1
|
Sharma M, Kumar V. Mosquito-larvicidal Binary (BinA/B) proteins for mosquito control programs —advancements, challenges, and possibilities. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100028. [PMID: 36003274 PMCID: PMC9387486 DOI: 10.1016/j.cris.2021.100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Binary (BinAB) toxin is primarily responsible for the larvicidal action of the WHO recognized mosquito-larvicidal bacterium Lysinibacillus sphaericus. BinAB is a single receptor-specific toxin, active against larvae of Culex and Anopheles, but not Aedes aegypti. The target receptor in Culex is Cqm1 protein, a GPI-anchored amylomaltase located apically in the lipid-rafts of the larval-midgut epithelium. Interaction of the toxin components with the receptor is critical for the larvicidal activity of the toxin. Evidences support the pore formation model for BinAB toxin internalization and the role of toxin-glycan interactions in the endoplasmic reticulum in mediating larval death. Targeted R&D efforts are required to maintain the sustainability and improve efficacy of the eco-friendly BinAB proteins for efficient mosquito control interventions.
The increasing global burden of mosquito-borne diseases require targeted, environmentally friendly, and sustainable approaches for effective vector control without endangering the non-target beneficial insect population. Biological interventions such as biopesticides, Wolbachia-mediated biological controls, or sterile insect techniques are used worldwide. Here we review Binary or BinAB toxin—the mosquito-larvicidal component of WHO-recognized Lysinibacillus sphaericus bacterium employed in mosquito control programs. Binary (BinAB) toxin is primarily responsible for the larvicidal effect of the bacterium. BinAB is a single-receptor-specific toxin and is effective against larvae of Culex and Anopheles, but not against Aedes aegypti. The receptor in Culex, the Cqm1 protein, has been extensively studied. It is a GPI-anchored amylomaltase and is located apically in the lipid rafts of the larval-midgut epithelium. The interaction of the toxin components with the receptor is crucial for the mosquito larvicidal activity of the BinAB toxin. Here we extend support for the pore formation model of BinAB toxin internalization and the role of toxin-glycan interactions in the endoplasmic reticulum in mediating larval death. BinAB is phylogenetically safe for humans, as Cqm1-like protein is not expected in the human proteome. This review aims to initiate targeted R&D efforts, such as applying fusion technologies (chimera of BinA, chemical modification of BinA), for efficient mosquito control interventions. In addition, the review also examines other areas such as bioremediation and cancer therapeutics, in which L. sphaericus is proving useful and showing potential for further development.
Collapse
Affiliation(s)
- Mahima Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| | - Vinay Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
- Correspondence Author: Professor (Retired) Vinay Kumar, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| |
Collapse
|
2
|
Bacterial Toxins Active against Mosquitoes: Mode of Action and Resistance. Toxins (Basel) 2021; 13:toxins13080523. [PMID: 34437394 PMCID: PMC8402332 DOI: 10.3390/toxins13080523] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022] Open
Abstract
Larvicides based on the bacteria Bacillus thuringiensis svar. israelensis (Bti) and Lysinibacillus sphaericus are effective and environmentally safe compounds for the control of dipteran insects of medical importance. They produce crystals that display specific and potent insecticidal activity against larvae. Bti crystals are composed of multiple protoxins: three from the three-domain Cry type family, which bind to different cell receptors in the midgut, and one cytolytic (Cyt1Aa) protoxin that can insert itself into the cell membrane and act as surrogate receptor of the Cry toxins. Together, those toxins display a complex mode of action that shows a low risk of resistance selection. L. sphaericus crystals contain one major binary toxin that display an outstanding persistence in field conditions, which is superior to Bti. However, the action of the Bin toxin based on its interaction with a single receptor is vulnerable for resistance selection in insects. In this review we present the most recent data on the mode of action and synergism of these toxins, resistance issues, and examples of their use worldwide. Data reported in recent years improved our understanding of the mechanism of action of these toxins, showed that their combined use can enhance their activity and counteract resistance, and reinforced their relevance for mosquito control programs in the future years.
