (X.X.); (G.W.)
| |
Collapse
|
4
|
Banerjee TD, Monteiro A. Molecular mechanisms underlying simplification of venation patterns in holometabolous insects. Development 2020; 147:dev.196394. [DOI: 10.1242/dev.196394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023]
Abstract
How mechanisms of pattern formation evolve has remained a central research theme in the field of evolutionary and developmental biology. The mechanism of wing vein differentiation in Drosophila is a classic text-book example of pattern formation using a system of positional-information, yet very little is known about how species with a different number of veins pattern their wings, and how insect venation patterns evolved. Here, we examine the expression pattern of genes previously implicated in vein differentiation in Drosophila in two butterfly species with more complex venation Bicyclus anynana and Pieris canidia. We also test the function of some of these genes in B. anynana. We identify both conserved as well as new domains of decapentaplegic, engrailed, invected, spalt, optix, wingless, armadillo, blistered, and rhomboid gene expression in butterflies, and propose how the simplified venation in Drosophila might have evolved via loss of decapentaplegic, spalt and optix gene expression domains, silencing of vein inducing programs at Spalt-expression boundaries, and changes in gene expression of vein maintenance genes.
Collapse
Affiliation(s)
- Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore
- Yale-NUS College, Singapore
| |
Collapse
|
5
|
Grandon B, Rincheval-Arnold A, Jah N, Corsi JM, Araujo LM, Glatigny S, Prevost E, Roche D, Chiocchia G, Guénal I, Gaumer S, Breban M. HLA-B27 alters BMP/TGFβ signalling in Drosophila, revealing putative pathogenic mechanism for spondyloarthritis. Ann Rheum Dis 2019; 78:1653-1662. [PMID: 31563893 DOI: 10.1136/annrheumdis-2019-215832] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVES The human leucocyte antigen (HLA)-B27 confers an increased risk of spondyloarthritis (SpA) by unknown mechanism. The objective of this work was to uncover HLA-B27 non-canonical properties that could explain its pathogenicity, using a new Drosophila model. METHODS We produced transgenic Drosophila expressing the SpA-associated HLA-B*27:04 or HLA-B*27:05 subtypes, or the non-associated HLA-B*07:02 allele, alone or in combination with human β2-microglobulin (hβ2m), under tissue-specific drivers. Consequences of transgenes expression in Drosophila were examined and affected pathways were investigated by the genetic interaction experiments. Predictions of the model were further tested in immune cells from patients with SpA. RESULTS Loss of crossveins in the wings and a reduced eye phenotype were observed after expression of HLA-B*27:04 or HLA-B*27:05 in Drosophila but not in fruit flies expressing the non-associated HLA-B*07:02 allele. These HLA-B27-induced phenotypes required the presence of hβ2m that allowed expression of well-folded HLA-B conformers at the cell surface. Loss of crossveins resulted from a dominant negative effect of HLA-B27 on the type I bone morphogenetic protein (BMP) receptor saxophone (Sax) with which it interacted, resulting in elevated mothers against decapentaplegic (Mad, a Drosophila receptor-mediated Smad) phosphorylation. Likewise, in immune cells from patients with SpA, HLA-B27 specifically interacted with activin receptor-like kinase-2 (ALK2), the mammalian Sax ortholog, at the cell surface and elevated Smad phosphorylation was observed in response to activin A and transforming growth factor β (TGFβ). CONCLUSIONS Antagonistic interaction of HLA-B27 with ALK2, which exerts inhibitory functions on the TGFβ/BMP signalling pathway at the cross-road between inflammation and ossification, could adequately explain SpA development.