Collapse
|
3
|
Riaz MA, Adang MJ, Hua G, Rezende TMT, Rezende AM, Shen GM. Identification of Lysinibacillus sphaericus Binary toxin binding proteins in a malarial mosquito cell line by proteomics: A novel approach towards improving mosquito control. J Proteomics 2020; 227:103918. [PMID: 32712372 DOI: 10.1016/j.jprot.2020.103918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022]
Abstract
Bacterial insecticidal proteins, such as the Bin toxin from Lysinibacillus sphaericus, could be used more extensively to control insecticide resistant mosquitoes. This study was aimed at identification of mosquito cell proteins binding Bin toxin. Results showed that purified toxin was toxic to Anopheles gambiae larvae and Ag55 cultured cells. Clathrin heavy chain (an endocytosis protein) and glycolytic enzymes such as pyruvate kinase, enolase and dihydrolipoamide dehydrogenase were identified as binders of Bin toxin. The viability of Ag55 cells in the presence of endocytosis inhibitor, pitstop2, was significantly decreased upon Bin treatment, while the inhibitor chlorpromazine did not affect Bin toxicity. Bin toxin treatment decreased ATP production and mitochondrial respiration in Ag55 cells, whereas non-mitochondrial oxygen consumption significantly increased after Bin toxin treatment. These findings are steps towards understanding how Bin toxin kills mosquitoes. SIGNIFICANCE: Mosquitoes are vectors of pathogens causing human diseases such as dengue fever, yellow fever, zika virus and malaria. An insecticidal toxin from Lysinibacillus sphaericus called Binary, or Bin, toxin could be used more extensively to control insecticide resistant mosquitoes. Bin toxin enter cells in susceptible mosquitoes and induces apoptosis or autophagy. In the current research, we used the malaria mosquito Anopheles gambiae Ag55 cell line as a model. A proteomic-based approach identified proteins that interact with Bin toxin. Interacting proteins include clathrin heavy chain (endocytosis protein) and glycolysis enzymes such as pyruvate kinase, enolase and dihydrolipoamide dehydrogenase. In Ag55 cell toxicity assays, an endocytosis inhibitor, pitstop2, increased Bin toxicity. Real time assays with a Seahorse™ flux analyzer showed that Bin significantly affects mitochondrial respiration, a result consistent with cell death via apoptosis or autophagy. These research findings add insights into how an unusual binary protein exploits cellular machinery to kill mosquitoes.
Collapse
Affiliation(s)
- Muhammad Asam Riaz
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan; Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States
| | - Michael J Adang
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-2603, United States.
| | - Gang Hua
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States
| | - Tatiana Maria Teodoro Rezende
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States; Instituto Aggeu Magalhaes-FIOCRUZ, Recife, PE 50740-465, Brazil
| | - Antonio Mauro Rezende
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States; Instituto Aggeu Magalhaes-FIOCRUZ, Recife, PE 50740-465, Brazil
| | - Guang-Mao Shen
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, United States; College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Sharma M, Kumar A, Kumar V. Liposome-Based Study Provides Insight into Cellular Internalization Mechanism of Mosquito-Larvicidal BinAB Toxin. J Membr Biol 2020; 253:331-342. [PMID: 32725430 DOI: 10.1007/s00232-020-00131-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Glycosylphosphatidylinositols (GPIs) anchored proteins are commonly localized onto lipid rafts. These extracellular proteins participate in a variety of cellular functions, including as receptors for viruses and toxins. Intracellular trafficking of World Health Organization recognized mosquito-larvicidal BinAB toxin is mediated via GPI-anchored Cqm1 receptor protein in Culex mosquitoes. We confirmed conformational change in Cqm1 dimer on interaction with BinA/BinB proteins by dynamic light scattering, modelling of hydrodynamic parameters using the atomic structures, and synchrotron Small Angle solution X-ray scattering (SAXS). A reliable model of the receptor-BinB complex was also constructed from joint SAXS/SANS refinement. We confirmed electrostatic interactions of the Cqm1 ectodomain with lipid rafts reconstituted in model membranes and report receptor-dependent impairment of model liposomes by BinA/B proteins. Liposomal disruption was toxin concentration-dependent as monitored by the release of encapsulated carboxyfluorescein dye. Interestingly, BinA alone, without BinB, showed efficient efflux of the fluorescent dye in agreement with the reported high larvicidal activity of BinA variants. The study provides insight into BinA/B toxin internalization mechanism in the membrane model that is toxin internalization is mediated via receptor-dependent pore formation mechanism. It also suggests a tangible and environmentally safe strategy for control of mosquito population.