Collapse
Affiliation(s)
- Benjamin Grandon
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Aurore Rincheval-Arnold
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Nadège Jah
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Jean-Marc Corsi
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Luiza M Araujo
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Simon Glatigny
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Erwann Prevost
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Delphine Roche
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Gilles Chiocchia
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
| | - Isabelle Guénal
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Sébastien Gaumer
- LGBC, EA4589, UVSQ/Université Paris-Saclay, EPHE/PSL Research University, Montigny-le-Bretonneux, France
| | - Maxime Breban
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/ Université Paris Saclay, Montigny-le-Bretonneux, France
- Rheumatology, Ambroise Paré Hospital, Boulogne Billancourt, France
| |
Collapse
|
6
|
Decapentaplegic function in wing vein development and wing morph transformation in brown planthopper, Nilaparvata lugens. Dev Biol 2019; 449:143-150. [DOI: 10.1016/j.ydbio.2019.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/08/2019] [Accepted: 02/27/2019] [Indexed: 11/24/2022]
|
7
|
Li X, Liu FZ, Cai WL, Zhao J, Hua HX, Zou YL. The function of spineless in antenna and wing development of the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2019; 28:196-207. [PMID: 30230080 DOI: 10.1111/imb.12538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A wide array of sensilla are distributed on insect antennae, and they play a variety of important roles. Rice planthoppers, destructive pests on rice, have a unique antenna sensilla structure called the 'sensory plaque organ'. The spineless (ss) gene encodes a bHLH-PAS transcription factor and plays a key role in antenna development. In the current study, a 3029 bp full-length cDNA of the Nilaparvata lugens ss gene (Nlss) was cloned, and it encodes 654 amino acid residues. The highest level of Nlss expression was detected in the thorax of fourth-instar nymphs. Knockdown of Nlss in nymphs led to a decrease in the number and size of plaque organs. Moreover, the flagella of the treated insects were poorly developed, wilted, and even dropped off from the pedicel. Nlss-knockdown also resulted in twisted wings in both long-winged and short-winged brown planthoppers. Y-type olfactometer analyses indicated that antenna defects originating from Nlss depletion resulted in less sensitivity to host volatiles. This study represents the first report of the characteristics and functions of Nlss in N. lugens antenna and wing development and illuminates the function of the plaque organ of N. lugens in host volatile perception.
Collapse
Affiliation(s)
- X Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - F-Z Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - W-L Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - J Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - H-X Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Y-L Zou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Huang Y, Hatakeyama M, Shimmi O. Wing vein development in the sawfly Athalia rosae is regulated by spatial transcription of Dpp/BMP signaling components. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:408-415. [PMID: 29596913 DOI: 10.1016/j.asd.2018.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Wing venation among insects serves as an excellent model to address how diversified patterns are produced. Previous studies suggest that evolutionarily conserved Decapentaplegic (Dpp)/Bone Morphogenetic Protein (BMP) signal plays a critical role in wing vein development in the dipteran Drosophila melanogaster and the hymenopteran sawfly Athalia rosae. In sawfly, dpp is ubiquitously expressed in the wing during prepupal stages, but Dpp/BMP signal is localized in the future vein cells. Since localized BMP signaling involves BMP binding protein Crossveinless (Cv), redistribution of BMP ligands appears to be crucial for sawfly wing vein formation. However, how ubiquitously expressed ligands lead to a localized signal remains to be addressed. Here, we found that BMP binding protein short gastrulation (Sog) is highly expressed in the intervein cells. Our data also reveal that BMP type I receptors thickveins (Tkv) and saxophone (Sax) are highly expressed in intervein cells and at lower levels in the vein progenitor cells. RNAi knockdown of Ar-tkv or Ar-sax indicates that both receptors are required for localized BMP signaling in the wing vein progenitor cells. Taken together, our data suggest that spatial transcription of core- and co-factors of the BMP pathway sustain localized BMP signaling during sawfly wing vein development.