Collapse
Affiliation(s)
- Mahima Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India.,, 13th Floor, 247 Park, Vikhroli West, Mumbai, 400079, India
| | - Amit Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India
| | - Vinay Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, 400085, India. .,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
5
|
Pandey B, Aarthy M, Sharma M, Singh SK, Kumar V. Computational analysis identifies druggable mutations in human rBAT mediated Cystinuria. J Biomol Struct Dyn 2020; 39:5058-5067. [PMID: 32602810 DOI: 10.1080/07391102.2020.1784792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Culex quinquefasciatus Cqm1 protein acts as the receptor for Lysinibacillus sphaericus mosquito-larvicidal binary (BinAB) toxin that is used worldwide for mosquito control. We found amino acid transporter protein, rBAT, as phylogenetically closest Cqm1 homolog in humans. The present study reveals large evolutionary distance between Cqm1 and rBAT, and rBAT ectodomain lacks the sequence motif which serves as binding-site for the BinAB toxin. Thus, BinAB toxin can be expected to remain safe for humans. rBAT (heavy subunit; SLC3A1) and catalytic b0,+AT (light subunit; SLC7A9), linked by single disulfide bond, mediate renal reabsorption of cystine and dibasic amino acids in Na+ independent manner. Mutations in rBAT cause type I Cystinuria disease which shows global prevalence, and rBAT can be thought as an important pharmacological target. However, 3D structures of rBAT and b0,+AT, the two components of b0,+ heteromeric amino acid transporter systems, are not available. We constructed a reliable homology model of rBAT using Cqm1 coordinates and that of transmembrane b0,+AT subunit using LAT1 coordinates. Mapping of pathogenic mutations onto rBAT ectodomain revealed their scattered distribution throughout the rBAT protein. Further, our computational simulations-based scoring of several known deleterious mutations of rBAT revealed that mutations those do not compromise the protein fold and stability, are localized on the same face of the molecule. These residues are expected to interact with the b0,+AT transporter. The present study thus identifies druggable sites on rBAT that could be targeted for the treatment of type I Cystinuria.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bharati Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Murali Aarthy
- Computer-aided drug design Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Mahima Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sanjeev Kumar Singh
- Computer-aided drug design Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India
| | - Vinay Kumar
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
6
|
Sharma M, Aswal VK, Kumar V, Chidambaram R. Small-angle neutron scattering studies suggest the mechanism of BinAB protein internalization. IUCRJ 2020; 7:166-172. [PMID: 32148845 PMCID: PMC7055391 DOI: 10.1107/s2052252519017159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Small-angle neutron scattering (SANS) is one of the most widely used neutron-based approaches to study the solution structure of biological macromolecular systems. The selective deuterium labelling of different protein components of a complex provides a means to probe conformational changes in multiprotein complexes. The Lysinibacillus sphaericus mosquito-larvicidal BinAB proteins exert toxicity through interaction with the receptor Cqm1 protein; however, the nature of the complex is not known. Rationally engineered deuterated BinB (dBinB) protein from the L. sphaericus ISPC-8 species was synthesized using an Escherichia coli-based protein-expression system in M9 medium in D2O for 'contrast-matched' SANS experiments. SANS data were independently analysed by ab initio indirect Fourier transform-based modelling and using crystal structures. These studies confirm the dimeric status of Cqm1 in 100% D2O with a longest intramolecular vector (D max) of ∼94 Å and a radius of gyration (R g) of ∼31 Å. Notably, BinB binds to Cqm1, forming a heterodimeric complex (D max of ∼129 Å and R g of ∼40 Å) and alters its oligomeric status from a dimer to a monomer, as confirmed by matched-out Cqm1-dBinB (D max of ∼70 Å and R g of ∼22 Å). The present study thus provides the first insight into the events involved in the internalization of larvicidal proteins, likely by raft-dependent endocytosis.