Collapse
Affiliation(s)
- Yunxian Huang
- Institute of Biotechnology, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014, Helsinki, Finland
| | - Masatsugu Hatakeyama
- Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Owashi, Tsukuba, 305-8634, Japan.
| | - Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014, Helsinki, Finland.
| |
Collapse
|
9
|
Wound healing, calcium signaling, and other novel pathways are associated with the formation of butterfly eyespots. BMC Genomics 2017; 18:788. [PMID: 29037153 PMCID: PMC5644175 DOI: 10.1186/s12864-017-4175-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/05/2017] [Indexed: 01/21/2023] Open
Abstract
Background One hypothesis surrounding the origin of novel traits is that they originate from the co-option of pre-existing genes or larger gene regulatory networks into novel developmental contexts. Insights into a trait’s evolutionary origins can, thus, be gained via identification of the genes underlying trait development, and exploring whether those genes also function in other developmental contexts. Here we investigate the set of genes associated with the development of eyespot color patterns, a trait that originated once within the Nymphalid family of butterflies. Although several genes associated with eyespot development have been identified, the eyespot gene regulatory network remains largely unknown. Results In this study, next-generation sequencing and transcriptome analyses were used to identify a large set of genes associated with eyespot development of Bicyclus anynana butterflies, at 3-6 h after pupation, prior to the differentiation of the color rings. Eyespot-associated genes were identified by comparing the transcriptomes of homologous micro-dissected wing tissues that either develop or do not develop eyespots in wild-type and a mutant line of butterflies, Spotty, with extra eyespots. Overall, 186 genes were significantly up and down-regulated in wing tissues that develop eyespots compared to wing tissues that do not. Many of the differentially expressed genes have yet to be annotated. New signaling pathways, including the Toll, Fibroblast Growth Factor (FGF), extracellular signal–regulated kinase (ERK) and/or Jun N-terminal kinase (JNK) signaling pathways are associated for the first time with eyespot development. In addition, several genes involved in wound healing and calcium signaling were also found to be associated with eyespots. Conclusions Overall, this study provides the identity of many new genes and signaling pathways associated with eyespots, and suggests that the ancient wound healing gene regulatory network may have been co-opted to cells at the center of the pattern to aid in eyespot origins. New transcription factors that may be providing different identities to distinct wing sectors, and genes with sexually dimorphic expression in the eyespots were also identified. Electronic supplementary material The online version of this article (10.1186/s12864-017-4175-7) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Schmidt-Ott U, Lynch JA. Emerging developmental genetic model systems in holometabolous insects. Curr Opin Genet Dev 2016; 39:116-128. [PMID: 27399647 DOI: 10.1016/j.gde.2016.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/25/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023]
Abstract
The number of insect species that are amenable to functional genetic studies is growing rapidly and provides many new research opportunities in developmental and evolutionary biology. The holometabolous insects represent a disproportionate percentage of animal diversity and are thus well positioned to provide model species for a wide variety of developmental processes. Here we discuss emerging holometabolous models, and review some recent breakthroughs. For example, flies and midges were found to use structurally unrelated long-range pattern organizers, butterflies and moths revealed extensive pattern formation during oogenesis, new imaging possibilities in the flour beetle Tribolium castaneum showed how embryos break free of their extraembryonic membranes, and the complex genetics governing interspecies difference in head shape were revealed in Nasonia wasps.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, United States.
| | - Jeremy A Lynch
- Department of Biological Sciences, University of Illinois at Chicago, United States.
| |
Collapse
|
11
|
BMP morphogen gradients in flies. Cytokine Growth Factor Rev 2016; 27:119-27. [DOI: 10.1016/j.cytogfr.2015.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022]
|
12
|
Perrard A, Loope KJ. Patriline Differences Reveal Genetic Influence on Forewing Size and Shape in a Yellowjacket Wasp (Hymenoptera: Vespidae: Vespula flavopilosa Jacobson, 1978). PLoS One 2015; 10:e0130064. [PMID: 26131549 PMCID: PMC4488467 DOI: 10.1371/journal.pone.0130064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/15/2015] [Indexed: 11/19/2022] Open
Abstract
The wing venation is frequently used as a morphological marker to distinguish biological groups among insects. With geometric morphometrics, minute shape differences can be detected between closely related species or populations, making this technique useful for taxonomy. However, the direct influence of genetic differences on wing morphology has not been explored within colonies of social insects. Here, we show that the father's genotype has a direct effect on wing morphology in colonies of social wasps. Using geometric morphometrics on the venation pattern, we found significant differences in wing size and shape between patrilines of yellowjackets, taking allometry and measurement error into account. The genetic influence on wing size accounted for a small part of the overall size variation, but venation shape was highly structured by the differences between patrilines. Overall, our results showed a strong genetic influence on wing morphology likely acting at multiple levels of venation pattern development. This confirmed the pertinence of this marker for taxonomic purposes and suggests this phenotype as a potentially useful marker for phylogenies. This also raises doubts about the strength of selective pressures on this phenotype, which highlights the need to understand better the role of wing venation shape in insect flight.