Collapse
Affiliation(s)
- Mahima Sharma
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Vinod K. Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Vinay Kumar
- Protein Crystallography Section, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - R. Chidambaram
- Homi Bhabha Professor, Bhabha Atomic Research Centre, Mumbai 400 085, India
| |
Collapse
|
7
|
Mosquito-larvicidal BinA toxin displays affinity for glycoconjugates: Proposal for BinA mediated cytotoxicity. J Invertebr Pathol 2018; 156:29-40. [PMID: 30003921 DOI: 10.1016/j.jip.2018.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 11/20/2022]
Abstract
Lysinibacillus sphaericus parasporal BinAB toxin displays mosquito larvicidal activity against Culex and Anopheles, but several Aedes species are refractory. Recently reported crystal structure of BinAB revealed the presence of N-terminal lectin-like domain in BinA. Hemagglutination and hemolytic activities were not observed for BinA in the present studies. We attempted to characterize carbohydrate specificity of BinA by high-throughput approaches using extrinsic fluorescence and thermofluor shift assay. A total of 34 saccharides (mono-, di- and polysaccharides, and glycoproteins) were used for initial high-throughput screening. The promising glycans were identified based on significant change in the fluorescence intensity. Surface plasmon resonance revealed differential binding of BinA with glycoproteins (fetuin, asialofetuin and thyroglobulin) and affinity for simple sugars, l-fucose and l-arabinose. In the limited carbohydrate competition assay, arabinose, fucose and fetuin inhibited BinA toxicity towards Culex larvae. This study for the first time provides direct evidence that BinA is competent to bind diverse and structurally different glycosylated proteins. This activity may be linked to its intracellular cytotoxicity, as protein N-glycosylation is thought to be critical for development and survival of insect larvae. The glycoproteins do not form stable complexes with BinA, however, as observed in the pull-down assay using affinity immobilized BinA and in native-PAGE analysis. As BinA displays only mild affinity with receptor polypeptide, we hypothesize that toxin-receptor specificity of BinA in Culex may be mediated by dual interaction of BinA with glycan core of GPI anchor and receptor polypeptide. The study shall be useful for refining strategies for improving larvicidal activity and for broadening target specificity of BinAB toxin.
Collapse
|
8
|
Contribution of Lysinibacillus sphaericus hemolysin and chitin-binding protein in entomopathogenic activity against insecticide resistant Aedes aegypti. World J Microbiol Biotechnol 2017; 33:181. [DOI: 10.1007/s11274-017-2348-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
9
|
Rezende TMT, Romão TP, Batista M, Berry C, Adang MJ, Silva-Filha MHNL. Identification of Cry48Aa/Cry49Aa toxin ligands in the midgut of Culex quinquefasciatus larvae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 88:63-70. [PMID: 28780070 DOI: 10.1016/j.ibmb.2017.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/15/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
A binary mosquitocidal toxin composed of a three-domain Cry-like toxin (Cry48Aa) and a binary-like toxin (Cry49Aa) was identified in Lysinibacillus sphaericus. Cry48Aa/Cry49Aa has action on Culex quinquefasciatus larvae, in particular, to those that are resistant to the Bin Binary toxin, which is the major insecticidal factor from L. sphaericus-based biolarvicides, indicating that Cry48Aa/Cry49Aa interacts with distinct target sites in the midgut and can overcome Bin toxin resistance. This study aimed to identify Cry48Aa/Cry49Aa ligands in C. quinquefasciatus midgut through binding assays and mass spectrometry. Several proteins, mostly from 50 to 120 kDa, bound to the Cry48Aa/Cry49Aa toxin were revealed by toxin overlay and pull-down assays. These proteins were identified against the C. quinquefasciatus genome and after analysis a set of 49 proteins were selected which includes midgut bound proteins such as aminopeptidases, amylases, alkaline phosphatases in addition to molecules from other classes that can be potentially involved in this toxin's mode of action. Among these, some proteins are orthologs of Cry receptors previously identified in mosquito larvae, as candidate receptors for Cry48Aa/Cry49Aa toxin. Further investigation is needed to evaluate the specificity of their interactions and their possible role as receptors.
Collapse
Affiliation(s)
| | | | - Michel Batista
- Instituto Carlos Chagas-FIOCRUZ, Curitiba, PR 81350-010, Brazil
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | | | | |
Collapse
|
10
|
Nascimento NAD, Ferreira LM, Romão TP, Correia DMDC, Vasconcelos CRDS, Rezende AM, Costa SG, Genta FA, de-Melo-Neto OP, Silva-Filha MHNL. N-glycosylation influences the catalytic activity of mosquito α-glucosidases associated with susceptibility or refractoriness to Lysinibacillus sphaericus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 81:62-71. [PMID: 28017798 DOI: 10.1016/j.ibmb.2016.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/01/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Cqm1 and Aam1 are α-glucosidases (EC 3.2.1.20) expressed in Culex quinquefasciatus and Aedes aegypti larvae midgut, respectively. These orthologs share high sequence similarity but while Cqm1 acts as a receptor for the Binary (Bin) insecticidal toxin from Lysinibacillus sphaericus, Aam1 does not bind the toxin, rendering Ae. aegypti refractory to this bacterium. Aam1 is heavily glycosylated, contrasting to Cqm1, but little is known regarding how glycosylation impacts on its function. This study aimed to compare the N-glycosylation patterns and the catalytic activities of Aam1 and Cqm1. Mutant proteins were generated where predicted Aam1 N-glycosylation sites (N-PGS) were either inserted into Cqm1 or abrogated in Aam1. The mutants validated four N-PGS which were found to localize externally on the Aam1 structure. These Aam1 and Cqm1 mutants maintained their Bin binding properties, confirming that glycosylation has no role in this interaction. The α-glucosidase activity of both proteins was next investigated, with Aam1 having a remarkably higher catalytic efficiency, influenced by changes in glycosylation. Molecular dynamics showed that glycosylated and nonglycosylated Aam1 models displayed distinct patterns that could influence their catalytic activity. Differential N-glycosylation may then be associated with higher catalytic efficiency in Aam1, enhancing the functional diversity of related orthologs.