Collapse
Affiliation(s)
- Adrien Perrard
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Kevin J. Loope
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
13
|
Shimmi O, Matsuda S, Hatakeyama M. Insights into the molecular mechanisms underlying diversified wing venation among insects. Proc Biol Sci 2014; 281:20140264. [PMID: 25009057 PMCID: PMC4100500 DOI: 10.1098/rspb.2014.0264] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 06/09/2014] [Indexed: 11/12/2022] Open
Abstract
Insect wings are great resources for studying morphological diversities in nature as well as in fossil records. Among them, variation in wing venation is one of the most characteristic features of insect species. Venation is therefore, undeniably a key factor of species-specific functional traits of the wings; however, the mechanism underlying wing vein formation among insects largely remains unexplored. Our knowledge of the genetic basis of wing development is solely restricted to Drosophila melanogaster. A critical step in wing vein development in Drosophila is the activation of the decapentaplegic (Dpp)/bone morphogenetic protein (BMP) signalling pathway during pupal stages. A key mechanism is the directional transport of Dpp from the longitudinal veins into the posterior crossvein by BMP-binding proteins, resulting in redistribution of Dpp that reflects wing vein patterns. Recent works on the sawfly Athalia rosae, of the order Hymenoptera, also suggested that the Dpp transport system is required to specify fore- and hindwing vein patterns. Given that Dpp redistribution via transport is likely to be a key mechanism for establishing wing vein patterns, this raises the interesting possibility that distinct wing vein patterns are generated, based on where Dpp is transported. Experimental evidence in Drosophila suggests that the direction of Dpp transport is regulated by prepatterned positional information. These observations lead to the postulation that Dpp generates diversified insect wing vein patterns through species-specific positional information of its directional transport. Extension of these observations in some winged insects will provide further insights into the mechanisms underlying diversified wing venation among insects.
Collapse
Affiliation(s)
- Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, PO Box 65 (Viikinkaari 1), Helsinki 00014, Finland
| | - Shinya Matsuda
- Institute of Biotechnology, University of Helsinki, PO Box 65 (Viikinkaari 1), Helsinki 00014, Finland
| | - Masatsugu Hatakeyama
- Division of Insect Sciences, National Institute of Agrobiological Sciences, Owashi, Tsukuba 305-8634, Japan
| |
Collapse
|
14
|
Shimmi O, Newfeld SJ. New insights into extracellular and post-translational regulation of TGF-β family signalling pathways. J Biochem 2013; 154:11-9. [PMID: 23698094 PMCID: PMC3693483 DOI: 10.1093/jb/mvt046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 05/08/2013] [Indexed: 01/19/2023] Open
Abstract
Members of the transforming growth factor-β (TGF-β) family of secreted proteins are present in all multicellular animals. TGF-β proteins are versatile intercellular signalling molecules that orchestrate cell fate decisions during development and maintain homeostasis in adults. The Smad family of signal transducers implements TGF-β signals in responsive cells. Given the ability of TGF-β ligands to induce dramatic responses in target cells, numerous regulatory mechanisms exist to prevent unintended consequences. Here we review new reports of extracellular and post-translational regulation in Drosophila and vertebrates. Extracellular topics include the regulation of TGF-β signalling range and the coordination between tissue morphogenesis and TGF-β signalling. Post-translational topics include the regulation of TGF-β signal transduction by Gsk3-β phosphorylation of Smads and by cycles of Smad mono- and deubiquitylation. Extension of the ubiquitylation data to the Hippo pathway is also discussed.
Collapse
Affiliation(s)
- Osamu Shimmi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland and School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | - Stuart J. Newfeld
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland and School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|