Collapse
Affiliation(s)
| | - Lígia Maria Ferreira
- Department of Entomology, Centro de Pesquisas Aggeu Magalhães/FIOCRUZ, Recife, PE 50740-465, Brazil
| | - Tatiany Patrícia Romão
- Department of Entomology, Centro de Pesquisas Aggeu Magalhães/FIOCRUZ, Recife, PE 50740-465, Brazil
| | | | | | - Antônio Mauro Rezende
- Department of Microbiology, Centro de Pesquisas Aggeu Magalhães/FIOCRUZ, Recife, PE 50740-465, Brazil
| | | | - Fernando Ariel Genta
- Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, RJ 21045-900, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ 21941-902, Brazil
| | | | | |
Collapse
|
11
|
Structural classification of insecticidal proteins – Towards an in silico characterisation of novel toxins. J Invertebr Pathol 2017; 142:16-22. [DOI: 10.1016/j.jip.2016.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/01/2016] [Accepted: 07/28/2016] [Indexed: 11/23/2022]
|
12
|
de Melo Chalegre KD, Tavares DA, Romão TP, de Menezes HSG, Nascimento NA, de Oliveira CMF, de-Melo-Neto OP, Silva-Filha MHNL. Co-selection and replacement of resistance alleles toLysinibacillus sphaericusin aCulex quinquefasciatuscolony. FEBS J 2015; 282:3592-602. [PMID: 26131741 DOI: 10.1111/febs.13364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/05/2015] [Accepted: 06/25/2015] [Indexed: 11/30/2022]
Affiliation(s)
| | - Daniella A. Tavares
- Department of Entomology; Centro de Pesquisas Aggeu Magalhães; FIOCRUZ; Recife Brazil
| | - Tatiany P. Romão
- Department of Entomology; Centro de Pesquisas Aggeu Magalhães; FIOCRUZ; Recife Brazil
| | | | - Nathaly A. Nascimento
- Department of Entomology; Centro de Pesquisas Aggeu Magalhães; FIOCRUZ; Recife Brazil
| | | | | | | |
Collapse
|
13
|
Srisucharitpanit K, Yao M, Promdonkoy B, Chimnaronk S, Tanaka I, Boonserm P. Crystal structure of BinB: A receptor binding component of the binary toxin from Lysinibacillus sphaericus. Proteins 2014; 82:2703-12. [DOI: 10.1002/prot.24636] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/12/2014] [Accepted: 06/18/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Kanokporn Srisucharitpanit
- Institute of Molecular Biosciences, Mahidol University; Salaya, Phuttamonthon Nakhon Pathom 73170 Thailand
- Faculty of Allied Health Science; Burapha University, Saensook; Muang District Chon Buri 20131 Thailand
| | - Min Yao
- Faculty of Advanced Life Sciences; Hokkaido University; Sapporo 060-0810 Japan
| | - Boonhiang Promdonkoy
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency; 113 Pahonyothin Road, Khlong Nueng Khlong Luang Pathum Thani 12120 Thailand
| | - Sarin Chimnaronk
- Institute of Molecular Biosciences, Mahidol University; Salaya, Phuttamonthon Nakhon Pathom 73170 Thailand
| | - Isao Tanaka
- Faculty of Advanced Life Sciences; Hokkaido University; Sapporo 060-0810 Japan
| | - Panadda Boonserm
- Institute of Molecular Biosciences, Mahidol University; Salaya, Phuttamonthon Nakhon Pathom 73170 Thailand
| |
Collapse
|